КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МИКРОСТРУКТУРА ТВЕРДЫХ РАСТВОРОВ NdBa1-xSrxFe2/3C02/3Cu2/3O6-6

Слоистые перовскиты типа LnBa(Me',Me",Me")₂O_{6-δ} (Ln – редкоземельный элемент (РЗЭ), Me', Me", Me" – 3*d*-металлы), обладающие дефицитом ионов кислорода (δ), проявляют уникальные электрические, магнитные, сегнето-, пьезо- и пироэлектрические свойства, электрокаталитическую и фотокаталитическую активность, что делает их пригодными для широкого применения (электродные материалы для твердооксидных топливных элементов, химические сенсоры газов, катализаторы окисления углеводородов и др. [1–3]). Физикохимические и функциональные свойства материалов на их основе могут быть улучшены путем частичного или полного замещения различных катионов в их структуре [3–4]. В данной работе проводилось изовалентное замещение бария стронцием в структуре слоистого перовскита NdBaFe_{2/3}Co_{2/3}Cu_{2/3}O_{6-δ} и исследование кристаллической структуры и микроструктуры полученной керамики.

Образцы твердых растворов $NdBa_{1-x}Sr_xFe_{2/3}Co_{2/3}Cu_{2/3}O_{6-\delta}$ (x = 0,00-1,00) получали керамическим методом из Nd_2O_3 (HO-Л), Ba-CO₃ (ч.), SrCO₃ (ч.), Fe₂O₃ (ос. ч.), CuO (ч. д. а.), Co₃O₄ (ч.), согласно методике [5]. Синтез осуществляли на воздухе в течение 40 ч при 1173 К, спекание – на воздухе при температуре 1273 К в течение 9 ч.

Кристаллическую структуру исследовали методом рентгенофазового анализа (РФА, дифрактометр Bruker D8 XRD Advance, CuK_α– излучение), а микроструктуру – при помощи цифрового металлографического микроскопа ALTAMI MET 1D (Altami). Определение индекса кислородной нестехиометрии (δ) осуществляли методом иодометрического титрования. Кажущуюся плотность ($\rho_{каж}$) рассчитывали по массе и геометрическим размерам образцов. Пористость (П) керамики рассчитывали по формуле:

$$\Pi = (1 - \frac{\rho_{\text{kark}}}{\rho_{\text{peht}}}) \cdot 100, \%, \qquad (1)$$

где ρ_{peht} – рентгенографическая плотность, г/см³.

Для исследования микроструктуры, используя данные РФА, был выполнен расчет областей когерентного рассеяния (ОКР) (размера кристаллитов) по формуле Шеррера:

$$d = \frac{k\lambda}{\beta\cos\theta} \tag{2}$$

где d – размер ОКР, нм; k – постоянная Шеррера (k = 0.9); λ – длина волны рентгеновского излучения, нм; β – ширина рефлекса на полувысоте, 2 θ ; θ – угол дифракции.

Согласно результатам РФА, все образцы были однофазными, и при степени замещения x = 0,00-0,40 обладали тетрагональной структурой (пр. гр. симм. *P4/mmm*), а при x = 0,60-1,00 – кубической (пр. гр. симм. *Pm3m*) (рис. 1 *a*). В области 0,40 < x < 0,60 наблюдался структурный фазовый переход (*P4/mmm* \rightarrow *Pm3m*), который на дифрактограммах проявился переходом дублетов (100)+(002), (200)+(004), (212)+(114), (220)+(204), (302)+(106) для x = 0,00-0,40 в синглеты (100), (200), (211), (220) и (310) соответственно для x = 0,60-1,00 (рис. 1 *б*).

Рисунок 1 – Рентгеновские дифрактограммы (*a*, δ) порошков NdBa_{1-x}Sr_xCo_{2/3}Fe_{2/3}Cu_{2/3}O_{6- δ}: x = 0,00 (*1*); 0,20 (*2*); 0,40 (*3*); 0,60 (*4*); 0,80 (*5*) и 1,00 (*6*)

Величины параметров элементарной ячейки, варьировались в диапазоне a = 3,823-3,921 нм (уменьшались с ростом x) и с = 7,692–7,705 нм для тетрагональной фазы (возрастали с ростом степени за-мещения). Величина индекса кислородной нестехиометрии (δ) изменялась в пределах 0,32–0,58 и уменьшалась с ростом x, что хорошо согласуется с литературными данными [6] и прежними исследования-

ми [7].

