ИССЛЕДОВАНИЯ. КОНСТРУИРОВАНИЕ. РАСЧЕТЫ. ОПЫТ ЭКСПЛУАТАЦИИ

ПРОЦЕССЫ И ОБОРУДОВАНИЕ ХИМИЧЕСКИХ И НЕФТЕГАЗОВЫХ ТЕХНОЛОГИЙ

В.Б. Кунтыш, д-р техн. наук, А.Б. Сухоцкий, канд. техн. наук (Белорусский государственный технологический университет, г. Минск, Беларусь); А.Э Пиир, д-р техн. наук (Северный арктический федеральный университет, г. Архангельск, Россия)

Исследование теплоотдачи и сопротивления шахматных пучков воздухоохлаждаемых теплообменников из труб с накатными алюминиевыми ребрами различной высоты

Типичные представители воздухоохлаждаемых теплообменников — теплообменные секции аппаратов воздушного охлаждения (АВО) [1] технологических установок, калориферы для нагрева воздуха, конденсаторы холодильных установок, конденсационные утилизаторы тепла продуктов сгорания природного газа в производственных и отопительных котельных. Пучки теплообменников собираются из круглых биметаллических ребристых труб (БРТ) со спиральными алюминиевыми ребрами, наружный диаметр которых преимущественно составляет d = 56-57 мм. Потребность в БРТ только для секций АВО, изготавливаемых в России, превышает 1,5 млн. метров в год. Трубы располагают в решетках пучков шахматно в вершинах равностороннего треугольника с шагом $S_1 = S_2' = 63-64$ мм, значения которого являются оптимальными [2] по энергомассовым характеристикам.

Увеличение теплового потока Q (Вт) теплообменника в неизменных габаритах является эффективным направлением энерго- и ресурсосбережения. Тепловой поток

$$Q = kF\Delta t_{\rm cp} \,, \tag{1}$$

где k — коэффициент теплопередачи, $Bt/(M^2 \cdot K)$; Δt_{cp} — средний температурный напор, K; F — площадь поверхности теплообмена, M^2 .

Согласно (1) при $k = \text{idem } u \Delta t_{\text{cp}} = \text{idem управлять}$ величиной Q возможно изменением значения теплоотдающей площади F, которая для круглых БРТ

$$F = \pi d_0 \varphi L \,, \tag{2}$$

где d_0 — диаметр ребра у его основания, м; L — теплоотдающая длина труб теплообменника, м;

$$\varphi = 1 + \frac{2h}{sd_0}(d_0 + h + \Delta)$$
 — коэффициент оребрения для

круглоребристых труб (h, s — высота и шаг ребра, Δ — средняя толщина ребра).

Для серийных теплообменников, например секций ABO, L= const, а $d_0\approx 26$ мм. Таким образом, управ-

ление значением F возможно лишь посредством изменения ф. Толщина ребер $\Delta \approx 0.35-0.6$ мм труб ABO близка к оптимальной [1], а значения шага достигли $s \approx 2,3-2,5$ мм и дальнейшее его уменьшение ограничено технико-экономической целесообразностью современных промышленных технологий [1, 2] оребрения труб алюминием. Следовательно, реальным геометрическим параметром, которым возможно управлять величиной ϕ (или F), является высота ребра. Для оптимизации высоты ребра БРТ АВО необходимы достоверные данные по теплоотдаче и аэродинамическому сопротивлению шахматных пучков с применяемыми поперечным S_1 и продольным S_2 шагами. Для исследования был выбран БРТ с накатанными по технологии ВНИИМетмаш спиральными алюминиевыми ребрами, которые, по нашим оценкам, установлены в 65-70 % изготавливаемых в России АВО.

Цель работы — экспериментальное исследование влияния в расширенном интервале изменения высоты ребра биметаллической трубы с накатанными алюминиевыми ребрами на теплоаэродинамические характеристики шахматного пучка и его энергетическую эффективность.

Для исследования пучков с различной высотой ребра выполнен анализ работ [3–9], который показал, что главным образом они посвящены поверхностям нагрева, применяемым в паровых котлах или транспортных энергетических установках [6]. Эти поверхности по геометрическим параметрам ребер, конструкции, материальному исполнению, технологии их оребрения, а также по компоновочным характеристикам пучков значительно отличаются от таковых в БРТ с алюминиевыми ребрами. Публикации [10-12] связаны с исследованием пучков воздухоохлаждаемых теплообменников из труб с накатанными алюминиевыми ребрами, но в них отсутствует системный подход по установлению влияния высоты ребра, что затрудняет использование результатов в оптимизационных расчетах. Опытные данные [13] являются наиболее представительными, но они относятся к БРТ АВО, имеющим значение φ меньше, чем у применяемых серийных промышленных труб [12] ABO последнего (третьего) поколения. Следовательно, необходимы дополнительные исследования по влиянию h на теплоаэродинамические характеристики пучка, восполняющие пробелы проанализированных опытов.

