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MOLECULAR BOND IN SUPERCONDUCTIVITY

L. A Rott IDC 530.145+538.945

In the presence of a superconducting current an additional intermolecular bond appears, whose value
determines the critical parameters.

The goal of the present work is to show that superconducting properties originate due to additional
intermolecular interaction, stable below a critical temperature. The interaction to be found, affecting the orientation
ordering of the whole system, is caused, in turn, by the original induced current.

This conclusion is based on consideration of superconductivity, including high-temperature
superconductivity (HTSC), with the aid of the quantum-mechanical approach, including successive transformation
of the number of particles, whose character is an inherent dynamic property of the system.

The essence of this approach can be described as follows: in its primary meaning, a system is understood
as a continuum medium, in which the manifestation of any properties is caused by the appearance of traits of
discreteness, which carry properties of individual objects (discreteness is identified with individuality); it is natural
that the number of particles in the system is a variable that is not prescribed but, on the contrary, must be
determined.

In the period P = 1 let there be a transformation of the number of particles in the medium
nP -*«P -» ..+ (nm = n\) with the corresponding lifetimes Ap[\ ApP,..., Ap$, the sum of which is unity
(the superscript i indicates that this transformation is not unique). The Schrodinger equation with the eigenvalue
of the total energy Ek is valid for each number of particles ng. Then, for the whole period the discrete system is
characterized by the average mechanical energy

f E Apk, 0)
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where Apk is the probability of occurrence of the medium in the state with the number of particles nk. The continuum
medium successively "absorbs" and "gives” energy to the "discrete” system. Now, it is possible to speak about the
"trajectory" of the natural development of the system (of electrons), which can be written as

N
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where N is the basic number of particles and the subscript /3 indicates that these trajectories are multiple, and
among them there are ones degenerate in dynamic characteristics and ones different in the sense of Eq. (1).

The physically observed process is a transition from one trajectory to another, involving absorption
(emission) of a particle or a quantum of field energy. The average mechanical energy of the new trajectory differs
from the average energy of the previous trajectory by the energy of the absorbed particle. The same can be said
about the angular momentum. The absorption can take place with or without changes in the basic number N or
without changes in both nk and N but with changes in /3 A real atom is considered as an inhomogeneous system
AB. An element of the trajectory of this system is written as (An- B/)ap- The formalism suggested is realized
concretely in [2].
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Now, in considering an electronic subsystem with a variable number of particles, it is necessary to
determine correspondingly the current vector j. To do this, we introduce the position vector r*c of the center of
inertia and annihilation (I1A) for the time interval Op* in the form

hc:-hy1:I \Y/ K]

where r?, is the position vector of the center of the cell with the number y, whose volume AV is much less than the
effective volume V of the whole system (an atom), filled with a particle (quasikinematic equations of motion of the
particle over the cells for its lifetime are formed in terms of the wave function). Then, the current vector is written
for the same time interval Op*:

nk+\ rk+lc  nk"ke )

If ik = N = const (there is no transformation of the number of particles in the electronic subsystem), then
Eq. (4) becomes the well-known expression (j = eNdr~/dt = eMy; in the volume V, N means the number density
of particles).

As Kk changes (after a successive transformation of the discrete system), the current vectors form a broken
line that changes its direction about some average orientation, along which we denote the unit vector R (director).
This makes it possible to describe the additional molecular interaction that appears with the electric current. The
necessity of determining the current in the sense of Eq. (4) is dictated by the effect of inner electrons of the atom
on the ordinary current of conductance electrons, whose number is generally transformated but slightly.

We consider two neighboring atoms in the volumes W and V2, respectively. The force centers of the systems
of electrons are at the centers of two cubes. Joint quantum-mechanical consideration with account for the
conductance electrons leads to a certain orientation of the two directors Ri and R2 (the angle between them is
denoted by <p). Upon a quantum transition of the system from one trajectory to another in the above formalism (as
a result of an energy transformation induced by an external magnetic field) the angle pchanges (increases). Thus,
it is this angle that reflects the presence of additional interaction of the two atoms (molecules), whose energy is
U(<p). In this case it is important to bear in mind that the angle is quantized. Therefore, the function U is written
as the complex function U(<p(e)), where e is the energy of the transition from one energy level to another (an energy
gap). But in this case the quantum transition is not unique and the energy gap is not unique, which is of basic
importance for explanation of high-temperature superconductivity.

