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CALCULATION OF CHARACTERISTICS OF TURBULENT POISEUILLE FLOW

L. A. Rott UDC 532.542.3

A previously described approach is used to calculate decay of a laminar flow into 
individual turbulized liquid layers. The minimum turbulence scale, turbulent 
viscosity, and frequency spectrum are determined.

In a previous study [1] the present author proposed a new approach to description of the 
transition of laminar flow of an incompressible liquid into turbulent flow. That approach 
is based upon introduction of a distribution function )(r'|v(r)), which has the sense of the 
density of the probability that near the point г' , the liquid will have a transport velocity 
v corresponding to the solution of the Navier-Stokes equation for the point r . Thus, the 

original well-defined hydrodynamic description is complemented by probability relationships 
which reflect the existence of an intrinsic liquid fluctuation mechanism.

Taking a Gaussian law for the function f, it can be established that the dispersion 
characteristics are determined by the viscous stress tensor. As is well known (see [2]), 
the latter defines the production of entropy due to internal dissipative processes. Below 
we will consider a steady state flow of isothermal incompressible isotropic liquid. In this 
case for the characteristics referred we have

P =  const. (1)

Turbulization of the laminar Poiseulle flow develops upon satisfaction of two conditions 
for two adjacent coaxial liquid layers:

Pi Ы —  P2 (№>) >  P {y2 —  У і) , ( 2 )

фі (У?. Pi) =  Фг (#, P2), У* =;_у*£Ьг.. ( 3 )
Here the у-axis is directed from the inner surface of the tube along a radius, the coordinate 
y* is determined by the point of intersection of two integral distribution curves on the seg
ment b2, equal to the thickness of the second layer (the first layer is adjacent to the tube 
surface (yx < y2) and correspondingly p2 > p2).

For qualitative estimates condition (3) can be reduced to the simpler expression

Pi Рг> Pi ( і̂ +  b2) 
frj -j- 2 b2

(4)

If we represent the characteristic velocity of a hypothetical laminar flow at a given 
pressure gradient (head) at one of the points in the layer bjj (which is defined by the condi
tion of conservation of flow, while к is measured from the wall and takes on the values 1,
2, ..., n) as the sum of the two velocities

Vk =  Vh +  6vh,
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where is the mean velocity of transport motion of the turbulized layer of thickness bj,, 
then

Vh =  vh<Ph{y) +  yft_x(l —<Ph(y)), у =

dp
dx

(6)

Equation (6) can be used to find the mean flow velocity, and then a hydraulic ten I n Iunco 
curve with continuous transition from laminar to turbulent flow and characteristic lent me n  
of the transition region (for the case of decomposition into two layers bx = R/3 and bv - 
2R/3).

But does the question of how many and what type of layers an initially laminat I low may 
decay into remain open? With increase in Reynolds number conditions (2) and (3) admit mi • 
ever larger number of decomposition variants. This is to be expected.

The search for an answer to this question must without a doubt be related to a vat tat Ion 
principle. The Prigozhin principle of minimum entropy production in the steady State I t| 
might serve as such. However direct calculation of the viscous stress tensor required for 
this purpose is difficult to perform, if at all possible for the viscous flow. To a certain 
degree this difficulty can be circumvented if we limit ourselves to study of the dll let once 
in mean values of entropy production of the hypothetical laminar and averaged turbulent flows:

=  ̂ - ( 42 T

R2
V-,), a L =

d p y  
dx )

24t)T

(7 )

where the tensor v -jj is constructed with the aid of vector (6), while averaging is performed 
over all possible layers b^.

Direct calculation of Eq. (7) shows that this difference has a minimum, which is achieved 
upon spreading of the flow into layers of equal thickness b^ = R/n. In fact this minimum is 
an arbitrary one, since it is related to the requirements of criteria (2), (3). We will now 
turn directly to this question.

We will consider two adjacent layers at the tube surfade (bx = b2 = b). The necessary 
condition for turbulization, Eq. (2), gives the inequality

b < R

but the sufficient condition (3) shows that b takes on a nonzero minimum value independent 
of у  (the pressure gradient, and thus, the Reynolds number), i.e., bm n̂ = 0.347R. Consequent
ly the boundary laminar layer has a thickness of approximately b/2 = 0.173R.

The situation is different if we consider two adjacent layers at the cylinder axis 
(bn_1 = bn = b). Here everything occurs as if in reverse: sufficient condition (3) is 
realized for all values of y, while it follows from the necessary condition that

(8 )

This will be the minimum Kolmogorov scale for a given pressure bead (beyond the limit
of the transition region (see [1])). Thus, in the core of the tube fine scale flow turbuliza
tion appears, which confirms the well known concepts of [4]. We recall that turbulence Is 
generated, on the contrary, near the tube surface for у  > 1, where conditions (2), (3) are 
satisfied first of all.

