Е. А. Чижова, доц., канд. хим. наук; С. В. Шевченко, доц., канд. хим. наук; М. В. Морозов, студ.; А. И. Клындюк, доц., канд. хим. наук (БГТУ, г. Минск)

СТРУКТУРА И ЭЛЕКТРОТРАНСПОРТ ПРОИЗВОДНЫХ СЛОИСТОГО ФЕРРОКУПРОКОБАЛЬТИТА НЕОДИМА–БАРИЯ

кислороддефицитные Слоистые двойные перовскиты $LnBa(Me',Me'',Me''')_2O_{5+\delta}$, где Ln - Y, редкоземельный элемент (РЗЭ), Me', Me'', Me'''– 3*d*-металл, могут рассматриваться в качестве функциональных материалов различного назначения, включая материалы для создания полупроводниковых химических сенсоров газов [1], катализаторов окисления углеводородов [2], термоэлектрогенераторов [3] и т. д. В последнее время слоистый феррокупрокобальтит неодимабария, обладающий комплексом интересных свойств, привлекает интерес исследователей как перспективный материал для создания като-Эффективные твердооксидных топливных элементов [4]. ЛОВ катодные материалы должны иметь высокую электропроводность, высокой обладать электрохимической активностью в реакции восстановления кислорода, а также быть термомеханически и химически совместимыми с материалами топливных элементов. Одним из способов улучшения свойств перовскитов, в том числе слоистых, является замещение ионов в различных подрешетках их структуры [5-6]. Целью настоящей работы было исследование влияние замещения ионов в различных позициях кристаллической решетки NdBaFeCo_{0.5}Cu_{0.5}O_{5+δ} на его структуру и электротранспортные свойства.

Образцы NdBaFeCo_{0,5}Cu_{0,5}O_{5+ δ}, Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0,5}Cu_{0,5}O_{5+ δ}, NdBa_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+ δ},

 $Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$ получали методом твердофазных реакций из Nd_2O_3 (HO-Л), Sm_2O_3 (СмО-1), Dy_2O_3 (ДиО-3), BaCO₃ (ч.), SrCO₃ (ч.), CaCO₃ (ч.), Fe₂O₃ (ос.ч.), CuO (ч.д.а.), Co₃O₄ (ч.), которые в заданных стехиометрических соотношениях смешивали в мельнице Pulverizette 6.0 фирмы Fritsch (300 об/мин, 1 ч) в среде этанола, прессовали и отжигали на воздухе в течение 40 ч при 1173 К; затем подвергали измельчению, повторному помолу и прессованию в формы параллелепипедов размером 5×5×30 мм, после чего спекали на воздухе при 1273 К в течение 10 часов. По результатам рентгенофазового анализа, проведенного при помощи дифрактометра Bruker D8 XRD Advance (CuK_{α}-излучение), полученные образцы были однофазными и имели тетрагональную структуру, характерную для слоистых перовскитов (пр. гр. симм. *P4/mmm*), за исключением образца состава NdBa_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+ δ}, который имел кубическую кристаллическую ячейку (пр. гр. симм. *Pm3m*) (табл. 1).

Таблица 1 – Параметры (*a*, *c*), объем (*V*) элементарной ячейки, степень тетрагонального искажения (η = *c*/2*a*) слоистых перовскитов на основе NdBaFeCo_{0.5}Cu_{0.5}O_{5+δ}

Состав	<i>a</i> , Å	<i>c</i> , Å	V, Å ³	η
NdBaFeCo _{0,5} Cu _{0,5} O _{5+δ}	3,921	7,707	118,5	0,9828
$Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0,5}Cu_{0,5}O_{5+\delta}$	3,904	7,672	116,9	0,9827
$NdBa_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$	3,845	_	56,84	—
$Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$	3,859	7,626	113,5	0,9882

Кажущаяся плотность образцов, определенная по их массе и геометрическим размерам, изменялась в пределах 5,41–6,06 г/см³ (табл. 2). Наибольшая относительная плотность (наименьшая пористость) наблюдалась для образца с замещением в структуре феррокупрокобальтита неодима–бария иона бария ионами стронция и кальция в равных долях.

Таблица 2 – Рентгенографическая (ρ_{рент}), кажущаяся (ρ_{каж}), относительная (ρ_{отн}) плотности и общая пористость (П) перовскитов на основе NdBaFeCo_{0.5}Cu_{0.5}O_{5+δ}

Состав	р _{рент} , г/см ³	ρ _{каж} , г/см ³	р _{отн} , %	П, %
NdBaFeCo _{0,5} Cu _{0,5} O _{5+δ}	6,71	6,06	90,3	9,7
$Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0,5}Cu_{0,5}O_{5+\delta}$	6,92	5,41	78,2	21,8
$NdBa_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$	6,28	5,98	95,2	4,3
$Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$	6,40	5,83	91,1	8,9

Изученные катиондефицитные двойные перовскиты на базе NdBaFeCo_{0,5}Cu_{0,5}O_{5+ δ} являлись полупроводниками *p*-типа (коэффициент термо-ЭДС во всем исследованном интервале температур был положителен), величины электропроводности которых, измеренные четырехконтактным методом в интервале температур 300–1100 К, с ростом температуры вплоть до T_{max} (табл. 3) увеличивались, а коэффициента термо–ЭДС вплоть до T_{min} – уменьшались. Характер электропроводности (σ) изученных образцов изменялся от полупроводникового к металлическому вблизи 720–1033 К (T_{max} , табл. 3), что, обусловлено началом выделения из образцов лабильного кислорода. Наибольшую электропроводность демонстрировал образец с замещением ионов бария ионами кальция и стронция в равных долях. При температуре 990 К удельная электропроводность этого образца превышала проводимость базового состава более чем в 2 раза.