Since a real atom is an inhomogeneous system (AB), it is necessary that the presence of two energy quanta
associated with the subsystems A and B, respectively, be included in the formalism considered. The quantum of
the magnetic field e# absorbed by the subsystem A (the core) determines both the rearrangement of the electronic
subsystem B with the transition energy ef£ and the induction of a current with the density j (electromagnetic
induction). It is the quantum  that determines the aforementioned additional intermolecular bond in the presence
of the electric current.

The introduced energy quanta will be considered in more detail for magnetic and electric fields,
respectively. The quanta will be expressed as

eH=h/H ard et - hjgEe @)

In terms of My (h/?) corresponding units of length Iy (/g) and time will be introduced. For example, for Iy and ///,
we write

HI . Vi

= hi ~ (6)
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If e is assumed to be an energy quantum of an arbitrary physical field, the following expression can be
ten for it:

£ =hr, (7
where Ar is the elementary displacement in the finite time interval Atg. Now, in terms of the three quantities'll, c,

and hg, it is possible to obtain a systems of units:
for the mass mg

®

and for the length Igand the time tg, respectively,
(9)

Assuming tg = Atg, the expression for the velocity v = Ar/Atg is written as

i (¥)m *F-*m»xe (10)

The Planck-Einstein relations follow from Eg. (10), assuming v = c¢ and taking into consideration that
cA( = Ar = A which is the wavelength of the monochromatic wave (the frequency is co). Indeed,

e = _Ch = — Ha>,
Ar AT

The expression for the momentum p = e/c can be obtained in the same way. It is also easy to obtain the de Broglie
relations with the aid of Eq. (10). To do this, the initial triad h, ¢, and hg is replaced by the triad h, u, and hg,
where u is the velocity of propagation of a monochromatic wave (M = co/k = XWAt; Ar = uAt), and we assume v
= u. If nis the velocity of propagation of a nonmonochrornalic wave with the wavelength Av, then Ar ®Xv. If at v
= n (after substitution of u for ¢) e from Eg. (10) is assumed to be equal to the kinetic energy of a particle with
the mass m and its momentum pv to be equal to ~hkv, the de Broglie relation is obtained for the length of the group
wave (1 & cu/K).
Now, expressions (5) can be expressed in a form similar to that of Eq. (7):

ew — FMAr,  eE — FjjAr, an
where F// is the Lorentz force: 1
FIl =~ XH), FE=eE. n
T
Here v* is the fixed (averaged) velocity of an electron. ii<
Then, the quantities h in Eq. (5) will be written as 0
er
b{ =" (v x Ar), hE= eAr, 17) e

and the relation between them is
hf= X hE). (13) fe

844



Let the three vectors H, v*, and Ar be mutually perpendicular (it is this case that while be of interest
henceforth). According to Eq. (13), the vectors h# and h” are mutually perpendicular, and according to Eq. (12),
the first of them is collinear to H, and, the second to Ar. We consider the case where the vector E is also directed
along Ar(H-LE). Then, Eg. (13) can be written as

hH = (14)
or in view of (6)

(15)

At v = ¢ from general expression (10) we can write

(16)
On the other hand, using Egs. (7), (9) and (14), (16) in definition (6), we can write
2 e’A r2 ezﬁ c (17)
IE ~
zc t+E
and, accordingly,
2 vZfté (18)
IH — Gf;
Consequently, an important relation is obtained:
= (.9)

£H C

Now, estimates necessary for the subsequent presentation will be given. In [2] the suggested quantum-
mechanical program has been realized for the one-particle Hamiltonian of the Coulomb problem. In particular, for
a system with N\ = 14 and N2 = 8 and AVa - O.6/IKg, there arc three different energy levels and the energy
gauntum e”-10-15 to 10~14 erg. Since the characteristic velocity of an electron v*~108-194 cm/sec, then
according to Egs. (18) and (19) the length Iy ~ 10-6, which coincides with the value of the London length d of
penetration of the magnetic field in a superconductor. This is not a coincidence since the energy quantum has its
own characteristic length and this characteristic of the field is d and it is unlikely that these lengths are basically
different.