В настоящей работе экспериментально изучено влияние изменения высоты накатанного однозаходного спирального ребра из алюминиевого сплава AD1Mна приведенную теплоотдачу и потери давления поперечно обтекаемых воздухом пяти (I–V) шестирядных шахматных пучков с одинаковыми относительными шагами разбивки биметаллических труб — поперечным $s_1 = S_1/d = 1,136$ и продольным $s_2 = S_2/d = 0,905$. Пучок I является базовым, абсолютные значения шагов труб в котором были $S_1 = 64$ мм, $S_2 = 51$ мм и соответствовали таковым в теплообменных секциях серийных АВО общепромышленного значения. Трубы во всех пучках располагали в вершинах равнобедренного треугольника. Геометрические параметры ребер труб пучка І были стандартными [2] для АВО последнего поколения. Ребра накатаны на несущей трубе с наружным диаметром 25 мм и толщиной стенки 2 мм. Труба выполнена из углеродистой стали 20.

Высоту ребер труб в пучках ІІ-V уменьшали обточкой на токарном станке, при этом возрастала толщина ребра Δ_2 у вершины вследствие его трапецеидальной формы, а толщина ребра $\Delta_1 = 0.9$ мм у основания оставалась неизменной. Средняя толщина ребра $\Delta = 0.5(\Delta_1 + \Delta_2)$. Диаметр ребра у его основания $d_0 = d - 2h = 25,87$ мм и шаг s = 2,58 мм были одинаковы у всех труб пучков. Коэффициент компактности пучка Π , вычисляли по отношению $\pi d_0 \varphi / (S_1 \cdot S_2)$. Масса 1 м несущей трубы равна $b_{\rm H} = 1{,}135~{\rm K}\Gamma$ при плотности стали $\rho_{\rm cr} = 7850~{\rm K}\Gamma/{\rm M}^3$. Числовые значения геометрических параметров опытных пучков и ребер труб, а также масса алюминия b_{ian} , затрачиваемая на оребрение 1 м трубы, масса алюминия b'_{ian} , приходящаяся на 1 м² поверхности оребрения трубы, и общая масса b_i трубы, приходящаяся на 1 м² поверхности оребрения приведены в табл. 1.

Плотность алюминия $\rho_{an} = 2750 \text{ кг/м}^3$. С уменьшением высоты ребра общая масса металла на 1 м² поверхности оребрения возросла в 2,5 раза.

Опытные трубные пучки устанавливали в рабочем участке с поперечным сечением 400×400 мм разомкнутой аэродинамической трубы [1]. Трубы в пучках располагали вертикально. В каждом поперечном ряду

находилось число труб, равное для пучков: $\mathbf{I} - 6$ шт; \mathbf{II} , $\mathbf{III} -$ по 7 шт; $\mathbf{IV} - 9$ шт; $\mathbf{V} - 10$ шт. В соответствующих поперечных рядах устанавливали полутрубки, обеспечивающие постоянное сжатое фронтальное сечение пучка для прохода воздуха. Пучки собирали из труб натурных размеров с отрезкой длиной l = 430 мм при высоте (длине) оребренной части H = 400 мм. Методика проведения опытов и оснащение контрольно-измерительными приборами аэродинамической трубы описаны в работе [1].

Приведенную теплоотдачу изучали методом локального теплового подобия с обогревом одной измерительной трубы-калориметра. Обогрев калориметра пароэлектрический с температурой кипения воды, соответствующей барометрическому давлению. Калориметр последовательно устанавливали в середине первого, третьего и пятого поперечных рядов. Исследуемые пучки относятся к тесным [1, 7], стабилизация теплоотдачи в которых наступает со второго поперечного ряда. В связи с этим нет необходимости в измерении теплоотдачи каждого ряда. Средний коэффициент теплоотдачи α_i (Bт/(м²·K)) *i*-го ряда пучка определяли по формуле $\alpha_i = Q_i / (F(t_{cti} - t_1)),$ где Q_i — тепловой поток, переданный трубой-калориметром воздуху, Вт; $F = \pi d_0 \varphi H$ — площадь наружной теплоотдающей поверхности трубы-калориметра, м²; $t_{{
m cr}i}$ — средняя температура поверхности стенки трубыкалориметра у основания ребер, °С; t_1 — средняя температура воздуха перед калориметром, принимаемая равной средней температуре воздуха перед пучком, °С.