Таблица 3 – Значения удельной электропроводности (σ_{max} ,), коэффициента термо-ЭДС (S_{min}) и температур экстремумов (T_{max} , T_{min}) на зависимостях электротранспортных свойств керамики на основе NdBaFeCo0,5Cu0,5O5+8

Состав	<i>σ_{max}</i> , См/см	T _{max} , К	<i>S_{min}</i> , мкВ/К	T _{min} , K
NdBaFeCo _{0,5} Cu _{0,5} O _{5+δ}	45,8	1033	43,5	1052
$Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0,5}Cu_{0,5}O_{5+\delta}$	11,9	720	64,1	670
$NdBa_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$	95,6	990	13,9	932
$Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$	45,0	950	51,0	740

Величина кажущейся энергии активации проводимости (E_{σ}) , рассчитанная из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$, составила 0,165–0,305 эВ (табл. 4) и была максимальной для базового образца. Энергия активации возбуждения поляронов (E_S) , рассчитанная из линейных участков зависимостей S = f(1/T), составила 0,026– 0,081 эВ, а энергия активации их миграции, рассчитанная как $E_m = E_{\sigma} - E_S$, изменялась в пределах 0,096–0,242 эВ (табл. 4).

По методике [7] были рассчитаны значения взвешенной подвижности основных носителей заряда ($\mu_{\rm B}$), а также их концентрация (*p*). Взвешенная подвижность носителей заряда в исследованных образцах в интервале температур 300–700 К изменялась в пределах 0,09– 0,74 см²/(В·с).

на основе NdBaFeCo0,5Cu0,5O5+8						
Состар	<i>Ε</i> σ,	E_{S} ,	E_m ,	E_p ,		
Состав	$^{\mathbf{D}}$	$^{\mathrm{p}}\mathrm{R}$	2P	n R		

Таблица 4 – Значения энергии активации электропереноса в керамике

Состар	Εσ,	$E_{S},$	E_m ,	$E_p,$
Cocraв	эВ	эВ	эВ	эВ
NdBaFeCo _{0,5} Cu _{0,5} O ₅₊₈	0,305	0,066	0,239	0,155
$Nd_{1/3}Sm_{1/3}Dy_{1/3}BaFeCo_{0,5}Cu_{0,5}O_{5+\delta}$	0,177	0,081	0,096	0,152
$NdBa_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$	0,165	0,029	0,136	0,197
$Nd_{1/3}Sm_{1/3}Dy_{1/3}Ba_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+\delta}$	0,268	0,026	0,242	0,105

Концентрация носителей заряда «дырок» в том же интервале температур варьировалась в пределах $(1-77) \cdot 10^{19}$ см⁻³, экспоненциально возрастая с ростом температуры. Величины энергии активации основных носителей заряда (E_p) , вычисленные из зависимостей $\ln p = f(1/T)$, составили 0,105–0,197 эВ, причем максимальное значение наблюдалось для образца NdBa_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+δ}. Таким образом, замещение ионов бария в NdBaFeCo_{0,5}Cu_{0,5}O_{5+ δ} ионами стронция и кальция в равных долях приводит к изменению его структуры с тетрагональной на кубическую, улучшению спекаемости, значительному росту удельной электропроводности и снижению энергии активации процесса электропереноса, что позволяет рассматривать керамику состава NdBa_{1/3}Sr_{1/3}Ca_{1/3}FeCo_{0,5}Cu_{0,5}O_{5+ δ} в качестве перспективного материала для создания катодов средне- и высокотемпературных топливных элементов.

ЛИТЕРАТУРА

1. Перспективы использования оксидов металлов, обладающих фазовым переходом металл–полупроводник, для разработки химические газовых сенсоров / Л. А. Башкиров [и др.] // Сенсор. – 2003. – № 2(8). – С. 34–43.

2. Сенсорные и каталитические свойства твердых растворов на основе YBaCuFeO₅ / Е. А. Чижова [и др.] //Мат. межд. научно-технич. конф. «Новейшие достижения в области импортозамещения в химической промышленности и производстве строительных материалов», 26–28 ноября 2003 г., Минск. – Минск, БГТУ. – С. 311–313.

3. Klyndyuk, A. I. Perovskite-Like Oxides 0112 Type: Structure, Properties, and Possible Applications / A. I. Klyndyuk // in: Advances in Chemistry Research. V. 5. Ed. By J. C. Taylor. – Nova Science Publishers, New York. 2010. – P. 59–105.

4. Double substituted NdBa(Fe,Co,Cu)₂O_{5+ δ} layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells – correlation between structure and electrochemical properties / A. I. Klyndyuk [et al.] // Electrochimica Acta.– 2022.– P. 140062.

5. Свойства твердых растворов Nd_{1-*x*}Gd_{*x*}CoO₃ / С. В. Курган [и др.] // Неорган. матер. – 2004. – Т. 40. – № 11. – С. 1389–1394.

6. Чижова, Е. А. Влияние катионного состава феррокупрата LaBaCuFeO_{5+δ} на его свойства / Е. А. Чижова, А. И. Клындюк // Весці НАН Беларусі. Сер.хім. навук. – 2007. – № 4. – С. 11–15.

7. Weighted Mobility/ G.J. Snyder [et al.] // Advanced Materials. – 2020. – Vol. 35 – P. 2001537.