The second characteristic scale of length  has the meaning of the correlation parameter £ in the theory
of superconductivity (see [1]). According to (15), their ratio <)/£ must be of the order of magnitude of
10- 2—10-1, which is the case for superconductors of the first kind (pure metals). Now in view of (19) Egs. (17)
and (18) can be written as

% =F£-/(7)- (20)

845



Rupture of the additional intermolecular bond U(<p), which means breakdown of the SC (the angle ¢
becomes arbitrary), can occur due to the molecular kinetic energy kTc. Since the energy U is proportional to eE,
then assuming the latter to be equal to the kinetic energy, we find

t ~ JL (21)
C~ K
equal to ~ 10 K in order of magnitude. It is eE that is the known value of the energy gap A

The breakdown of the SC is also attainable as rises, i.e., at a critical value of the magnetic intensity
Hc. Indeed, in view of Eq. (21), kTcand tH = hnH are related by (19), which means that as Tc rises, Hc also
increases, as is found experimentally and by the BCS theory (see [1]).

Using the Maxwell equations, it is possible to find the relation between the energy quanta e# and eE and
the current j (the last quantity is, of course, the averaged value of (4)). When the three vectors H, v*, and Ar are
mutually perpendicular (as was mentioned above, the vectors hu and hE are mutually perpendicular too; is
collinear with H, and h” and Ar), the following relation holds:

ag//  Bep (22)
which is important for the general theory of superconductivity. In the last case the derivative gen/ dt becomes zero,
while individual terms in the right-hand side of Eq. (22) are different from zero and increase substantially in the
case of HTSC. This conclusion is supported by the fact that equations similar to Ginzburg-Landau ones follow from
the equation

4 * Anhe] = 0 (23)
(see [1J, p. 217).

In the case of HTSC the situation is more pronounced due to greater manifestation of transformation
properties of the electronic subsystem. In complex molecules, forming conductors with HTSC, more that one
quantum transition is realized with a change in the energy level (there are at least two parameters Ai and A2
(gaps)), which leads inevitably to enhancement of the potential of intermolecular interaction and, consequently, to
an increase in the critical parameters.

Although, just as in the above example, A) and /12 are of the same order of magnitude, as the angle
increases, the potential of the additional bond becomes proportional to the square of the gap A2, and therefore the
critical temperature becomes an order of magnitude higher than that in the case of low-temperature SC (the
potential U can be conveniently approximated as a parabola of the function of the angles - <.

Superconductivity is a mixed state in a sense that some of the bound molecules have been formed by
overcoming the gap A], and the other molecules the gap [2. A two-component system is formed, which can be
inferred from the changes in the critical current caused by an increase in the temperature. As the temperalure rises,
the bonds formed due to the gap Ai are broken. This is confirmed qualitatively by experimental data of [3] (p.
279), although more detailed measurement of the current j as a function of temperature may be more informative.

In view of the aforesaid, the experimental values of the gap for HTSC are their averaged values in terms
of A] and A2 (the presence of a gap A3 cannot be excluded).

To conclude the work, it should be noted that for HTSC the values or the parameters d and £ are inverted.
In this case there should be a relation inverse to Eq. (15), single now, $= Igand £ = IE and

| (24)

A deeper energy transition (J12) cnhanceas the inter:%ction of adjacent molecules and, accordingly, reduces
substantially the coefficient of the correlation bond (£ ~ 10~ cm).
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NOTATION

n, number of particles; r, position vector; j, current; e, electronic charge; v, velocity; e, field energy
quantum; K, Planck constant; c, velocity of light; H, magnetic field intensity; E, electric field intensity; co, frequency;
X, wavelength; Tc, critical temperature; [, energy gap; t, time.
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