Средний приведенный коэффициент теплоотдачи а трубного пучка вычисляли как среднее арифмитическое коэффициентов теплоотдачи α, всех шести рядов. При усреднении α считали, что $\alpha_2 = \alpha_3 = \alpha_4 = \alpha_5$, а коэффициент теплоотдачи шестого (последнего) ряда пучка $\alpha_6 = 0.95\alpha_5$ [4]. Опытные данные обрабатывали и представляли в числах подобия Нуссельта $Nu_i = \alpha d_0/\lambda$, $Nu = \alpha d_0/\lambda$; Рейнольдса $Re = \omega d_0/v$; Эйлера Eu = $\Delta P/(\rho\omega^2)$, где λ , ν , ρ — коэффициенты теплопроводности, кинематической вязкости воздуха и его плотность при средней температуре; ΔP — перепад статического давления воздуха в пучке; ω — скорость воздуха в сжатом поперечном сечении пучка. Относительная максимальная квадратичная погрешность значений Nu, Re, Eu не превышала соответственно значений 3,1; 2,8 и 3,3%.

Таблица 1

Номер пучка		аметры реб	ер и пучка,	MM	_	П ,2/53	h vr/v	h' xr/2	h x 1/2		
	S_1	S_2	d	h	Δ_2	Δ	φ,	Π_i , M^2/M^3	<i>U_{іал},</i> КІ/М	b'_{ian} , $K\Gamma/M^2$	v_i , KI/M
I	64,0	51,0	56,3	15,23	0,4	0,65	20,00	499	1,784	1,095	1,79
II	55,7	44,4	49,0	11,57	0,6	0,75	14,23	468	1,246	1,077	2,05
III	50,0	39,9	44,0	9,07	0,6	0,75	10,69	436	0,891	1,026	2,33
IV	42,0	33,5	37,0	5,56	0,7	0,80	6,38	369	0,564	1,088	3,29
V	37,5	29,9	33,0	3,57	0,8	0,85	4,24	307	0,395	1,148	4,45

Результаты исследований безразмерных коэффициентов теплоотдачи (Nu_i) первого, третьего, пятого рядов и безразмерных потерь давления (Eu) воздуха для шести рядов пучков I-V в зависимости от безразмерной скорости (Re) воздуха представлены на **рис. 1, 2**. Эти результаты аппроксимированы уравнениями подобия степенного вида

$$Nu_i = C_i Re^{n_i}; (4)$$

$$Eu_i = BRe^{-m}, (5)$$

а средняя теплоотдача пучков подчиняется уравнению

$$Nu = CRe^n. (6)$$

Коэффициенты теплоотдачи Nu_i , Nu вычислены по полной площади поверхности оребрения. Значение коэффициентов пропорциональности C_i , C, B и показателей степени n_i , n, m в диапазоне $Re = (3 - 30) \cdot 10^3$ даны в **табл. 2**.

Для наглядности влияния изменения высоты ребра на теплоотдачу и сопротивление пучка в табл. 2 также указаны значения Nu, Nu- φ и Eu пучков I–V для чисел Re = 3 000 и 25 000, по которым построен рис. 3. Численное значение Nu- φ является безразмерным коэффициентом средней теплоотдачи пучка, отнесенным к площади трубы, вычисленной по диаметру d_0 основания ребра, и характеризует удельный теплосъем трубы к воздуху.

Анализ рис. 1–3 и данных табл. 2 показывает, что общим правилом для пучков **I–V** при Re = idem

Таблица 2

Поромотру	Номера рядов	Номер пучка								
Параметры	в пучке	I	III	III	IV	V				
<i>C_i</i> ⋅10	1	1,34	0,94	0,94	0,45	0,31				
C_i 10	2–5	0,64	0,53	0,57	0,36	0,38				
m 10	1	6,0	6,5	6,5	7,3	7,6				
n_i · 10	2-6	7,0	7,3	7,3	7,8	7,8				
C 10	-	0,72	0,58	0,62	0,38	0,36				
n⋅10	-	6,83	7,17	7,17	7,70	7,80				
В	-	41,1	37,5	22,0	12,3	9,2				
<i>m</i> ⋅10	-	2,8	2,8	2,3	1,8	1,6				
$h/d_{_0}$	-	0,59	0,45	0,35	0,22	0,14				
$h/(s-\Delta)$	-	7,89	6,32	4,96	3,12	2,06				
Re = 3000										
Nu	-	17,2	18,1	19,4	18,0	18,6				
Nu·φ	-	344	258	207	115	79				
Eu	-	4,37	3,99	3,48	2,90	2,54				
Re = 25000										
Nu	-	73,0	82,0	88,8	92,0	97,3				
Nu·φ	-	1460	1167	949	587	413				
Eu	-	2,41	2,20	2,14	1,98	1,81				

