Р.Н. Ласовский, ассистент

ФАЗОВЫЕ РАВНОВЕСИЯ В РЕШЕТОЧНЫХ СИСТЕМАХ ПРИ УЧЕТЕ ВЗАИМОДЕЙСТВИЯ ПЕРВЫХ И ВТОРЫХ СОСЕДЕЙ

Monte-Carlo simulation results and generalized quasichemical approximation for the system of particles with nearest and next nearest neighbor attraction interaction on a square lattice are represented. Dependence of critical temperature on the ratio of next nearest to nearest neighbor interaction potential is calculated. Phase diagram of the system is investigated as well.

1. Введение

При помощи решеточных систем взаимодействующих частиц можно моделировать многие реальные процессы и явления. В частности, при наличии притяжения между частицами в решеточной системе возможен фазовый переход первого рода, при котором система расслаивается на две фазы – решеточный газ и решеточную жидкость [1]. Равновесные свойства и диффузионные характеристики решеточных систем при учете взаимодействия между ближайшими соседями были достаточно подробно изучены с помощью компьютерного моделирования и статистико-механическими методами [2–7]. Однако построение системы с более далекими взаимодействиями изучены мало, хотя такие системы представляют значительный интерес. В настоящей работе рассмотрены системы со взаимодействием первых и вторых соседей.

2. Обобщенное квазихимическое приближение

Поскольку точных решений для решеточных систем с учетом взаимодействия вторых соседей не найдено, рассмотрим их термодинамику в обобщенном квазихимическом приближении (ОКХП), в котором свободная энергия системы *F* записывается в виде [5]:

$$\beta F = c \ln c + (1-c) \ln(1-c) - \sum_{k=1}^{2} \frac{z_k}{2} \ln Y_k + \sum_{k=1}^{2} \frac{z_k}{2} (1-2c) \ln \eta_k, \qquad (1)$$

где $\beta = (k_B T)^{-1}$ – обратная температура; k_B – постоянная Больцмана; z_k – число узлов решетки в k-й координационной сфере; c – решеточная концентрация; J_k – энергия взаимодействия между k-ми соседями (k = 1, 2).

$$Y_{k} = \frac{1}{2} \left[1 + \sqrt{1 + 4c(1 - c)(W_{k} - 1)} \right]; \qquad W_{k} = \exp(\beta J_{k});$$
(2)

$$\eta_k = \left| (1-c) - c + \sqrt{1 + 4c(1-c)(W_k - 1)} \right| / 2(1-c) \,. \tag{3}$$

Взяв производную от свободной энергии по концентрации частиц, можно получить выражение для химического потенциала µ:

$$\beta \mu = \ln \frac{c}{1-c} - \sum_{k=1}^{2} z_k \ln \frac{Y_k - c}{1-c} \quad . \tag{4}$$

При концентрации *с* = 0,5 последняя формула принимает вид

$$\mu = (z_1 + R \ z_2)/2, \tag{5}$$

где $R = J_2 / J_1 -$ коэффициент взаимодействия вторых соседей [2].

Критическую температуру системы в ОКХП можно определить из условия

42

$$\frac{\partial(\beta\mu)}{\partial c}\Big|_{c=0,5} = 0, \tag{6}$$

которое для случая плоской квадратной решетки приводит к уравнению

$$\frac{1}{\sqrt{W_1}} + \frac{1}{\sqrt{W_1^R}} = \frac{3}{2}.$$
 (7)

В результате численного решения этого уравнения была построена зависимость критической температуры от коэффициента взаимодействия вторых соседей (рис. 1, 2). Введем производную:

$$\frac{\partial (k_B T_c / J)}{\partial R} = \frac{\partial \alpha_c}{\partial R}, \qquad \alpha_c = \frac{k_B T_c}{J}, \qquad J = J_1.$$
(8)

Представляет интерес исследовать ее поведение в зависимости от коэффициента взаимодействия вторых соседей. Для этого перепишем уравнение (7) в виде

$$\exp(-1/2\alpha_c) + \exp(-R/2\alpha_c) = 3/2.$$
 (9)

Взяв производные от левой и правой частей по *R* и преобразовав полученное уравнение, получим

$$\frac{\partial \alpha_c}{\partial R} = \frac{\alpha_c}{R + \exp[(R - 1)/2\alpha_c]}.$$
(10)

График этой зависимости представлен на рис. 3. Можно отметить, что при R > 0,2 производная медленно убывает с ростом R. В результате зависимость $T_c = T_c(R)$ на ограниченном интервале R хорошо аппроксимируется прямой линией, как это следует из рис. 1 и 2.

Зная химический потенциал при c = 0,5, можно построить фазовую диаграмму «решеточная жидкость – решеточный газ», численно решая уравнение (4). При температурах ниже критической это уравнение, согласно построению Максвелла, имеет три корня (c < 0,5, c = 0,5 и c > 0,5). Для построения левой ветви фазовой диаграммы отыскивалось численное решение, используя начальную концентрацию, близкую к нулю. Для получения правой ветви следовало принять начальные концентрации близкими к 1, но проще воспользоваться симметрией относительно линии c = 0,5. Результаты решения представлены на рис. 4.

3. Метод Монте-Карло

Выше был описан способ нахождения зависимости критической температуры от коэффициента взаимодействия вторых соседей и построения фазовой диаграммы в ОКХП. Для оценки точности ОКХП эти же зависимости были получены по методу Монте-Карло в рамках большого канонического ансамбля.

