На рисунке совмещены элементы строения n — компонентных (4-х компонентных) и n +1 компонентной (пятикомпонентной) систем, что соответствует принципу совместности [4].

Тонкие сплошные линии обозначают моновариантные кривые уровня четырёхкомпонентного состава. Пунктирные и полужирные кривые – моновариантные кривые уровня пятикомпонентного состава, но имеют различное происхождение. Моновариантные кривые, обозначенные в виде пунктирных линий, образованы в результате трансляции четверных нонвариантных точек. Моновариантные кривые, обозначенные полужирными линиями, проходят между пятерными нонвариантными точками.

ЛИТЕРАТУРА

- 1. Справочник экспериментальных данных по растворимости многокомпонентных водно-солевых систем. Т. ІІ., кн. 1 -2. СПб.: Химиздат, 2004, 1247 с.
 - 2. Солиев Л. Деп. в ВИНИТИ АН СССР 20.12.87 г, № 8990 В87.
- 3. Солиев Л. Прогнозирование фазовых равновесий в много-компонентной системе морского типа методом трансляции (книга 1) /Л. Солиев// Душанбе. ТГПУ, Душанбе, 2000, С. 247.
- 4. Горощенко Я.Г. Массцентрический метод изображения многокомпонентных систем. Киев: Наукова думка, 1982, 264 с.
- 5. Солиев Л., Усмонов М. Материалы второй международной научной конференции «Химическая термодинамика и кинетика», г. Донецк., 2012. С. 122.
 - 6. Солиев Л. Журн. неорган. химии, 1988, т. 33, № 5, с.1305

УДК 66.011

^{1,2}Х.И. Холов, ст. науч. сотр., канд. техн. наук;

¹Н.Т. Шарифбоев, соиск.;

¹Ш.Р. Самихов, вед. науч. сотр., д-р техн. наук;

¹Ш.Р. Джуракулов, соиск.; ¹К. Санавбар, магистрант (

¹Институт химии имени В.И. Никитина НАН Таджикистана,
г. Душанбе, Таджикистан; ²Таджикский государственный педагогический университет имени С. Айни, г. Душанбе, Таджикистан)

ИССЛЕДОВАНИЕ МОДЕЛИРОВАНИИ ПРОЦЕССА ТИОСУЛЬФАТНО-АММИАЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА

Аннотация. В статье обобщены результаты экспериментальных и теоретических исследований по изучению моделирования процесса тиосульфатно-аммиачного выщелачивания золота из пробы руды Тутлинского месторождения. На основе экспериментов и расчётов определены математические модели тиосульфатно-аммиачного выщелачивания золота.

В работе использован универсальный метод наименьших квадратов для определения неизвестных параметров в уравнениях множественной регрессии.

Результаты тиосульфатно-аммиачного выщелачивания золота подробно освещены в публикации [1]. Поэтому мы ограничились лишь изложением главных выводов и рекомендаций, касающихся основных вопросов моделирования тиосульфатно-аммиачного выщелачивания золота из руды месторождения «Тутли».

Регрессионный анализ является основным методом математической статистики. Его идея заключается в том, что все доступные информации нужно использовать полно и эффективно.

Метод наименьших квадратов, являющихся основой регрессионного анализа быль разработан К. Гауссом в связи с потребностями астрономии и геодезии, где требуются обрабатывать огромные количество информации.

Отметим, что еще Д.И. Менделеев начал применять регрессию для описания температурных и иных зависимостей свойств химических веществ [2,3].