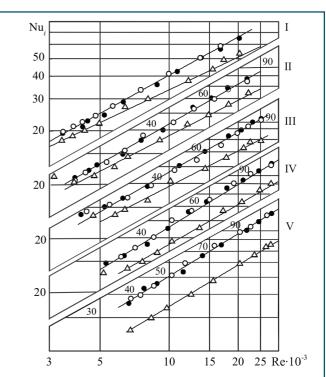


Рис. 1. Зависимость безразмерного коэффициента теплоотдачи поперечных рядов пучков I–V от безразмерной скорости воздуха:

∆, ○, \bullet – соответственно 1-й, 3-й, 5-й ряды в пучке; — – расчет по уравнению (5)

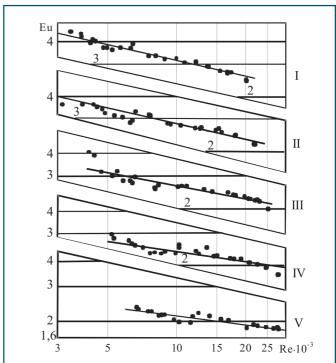


Рис. 2. Зависимость аэродинамического сопротивления шестирядных пучков I-V от безразмерной скорости воздуха:

• – эксперимент; — – расчет по уравнению (6)

является увеличение коэффициента теплоотдачи пучка, уменьшение удельного съема тепла и аэродинамического сопротивления пучка с уменьшением высоты ребра. Однако эти процессы как качественно, так и количественно протекают по-разному.

Изменение средней теплоотдачи (Nu) и удельного съема тепла (Nu· ϕ) пучка (см. рис. 3) от высоты ребра подчиняется линейной зависимости. Уменьшение h в 4,27 раза (от 15,23 мм (базовый пучок I) до 3,57 мм (пучок V)) сопровождается повышением интенсивности теплоотдачи на 8 % при Re = 3 000, на 33 % при Re = 25 000, но при этом удельный съем тепла пучка уменьшился соответственно в 4,35 и 3,53 раза, а теплоотдающая площадь трубы снизилась в 20/4,24 = 4,71 раза.

Относительная величина съема тепла снижается при уменьшении высоты ребра и росте Re. Это не противоречит опытным данным работ [4, 13] и объясняется

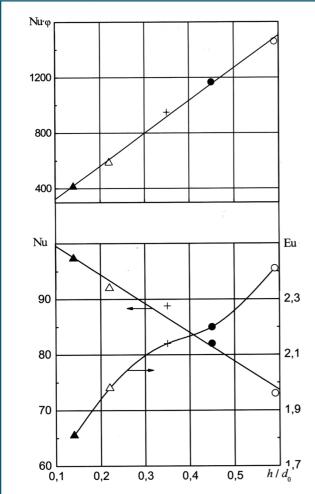


Рис. 3. Влияние относительной высоты алюминиевого спирального ребра при Re = 25 000 на безразмерный средний коэффициент теплоотдачи, удельный съем тепла и аэродинамическое сопротивление пучков I-V:

 \circ , •, +, Δ , • расчетные значения по уравнениям (6) и (7) соответственно для пучков I, II, III, IV, V

влиянием следующих двух факторов. Во-первых, уменьшение высоты ребра трубы улучшает гидродинамику потока воздуха в межреберных полостях шириной $u = s - \Delta$, выражающуюся в следующем. Относительная глубина полости $h/(s-\Delta) = h/u$ для анализируемых пучков I, V снижается от 7,89 до 2,06 (см. табл. 2). Скорость воздуха по высоте полости от вершины до основания ребра более выровнена, а градиент скорости значительно меньше [1] по сравнению с высокими узкими межреберными полостями [4]. На боковых поверхностях низких (коротких) ребер с $h/u \le 2$ (пучок **V**) формируется пограничный слой воздуха меньшей толщины [14], что благоприятно влияет на интенсивность теплоотдачи. Увеличение скорости воздуха (числа Re) способствует лучшей вентиляции межреберных полостей трубы и возрастанию турбулизации потока.

