Маг. И.В. Генюш Науч. рук. зав. каф. И.К. Божелко (кафедра технологии деревообрабатывающих производств, БГТУ)

ИССЛЕДОВАНИЕ АНТИСЕПТИКОВ ДЛЯ ДРЕВЕСИНЫ ИЗ ГРУППЫ ССА-СОЛИ

Древесина, являясь продуктом биологического происхождения, легко подвергается биоповреждениям микроорганизмами, дереворазрушающими грибами, насекомыми, что существенно сужает область ее применения. Традиционными защитными средствами для древесины в условиях XI, XII, XIII классов службы являются защитные составы на основе соединений хрома, меди, мышьяка (ССА-соли) [1].

Цель нашей работы: провести сравнительный анализ оригинального ССА-антисептика (образец № 1) и его модифицированного образца (образец № 2).

Задачи: определить бизащитные свойства антисептиков после вымывания, определить коррозийную агрессивность (скорость коррозии), оценить снижение прочности пропитанной древесины.

Таблица – Результаты исследования образцов № 1 и № 2

No	Наименование	ТНПА на метод	Погло-	Фактическое значение	
п/п	показателя	испытаний	щение,	Образец	Образец
11/11	TIORUSUT CSIN	Helibitalilii	кг/м ³	№ 1	№ 2
1.	Биозащитные	ГОСТ Р 50241— 2021	6,0	Эффек-	Эффек-
	свойства после			тивное	тивное
	вымывания	2021		ТИВНОС	ТИВНОС
2.	Коррозионная			0,1365	0,0968
	агрессивность	ГОСТ 26544-85	_	$\Gamma/(M^2 \cdot cyT)$	$\Gamma/(M^2 \cdot cyT)$
	(скорость коррозии)			низкая	низкая
3.	Снижение прочно-	ГОСТ 16483.3-84			
	сти пропитанной	ГОСТ 16483.4-73			
	древесины по срав-	ГОСТ 16483.9-73	3,6	До 10 %	До 10 %
	нению с непропи-	ГОСТ 16483.10-73			
	танной	ГОСТ 16483.11-72			

В рамках данной работы установлено, что исследованные показатели биоэффективности против плесневых и деревоокрашивающих грибов после вымывания, коррозионной агрессивности, прочности пропитанной древесины по сравнению с непропитанной модифицированного антисептика соответствуют показателям оригинального ССА-антисептика.

ЛИТЕРАТУРА

1. Стенина Е.И., Левинский Ю.Б. Защита древесины и деревянных конструкций. Екатеринбург: УГЛТУ, 2018. – 69 с.