Finally, we see that decomposition of a laminar flow is related to the known asymmetry. 
This additional requirement permits use of the difference in entropy production, Eq. (7), to 
determine the number of turbulized layers n. The latter takes on selected values in accor
dance with requirement (8) for given values of pressure head. With increase in Reynolds 
number discontinuous readjustments of the turbulized flow take place.
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It now becomes possible to calculate the turbulent viscosity іур. Following Klimontovich 
[5], we can write

(&>»)»] 
v\j J (9)

Representing the velocity gradients in analogy to Eq. (5) and replacing them by finite 
differences

VVh = о Vh— Vk-1 
bk-i +  К

2Avh
b„-i+  bh ’

we obtain

where

Rt =  RW

(Au*)2 ’

(10)

Avh =  Vk<Pk — Vh_! (1 — Фк — Ф*,_і) +  vh_2 (1 — Фк_г). ^

With the aid of these three integral distribution functions we calculatethe mean value of 
the square of the difference in velocities in two adjacent layers (v^ — v^)2.

The original definition of the critical Reynolds number Recro, corresponding to the 
minimum turbulence scale bm^n> transforms to

_ n̂̂ mln _  VnR (Afn)2
vT vTv*(Au„)2

(1 2)

As an example we will consider decomposition of a flow into three layers (at у = Уз beyond 
the maximum of the hydraulic resistance curve Ь,„̂ п = R/3 and Ь3 = b2 = b3 = bm ^n ). We define 
the velocities for the midpoints of the intervals

dp
dx
4t)

R2 dp
dx

R2

v, =

4y* ) '  t2 4t,

dp
R2 .

dx
1 } .4t) - ^ г ) -

4y4 )

Then
(An3)2 64 (Ф3 —  2Ф2 -f- 2)
(A^P Л(у)Ф2 +  В(у)Ф3 +  С(у)Ф2Ф 3 ’ (13)

where А, В, C are eighth degree polynomials in y. Hence it follows that Re£r << Re even for 
у > /3 (the difference being greater than two orders of magnitude).

The theory developed here is based on a multifrequency turbulence mechanism. Two fre
quency spectra can be traced: one related to velocity pulsations, the other, to the alterna
tion process. The character of the frequencies depends on the concrete realization of the 
possible laminar flow decomposition. In each individual case of decomposition there will be 
as many frequencies as the number of turbulized layers formed. Each of these will have two 
frequencies, although from some values of у the alternation frequencies vanish.

If the initially laminar flow decomposes into two layers (R = bx + b2), then in the 
transitional region the alternation process is characterized by a single frequency а/2)(у). 
The value of this frequency is determined by the relative lifetimes of the laminar and tur
bulent flows in the layer b2, or the probabilities Ф(у", у) and 1 — ф(у) [1]. The frequency
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'  = 0 at ф =  1 (where -у =  1 is the commencement of turbulization) and at ф =  0 ( у  -  / Т  In 
the second critical point). On the other hand, the maximum value is achieved at ф ■ 1/2. 
This then permits us to approximate the function ш(у) in the form

/ 2 \

“  =  “ max sin 2яД t 
T ’

(1A)

where
2At
T - =  1 - Ф 0 Л  y).

When the flow decomposes into three layers (with increase in y) two alternation frequen
cies j) and u/^) develop (the first layer from the tube surface interacts with the second 
(inner), and the second with the third). These frequencies are defined in terms of the func
tions ф2(у) and Фз(у).  Thus.

“ !3) =  “ Imax Sinn(l — ф2). (15 )

With increase in у (pressure head) the frequency vanishes first.
The velocity pulsation frequency spectrum is defined by that portion of the laminar flow 

kinetic energy which is related to retardation of translational liquid transport and thus, to 
formation of vortex motion. This portion of the kinetic energy is defined for each, indivi
dual turbulized layer by the now known difference in the squares of the velocities v? — v£. 
Therefore the pulsation frequency

ш
(16)

Then in the laminar boundary layer ш ^ у (b is independent of y), while in the tube core 
w ^ у3, since both the velocity and the scale b depend on the pressure drop у in accordance 
with Eq. (8).

NOTATION
x, y, coordinates; r radius-vector; v velocity: vi-:, velocity derivative tensor; R, tube 

radius; f, differential distribution function; ф distribution function integral; p mean square 
deviation; a, entropy production; T, temperature; q, shear viscosity coefficient; v, kinematic 
viscosity coefficient; p, pressure; y, ratio of Reynolds number Re to critical value Recr, 
equal to the ratio of the corresponding pressure heads (gradients); b, turbulent layer thick
ness; Ш, frequency.

LITERATURE CITED
1. L. A. Rott, Inzh. Fiz. Zh., 56, No. 6, 89A-900 (1989).
2. Yu. L. Klimontovich, Statistical Physics [in Russian], Moscow (1982).
3. P. Glensdorf and I. Prigozhin, Thermodynamic Theory of Structure, Stability, and Fluctua

tions [in Russian], Moscow (1973).
A. L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Moscow (1986).
5. Yu. L. Klimontovich and Kh. Engel1-Kherbert, Zh. Tekh. Fiz., .5A, No. 3, AA0-AA9 (1984).

1111