Положительное влияние второго фактора на рост интенсивности средней приведенной теплоотдачи ребер уменьшенной высоты (пучки ІІ-V) по сравнению с базовой (пучок І) обусловлено различием в форме торца ребер. Ребра труб пучка І вследствие их изготовления по технологии ВНИИМетмаш имели плавноочерченные удобообтекаемой формы торцы. Но после уменьшения высоты ребер обточкой на токарном станке торцы приобрели острые кромки. С острых кромок происходит срыв потока и образование узкой отрывной области шириной $(3-4)\Delta_2$ на периферии боковой поверхности ребра, распространяющейся до миделева сечения трубы. Наблюдается повышение местной теплоотдачи на этой поверхности. На острых кромках утолщающихся ребер при их уменьшающейся высоте в пучках ІІ-V образуются мелкие вихри, которые непрерывно сносятся потоком вниз по течению, турбулизируя его. В пучках I-V относительные шаги σ_1 и σ_2 были постоянными, а значит, изменение межтрубной турбулентности потока определялось исключительно высотой ребра.

Косвенным индикатором роста степени турбулентности потока от воздействия h является увеличение угла наклона кривых теплоотдачи $\mathrm{Nu}_i = f(\mathrm{Re})$ и $\mathrm{Nu} = f(\mathrm{Re})$ к оси абсцисс (см. рис. 1). Тангенс угла наклона n_i , n этих кривых с уменьшением высоты ребра возрастает как для первого, так и для стабилизированных рядов пучков \mathbf{I} – \mathbf{V} . Например, для стабилизированных рядов труб пучков \mathbf{I} , \mathbf{V} рост составил 0.7/0.78 = 1.11 раза, а для приведенной средней теплоотдачи этих пучков он равен 0.78/0.683 = 1.14 раза.

Также с уменьшением высоты ребра увеличивается коэффициент эффективности (КПД) E ребра, что способствует росту интенсивности теплоотдачи в коротких ребрах. Для исследованного интервала Re коэффициент E ребер пучка I был 0.94-0.9, а у ребер пучка V возрос до значений 0.98-0.93 в среднем на 4%.

Из рис. 2, на котором приведены зависимости Eu = f(Re), следует, что с уменьшением высоты ребра сопротивление также снижается, например для $Re = 25\ 000$ (см. табл. 2) снижение достигает 2,41/1,81 = 100

= 1,33 раза для пучка **V**. Кривые сопротивления в логарифмических коэффициентах по мере уменьшения высоты *h* располагаются более полого. Тангенс угла наклона их изменяется от -0,28 до -0,16.

Результаты исследования пучков I-V обобщены уравнениями подобия для средней теплоотдачи

Nu =
$$(0.0245 + 0.0824x)$$
Re^{0.81-0.22x}, (7)

для аэродинамического сопротивления

Eu =
$$(-2.85 + 78.3x)$$
Re^{-0.122-0.3x}, (8)

где $x = h/d_0$ — относительная высота ребра.

Уравнения (7, 8) действительны в интервале x = 0.14 - 0.6 и Re = $(3 - 30) \cdot 10^3$.

Анализ кривых в нижней части **рис. 4** показывает эффективность участия в теплообмене единицы площади оребренной поверхности труб пучков **I**–**V** при одинаковой затрате мощности N_0 = idem (BT/м²) на прокачку воздуха через межтрубное пространство пучка. С наибольшей интенсивностью в теплообмене участвуют трубы пучка **V** с наименьшей высотой ребра, а наименьшая интенсивность характерна для труб базового пучка **I**. Различие в значениях α при N_0 = idem составляет 1,2–1,27 раза в исследованном интервале. Интенсивность ощутимо снижается при достижении высоты ребра h = 11,6 мм (пучок **II**). Однако этот анализ отражает лишь теплофизическую сторону процесса теплообмена и актуален для выбора способа интенсификации.