Кажущаяся плотность керамики изменялась в диапазоне 4,96– 6,53 г/см³, а пористость – 4,8–26,6 %. При взаимозамещении бария и стронция наблюдалось уменьшение кажущейся плотности и рост пористости, что говорит о некотором ухудшении спекаемости керамики.

На микрофотографиях, приведенных на рис. 2, просматривается, что размер зерен керамики уменьшался при взаимозамещении бария и стронция, что хорошо согласуется с рассчитанными величинами ОКР, которые варьировались в пределах 242–379 нм и уменьшались к средним степеням замещения.

Рисунок 2 – Микрофотографии поверхности керамики NdBa_{1-x}Sr_xCo_{2/3}Fe_{2/3}Cu_{2/3}O_{5+δ}: x = 0,00; 0,20; 0,40; 0,60; 0,80; 1,00

Таким образом, в ходе работы было установлено, что замещение бария стронцием в структуре NdBaFe_{2/3}Co_{2/3}Cu_{2/3}O_{6- δ}, в целом, приводит к уменьшению размера элементарной ячейки слоистых перовскитов NdBa_{1-x}Sr_xFe_{2/3}Co_{2/3}Cu_{2/3}O_{6- δ} (*x* = 0,00–1,00) и росту содержания слабосвязанного кислорода в них. Взаимозамещение бария и стронция приводит к росту пористости, уменьшению плотности и размеров кристаллитов этих соединений.

ЛИТЕРАТУРА

1. Kaur, P. Review of perovskite-structure related cathode materials for solid oxide fuel cells / P. Kaur, K. Singh // Ceramics International. -2020. - Vol. 46, No 5. - P. 5521-5535.

2. Клындюк, А. И. Структура и свойства твердых растворов Ln'_{0,5}Ln"_{0,5}BaCuFeO_{5+δ} (Ln', Ln" – РЗЭ) / А. И. Клындюк, Е. А. Чижова // Химия и технология неорганических веществ. Труды БГТУ. – 2013. – № 3. – С. 29–32.

3. Klyndyuk, A. I. Layered Oxygen-Deficient Double Perovskites as Promising Cathode Materials for Solid Oxide Fuel Cells / A. I. Klyndyuk, E. A. Chizhova, D. S. Kharytonau, D. A. Medvedev // Materials. – 2022. – Vol. 15, N_{2} 1. – P. 141.

4. Клындюк, А. И. Влияние взаимозамещения редкоземельных элементов на структуру и свойства твердых растворов (Pr, Nd, Sm)BaCoFeO_{5+δ} / А. И. Клындюк, Е. А. Чижова, Е. А. Тугова // Весці націянальнай акадэміі навук Беларусі. Серыя хімічных навук. – 2014. – № 1. – С. 8–11.

5. Klyndyuk, A. I. Crystal structure, thermal and electrotransport properties of NdBa_{1-x}Sr_xFeCo_{0.5}Cu_{0.5}O_{5+ δ} (0,02 $\leq x \leq$ 0,20) solid solutions / A. I. Klyndyuk, Ya. Yu. Zhuravleva, N. N. Gundilovich // Chimica Techno Acta. – 2021. – Vol. 8, No 3. – P. 021830.

6. Løken, A. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes / A. Løken, S. Ricote, S. Wachowski // Crystals. – 2018. – Vol. 8. – P. 365.

7. Клындюк, А. И. Структура, тепловые и электрические свойства твердых растворов системы NdBaFeCo_{0,5}Cu_{0,5}O_{5+δ}-NdSrFeCo_{0,5}Cu_{0,5}O_{5+δ} / А. И. Клындюк, Я. Ю. Журавлева, Н. Н. Гундилович, Е. А. Чижова / Неорганические материалы. – 2023. – Т. 59, № 1. – С. 88–94.