Уравнение множественной регрессии записывается в виде

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n, \tag{2}$$

где y — зависимая переменная, x_1 , x_2 , ..., x_n — независимые переменные, a_0 , a_1 , a_2 , ..., a_n — коэффициенты уравнения. Для вычисления коэффициентов применяется метод наименьших квадратов. Здесь возникает задача минимизация функции многих переменных

$$f(a_0, a_1, a_2, ..., a_n) = \sum_{i=1}^{n} (a_0, a_i x_i + ... a_n x_n - y_i)^2 \to min.$$
 (3)

Находя частные производные функции f по a_i , i=1,n, получаем следующую систему уравнений:

$$\begin{cases} a_{0}N + a_{1} \sum x_{1} + a_{2} \sum x_{2} + \dots + a_{n} \sum x_{n} = \sum y, \\ a_{0} \sum x_{1} + a_{1} \sum x_{1}^{2} + a_{2} \sum x_{1}x_{2} + \dots + a_{n} \sum x_{1}x_{n} = \sum x_{1}y, \\ a_{0} \sum x_{2} + a_{1} \sum x_{1}x_{2} + a_{2} \sum x_{2}^{2} \dots + a_{n} \sum x_{2}x_{n} = \sum x_{2}y, \\ a_{n} \sum x_{n} + a_{1} \sum x_{1}x_{n} + a_{2} \sum x_{2}x_{n} + \dots + a_{n} \sum x_{n}^{2} = \sum x_{n}y. \end{cases}$$

$$(4)$$

Для определения зависимости степени извлечения золота Au (мас., %) при $t=60~^{\circ}$ C от времени (x_I , ч), pH раствора (x_2 , исх.) и pH раствора (x_3 , конеч.) (см. таблица 1) с использованием метода

наименьших квадратов и систему уравнений (4), составим систему (5) (после подсчёта соответствующих сумм (таблица 1):

Таблица 1 – Сопутствующая таблица для системы (5)

				1			<u> </u>		1 11					
	y_1	x_1	x_2	x_3	x_1y_1	$x_2 y_1$	$x_{3}y_{1}$	x_1^2	$x_{1}x_{2}$	$x_{1}x_{3}$	x_2^2	$x_{2}x_{3}$	x_3^2	
	2,64	2	6,1	7,94	5,28	16,104	20,962	4	12,2	15,88	37,21	48,43	63,04	
	41,9	3	3,9	7,92	125,7	163,41	331,85	9	11,7	23,76	15,21	38,89	62,73	
	45,1	4	9,06	8,1	180,4	408,61	365,31	16	36,24	32,4	82,08	73,39	65,61	
	65,4	5	10,1	8,73	327,0	658,58	570,94	25	50,35	43,65	101,41	87,91	76,21	
\sum :	155,1	14	29,13	32,7	638,4	1246,7	1289,1	54	110,5	115,7	235,91	248,6	267,6	

$$\begin{cases} 4a_0 + 14a_1 + 29,13a_2 + 32,69a_3 = 155,04; \\ 14a_0 + 54a_1 + 110,49a_2 + 115,69a_3 = 638,38; \\ 29,13a_0 + 110,49a_1 + 235,9085a_2 + 248,6191a_3 = 1246,698; \\ 32,69a_0 + 115,69a_1 + 248,6191a_2 + 267,5929a_3 = 1289,0616. \end{cases}$$
 (5)

Решая данную систему методам Крамера (с помощью стандартной программы), находили следующие коэффициенты a_0 , a_1 , a_2 , a_3 :

$$a_0 = 10,0734$$
; $a_1 = 20,8571$; $a_2 = -0,02206$; $a_3 = -5,2256$.

Таким образом, уравнение регрессии выражается следующим образом:

$$y_1 = 10,0734 + 20,8571x_1 - 0,02206x_2 - 5,2256x_3.$$
 (6)

Таблица 2 – Сопутствующая таблица для вывода уравнения (7)

	y_2	x ₁	$\boldsymbol{x_2}$	x_3	$x_{1}y_{2}$	$x_{2}y_{2}$	$x_{3}y_{2}$	x_{1}^{2}	$x_{1}x_{2}$	$x_{1}x_{3}$	x_2^2	$x_{2}x_{3}$	x_3^2
	2,6	2	9,37	8,86	5,2	24,362	23,036	4	18,74	17,72	87,797	83,018	78,499
	50,0	3	7,05	7,72	150,0	352,5	386,0	9	21,15	23,16	49,703	54,426	59,598
	66,5	4	11,0	8,93	266,0	732,17	593,85	16	44,04	35,72	121,22	98,319	79,745
	68,4	5	11,6	9,47	342,0	794,12	647,75	25	58,05	47,35	134,79	109,95	89,681
\sum :	187,5	14	39,1	35,0	763,2	1903,2	1650,6	54	141,9	123,9	393,51	345,71	307,52