Эффективность пучков І-V следует оценивать коэффициентом тепловой эффективности $\psi_i = (\alpha \phi)_i/(\alpha \phi)_{\text{эт}}$ при N_0 = idem, где $(\alpha \varphi)_i$ и $(\alpha \varphi)_{\mathfrak{I}}$ — удельные теплосъемы i-го (I–V) и эталонного пучков. Для расчета использованы кривые (см. рис. 4, верхняя часть), которые построены по опытным данным этой работы. За эталонный пучок принят пучок V с наименьшей высотой ребер труб. Для него $\psi_{\text{эт}} = \psi_{\nu} = 1$. Для $N_0 = 10 \, \, \mathrm{Br/m^2}$ получены следующие значения коэффициента тепловой эффективности исследованных пучков: $\psi_I = 3.6$; $\psi_{II} = 2.93$; $\psi_{III} = 2.33$; $\psi_{IV} = 1.36$. Коэффициент тепловой эффективности динамично возрастает с увеличением высоты ребра и ее значение h = 15,2 мм при s = 2,58 мм не является предельным для труб секций АВО. Это актуальный практический вывод для изготовителей БРТ с алюминиевыми ребрами для ABO. Шаги БРТ S_1 и S_2 в решетках секций позволяют увеличить высоту ребра до $h \approx 16$ мм при указанном сопряженном значении шага ребер.

Список литературы

1. Кунтыш В.Б., Кузнецов Н.М. Тепловой и аэродинамический расчеты оребренных теплообменников воздушного охлаждения. / СПб.: Энергоатомиздат, 1992. 280 с. 2. Основы расчета и проектирования теплообменников воздушного охлаждения. Справочник / под общ. ред. В.Б. Кунтыша, А.Н. Бессонного. СПб.: Недра. 1996. 512 с. 3. Стасюлявичюс Ю., Скринска А. Теплоотдача попереч-

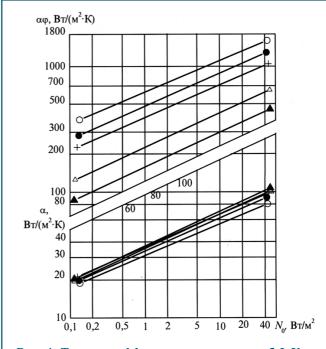


Рис. 4. Тепловая эффективность пучков труб I–V: \circ , \bullet , +, Δ , \blacktriangle – данные соотвественно для пучков I, II, III, IV, V

но обтекаемых пучков ребристых труб. / Вильнюс, Минтис, 1974. 243 с. **4. Юдин В.Ф.** Теплообмен поперечнооребренных труб. / СПб.: Машиностроение, 1982. 189 с. 5. Жукаускас А., Улинскас Р. Теплоотдача поперечнообтекаемых пучков ребристых труб. / Вильнюс, Мокслас, 1986, 204 с. 6. Теплогидравлические характеристики компактных пучков ребристых труб / В. Илгарубис, А. Буткус, Р. Улинскас и др. // Труды Литовской академии наук. Энергетика, 1990. № 2. С. 116–133. 7. Письменный Е.Н. Теплообмен и аэродинамика пакетов поперечно-оребренных труб. Киев. Альтерпресс, 2004. 244 с. 8. Brauer H. Warme – und stromungstechnische. Untersuchungen an quer angestromten Rippenrohrbundeln // Chemie – Ing. Technick. 1961. Bd. 33. H. 5. S. 327-335, H. 6. S. 431-438. 9. Brauer H. Spiralrippenrohre fur Querstrom – Warmeaustauscher // Kaltetechnik. 1961. Bd. 13. H. 8. S. 274–279. 10. Brigs E.D., Young E.H. Convection heat transfer and pressure drop of air flowing across triangular pitch banks of finned tubes // Chem. Eng. Prog. Symp. Ser. 1963. Vol. 89. Nr. 41. P. 1-10. 11. Пиир А.Э., Кунтыш В.Б. Исследование влияния коэффициента оребрения на теплоотдачу и аэродинамическое сопротивление шахматных пучков аппаратов воздушного охлаждения. АЛТИ, Архангельск. 1990. 22 с. Депонирована в ВИНИТИ 21.11.90. № 5890. В. 90. 12. Кунтыш В.Б. Теплоотдача и аэродинамическое сопротивление пучков с ленточным оребрением для аппаратов воздушного охлаждения / / Химическое и нефтегазовое машиностроение. 2000. № 7. С. 11–15. **13. Кунтыш В.Б., Стенин Н.Н.** Влияние высоты круглого спирального ребра на теплоотдачу и аэродинамическое сопротивление шахматных пучков труб // Вестник Международной академии холода. 1998. № 2. С. 22–25. 14. Brauer H. Warmeubertragung und Stromungswiderstand bei fluchtend und versetzt angeordneten Rippenrohren // Dechema Monographie. 1962. Vol. 40. S. 41-76.