Рассматривалась квадратная решетка $L \times L$ (L = 128). Первоначально узлы равновероятно заполнялись до концентрации $c_0 = 0,1$. Затем случайным образом выбирался узел с числом заполнения n_{ij} (i и j – координаты узла на решетке, $n_{ij} = 1$ или 0 если узел занят частицей или вакантен, соответственно). Подсчитывалось изменение энергии системы ΔU при изменении состояния данного узла:

$$\Delta U = (-1)^{n_{ij}} \left(\sum_{k=1}^{2} J_k z_k - \mu \right).$$
(11)

 $n_{ij} = 1$ соответствует случаю, когда частица изымалась из системы, а $n_{ij} = 0$ – когда частица добавлялась. Если изменение состояния системы ведет к понижению энергии, то изменение принимается. В противоположном случае изменение принимается с вероятностью $\exp(-\beta\Delta U)$. Повторение этой процедуры $n = L^2$ раз формирует один шаг алгоритма метода Монте-Карло (МКШ). После $N \approx 10^4$ МКШ (необходимых для эквилибризации системы) производилось усреднение концентрации части в течение последующих $N \approx 10^5$ МКШ. Значение параметра J/k_BT задавалось соответствующим температуре заведомо ниже критической, и определялась концентрация частиц, соответствующая левой ветви фазовой диаграммы. Постепенно параметр J/k_BT уменьшался (температура повышалась) до тех пор, пока концентрация частиц не становилась равной c = 0,5, что позволяло определить критическую температуру. Результаты моделирования представлены на рис. 1 и 4.

4. Обсуждение результатов

На рис. 1 представлена зависимость критической температуры от коэффициента взаимодействия вторых соседей, полученная с помощью ОКХП и моделирования по методу Монте-Карло. Для удобства сравнения результаты приведены в единицах критической температуры системы при R = 0. T_c^0 – критическая температура при R = 0, соответствующая использованному методу для построения линии ($k_B T_c^0 / J = 0,567$ для линии 1 и 0,721 для линии 2). Из рисунка видно, что результаты, полученные в ОКХП, близки к результатам, полученным по методу Монте-Карло.

Для ОКХП зависимость критической температуры от параметра R была построена (рис. 2) на интервале $0 \le R \le 1$. Она с хорошей точностью аппроксимируется уравнением

$$k_{B}T/J = 0.73 + 1.212R - 0.21R^{2}.$$
(12)

На интервале $0,2 \le R \le 0,5$ эта зависимость может быть представлена линейной функцией. Для ОКХП:

$$T/T_c^0 = 1,064 + 1,44R$$
. (13)

Для метода Монте-Карло:

$$T/T_c^0 = 1,018 + 1,32R.$$
(14)

Отличие первого слагаемого от 1 указывает на нелинейный характер зависимости $T_c(R)$, что хорошо видно из рис. 2, на котором представлены данные в более широкой области изменения R. Для сопоставления с уравнением (12) последнее должно быть умножено на 0,721. Отметим, что в уравнении (12) и на рис. 2 критическая температура представлена в единицах потенциала взаимодействия первых соседей.

На рис. 4 показана фазовая диаграмма системы. Для удобства сравнения температуры на этом рисунке также представлены в приведенных единицах T/T_c . Из рисунка видно, что учет взаимодействия вторых соседей приводит к некоторому сужению области расслоения системы как по результатам моделирования пс методу Монте-Карло, так и на основании ОКХП.

Фазовая диаграмма, построенная в абсолютных энергетических единицах (рис. 5), показывает, что переход к последним приводит к существенным количественным отличиям между результатами ОКХП и метода Монте-Карло, хотя результаты находятся в качественном соответствии.

Рис. 1. Зависимость критической температуры системы от коэффициента взаимодействия вторых соседей: 1 – ОКХП; 2 – Монте-Карло

Рис. 3. Зависимость $\partial \alpha_c / \partial R$ от коэффициента взаимодействия вторых соседей для ОКХП

Рис. 2. Зависимость критической температуры системы от коэффициента взаимодействия вторых соседей для ОКХП

Рис. 4. Фазовая диаграмма решеточного газа в приведенных единицах: 1 – точное решение при R = 0; 2 – моделирование по методу Монте-Карло при R = 0,5; 3 – ОКХП при R = 0; 4 – ОКХП при R = 0,5

Рис. 5. Фазовая диаграмма решеточного газа в абсолютных единицах: 1 – точное решение при R = 0; 2 – моделирование по методу Монте-Карло при R = 0,5; 3 – ОКХП при R = 0; 4 – ОКХП при R = 0,5

В целом можно заключить, что ОКХП приводит к качественно правильным результатам, а при использовании приведенных единиц результаты ОКХП в некоторых случаях могут быть использованы и для количественных расчетов.

ЛИТЕРАТУРА

1. Хуанг К. Статистическая механика. – М.: Мир, 1966.

2. Uebing C. and Gomer R. // J. Chem. Phys. 1991. V. 95. P. 7626.

3. Trigides M.C. and Gomer R. // Surf. Sci. 1992. V. 265. P. 283.

4. Danani A., Ferrando R., Scalas E. and Torri M. // Internat. Journ. Modern Phys. 1997. V. 11. P. 2217.

5. Vikhrenko V.S., Groda Ya.G., Bokun G.S.// Phys. Lett. A. 2001. V. 286. P. 127.

6. Argyrakis P., Bokun G. S., Groda Y. G., Vikhrenko V. S. // Phys. Rev. E. 2001. V. 64. Art. no. 066108.

7. Groda Ya.G., Argyrakis P., Bokun G. S., Vikhrenko V. S. // Eur. Phys. J. B. 2003. V. 32. P. 527.