Таблица 3 – Сопутствующая таблица для вывода уравнения (8)

	y_3	x_1	$\boldsymbol{x_2}$	x_3	$x_{1}y_{3}$	$x_{2}y_{3}$	$x_{3}y_{3}$	x_1^2	$x_{1}x_{2}$	$x_{1}x_{3}$	x_2^2	$x_{2}x_{3}$	x_3^2
	66,4	2	10,4	8,32	132,8	692,55	552,45	4	20,9	16,64	108,785	86,778	69,222
	67,1	3	10,9	8,73	201,3	732,06	585,78	9	32,7	26,19	119,028	95,244	76,213
	66,3	4	10,2	8,35	265,2	676,26	553,61	16	40,8	33,40	104,04	85,17	69,723
	68,9	5	11,7	9,04	304,5	808,20	622,86	25	58,7	45,20	137,593	106,039	81,722
\sum :	268,7	14	43,3	34,5	903,8	2909,1	2314,6	54	153,1	121,4	469,446	373,231	296,88

Аналогично используя данные таблиц 3 и 4 получены уравнения регрессии для опытов 5-8 вида (при $t=75^{\circ}C$)

$$y_2 = 289,33 + 21,5748x_1 + 14,9151x_2 - 53,0073x_3$$
 (7)

и опыта 9-12 вида при (при t=80
0
C)
 $y_{3} = 391.7 - 15.5521x_{1} + 25.0598x_{2} - 91.102x_{3}$. (8)

Выводы

На основании анализа результатов математического моделирования тиосульфатное выщелачивания золота из золотосодержащих руд месторождения «Истиклол» можно отметить следующее:

- 1. Предложены три модели зависимости степени извлечения золота от трёх факторов при различных температурах.
- 2. Установлена линейная связь полученных уравнений регрессии. Можно использовать другие виды зависимостей и методов, например, номографический метод.

ЛИТЕРАТУРА

- 1. Самихов Ш.Р., Назаров Х.М., Хочиён М.К., Шарифбоев Н.Т. Тиосульфатное выщелачивание золота и серебра из золотосодержщих руд месторождения "Истиклол". Вестник ТНУ. Серия естественных наук. 2018. № 3. С. 203-209.
- 2. Холов Х.И., Шарифбоев Н.Т., Самихов Ш.Р., Шерматов Н. Математическое описание тиосульфатно-аммиачного выщелачивания золота из золотосодержащих руд месторождения «Истиклол». Вестник КузГТУ. 2021, №1, с. 78-84.
- 3. Мостеллер Ф., Тьюки Дж. Анализ данных и регрессия. М.: Финансы и статистика, 1982, вып.1, 320 с.

УДК 628.3

Ф.Э. Умиров, проф., д-р техн. наук; И.А. Тагаев, доц., канд. техн. наук; Ж.В. Вахобов, ассист. (НГГТУ, г. Навои, Узбекистан)

ЭФФЕКТИВНЫЕ МЕТОДЫ ОЧИСТКИ СТОЧНЫХ ВОД ПРЕДПРИЯТИЙ

В настоящее время в мире в окружающую среду выбрасывается огромное количество бытовых, сельскохозяйственных и промышленных сточных вод. Нехватка пресной воды и проблемы ее очистки в XXI веке выдвигаются в докладе ООН о состоянии мировых водных ресурсов под названием "сточные воды: неиспользованный потенциал. По словам авторов отчета, если сточные воды будут очищены, они могут стать бесценным ресурсом для удовлетворения спроса на питьевую воду и различное сырье.

Сточные воды являются ценным ресурсом, поскольку доступные запасы пресной воды в мире ограничены, а спрос на нее растет.