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Introduction

Many reported works are concerned with the method of BBGKY correlation functions 
(see, for example, original monographs [1, 2]) which consists in introduction of un­
conditional probabilities for arbitrary molecular groups within the whole configuration 
space. Two junior functions, namely, unary and binary are of greatest importance. As 
concerned with classical pairwise intermolecular interaction, the most important macro­
scopic properties of a medium may be expressed in terms of the two correlation functions. 
Thus, the desired relation is generally found between thermodynamic and structure 
properties of the material. In practice, however, search for correlation functions which 
are the solutions of an infinite system of coupled integro-differential equations, involves 
tremendous difficulties. The latter are overcome in the statistics of low density systems 
(rarefied gas), but the theory of condensed media fails to do this.
Within the framework of the method of unconditional distribution correlation functions 
the main problem seems to he unsolved: whether the Gibbsian statistical formalism 
contains one and the same description for solid and liquid phases, naturally including 
consideration of phase crystal-liquid, liquid-gas and crystal-gas transitions.
The above difficulties forced the workers to search for a new formalism in the corre­
lation functions theory which would be most suitable for description of condensed state. 
The method of conditional distribution correlation functions has been developed as a 
supplement to the BBGKY hierarchy.
The present review is the first attempt to give a systematic description of the method of 
conditional distribution functions.
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1. Correlation Functions of Equilibrium State

The essence of the conditional distribution method is a description of individual states 
of the whole system of particles rather than the states of individual molecular groups that 
allows a set of successive approximations for description of condensed state.
We shall first consider a homogeneous one-component molecular system with central 
(point) interaction. The statistical approach used implies that the whole volume V is 
divided into N  equal cells according to the particle number in the system. For conside­
ration of individual states of the system a set of double-index distribution functions Fsk 
is introduced which have a meaning of conditional probability densities of certain confi­
gurations of an arbitrary molecular group in a cell considered at a certain distribution 
of other particles over the other cells [3].
The correlation function F^(q1, . . . ,  q s) (a =  0 ,1 ,2 , . . . .k ;  к =  1, 2 ,..., n; n < t̂N) 
determines the density of probability of finding any a molecules at points q 1, q s 
within one of the cells at the condition that the other N  — a molecules are distributed 
so that more than к molecules cannot be found in any other cell.
So, for example, function Fntqd) refers to such states of the system when each of the 
cells contains a single molecule. The function F22(q1, q2) means the density of probability 
of finding any two molecules at q1 and q2, respectively, within the molecular volume vx 
at the condition that the other N  — 2 molecules are distributed so that more than two 
molecules cannot be found in any other volume =  V/N). The condition implies that 
cells are either empty or contain one or two molecules. Alongside with the functions Fn 
and F22 function Fl2(ql) is also used. These are the junior functions most important for 
investigation of condensed molecular systems.
Introduction of space cells in the conditional distribution method is a mathematical 
instrument which allows a consistent consideration of statistical properties, being by no 
means a physical limitation. In  this respect the conditional distribution method is not 
a modification of the so-called cell theory although it may be associated with the latter 
as far as cells are concerned in both cases.
A model approach is known to neglect a priori a number of physical states although 
realized by a system. The conditional distribution method means nothing of the kind, 
since all the possibilities within the Gibbsian statistical formalism are described by the 
theory (see Sec. 4).
In accordance with the above definition unary function Fu may be expressed in terms 
of the configuration part of the Gibbsian distribution DN(qj, ..., qN) for the whole system 
normalized to the configuration integral. In an explicit form this definition looks as 
follows1)

Fniq1) =  Ni f  dq2 f  dq3 ■■■ J DN dqN, (1)
V t  Va V N

v2 +  v2 +  ■■■ +  vN =  V — «1 , q1 C v,;

Dn =  exp Ux =  Z  ф{\Чі — Чі\) (2)

wliciv </> in iir pairwise inter molecular potential, VN is the potential energy of the whole 
11 \ :il I in < I kT, where T is the absolute temperature, к is the Boltzmann constant.
I lie iii11 Гм< a rlTeetH us well us presence of external field are here neglected.

■) 11 n In mi lil lie liiiruii in iiiinil that q'.  q'1, .... q s are the coordinates of arbitrary m olecules,^, q 2, ..., 
</, urn llin i'< it и 1111 nil i'M ol tlnfinifo molecules.
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We shall also give an explicit expression for the binary distribution function _F22(qd, q2) 
(note that q l, q2 a  Vj). According to the definition

E 22(qd. д г) =  N{N — i I  I" d4i J  dq* f  A v  dq*
I  L_t»2 V 3 V N - i

+ Jd q 3 J  dq4 ■■■ j  I)N dqA
«3 V4 V N

+  J  J  dq3 dq4 ■■■ j D N dqN

1
+  T j  J  dq3 dq4 ■■■ j  DN dqA

1
+ T dq3 dq.i j  j  dqb dq s ■■■ f Dv dqN +

®2 V3 t>3 VlV-3' / •
(3)

Each of the above integrals in the first square brackets of the right-hand side of equation 
(3) accounts for such states of the system when only one of the N  — 1 cells is empty, 
whereas each of the others but v4 cells contains one particle, respectively; the integrals 
in the second square brackets account for the states when already two cells, including, 
contain two particles each, etc.
Equation (3) may be abbreviated as

]JV—2/2]
F22{q1, q 2) = N \ Z  I

A =  0 i.j, 
Pr-.l

(0 (ІУ-2Д-2)
Av dq3 ■■■ dqN, (4 )

* H= j  Ф p  Ф ••• + l;

The symbols (A) and (N — 2A — 2) indicate the number of one-fold and two-fold inte­
grations over the cells. This implies that each of A +  1 cells contains two particles while 
other particles are distributed one per cell.
The first sum therefore contains ClN:} 1 term s; [N — 2/2] is the integral part. All the terms 
in (4) refer to different physical states of the system.
Alongside with double-index correlation functions distribution functions of the form 
Ff^q1, q s+P) are also introduced. The latter determines the density of probability that 
an arbitrary molecular volume vt but the considered vx containing p arbitrary particles 
at q 1, . . . ,  qP, will contain s molecules at qP+1, qv+s, and the distribution of other
particles is accounted for in the same way as by the function F sk.
Functions F ^ q 1, q2), F^{q1, q2), F^(q1, q2 q3) or F^{ql, q2, q3) and F{̂ (q1, ..., ql) are 
of practical significance in the theory. So, Ejj1 determines the density of probability of 
finding any two molecules at q 1 and q2 being in two different cells v, and v2 and of distri­
buting the other molecules so that any of the other N  — 2 cells do not contain more than 
one molecule. Then from the definition

Fn(ql, <f) = N l  /  dq3 f  dq4 f  DN dqN. (5)
V# V« V N

10*
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The function F^fq1, q2, q3) may he written as

[JV-3/2J /’ /’ (II Г Г Г ( № - 2  A-3) Г
=  -  Ds dqi ■■■ dqN,

A = 0  i.),■■■,l J J J J J J
( G )

І =¥ j +  p Ф Ф l; І, j , p ,  ■■■, l =  2, 3 , . . . ,  к — 1 , k +  1 , N .

The form (6) implies that one arbitrary molecule is in the cell vx at q1 and two particles 
are in the cell vk at the q2 and q3, respectively.
Functions F f̂ and as well as F 22 are of a binary type. But as distinct from F22(q1, q2)
which determines states of two particles in one molecular cell, they describe particle 
distribution over two different cells. In the conditional distribution method F^^q1, q2) 
is the simplest binary function.
Simultaneously with ternary function F[f  or F§jf when three particles are distributed over 
two cells, function Fffl is also used. I t  is now implied that the coordinates q1, q2, q3 for 
three arbitrary particles belong to three different cells, respectively. The same refers to 
the function Fffi. The difference between F ^  and Fffi is that in the former case presence 
of only one particle in each cell is preconditioned whereas in the latter case such particle 
distribution over the other but the three cells is implied when among these cells there 
may be either empty ones or containing one or two molecules.
Besides the distribution functions which describe states of the cells containing one or 
more particles, functions are used which describe such states when some of the cells 
considered are empty. So, the functions Ffff determine the density of probability that a 
group of s molecules will be at fixed points of an arbitrary molecular volume vt at the 
condition that the first cell is empty and the other particles are distributed over the 
other cells in the same way as determined by the function Fsk. The function Fm which 
will be used further affords an example of a function which describes such states of the 
system when the first cell is empty and the other cells may not contain more than two 
particles.
In a general case multi-index correlation functions account for various approximations 
in the description of condensed media. Considering in the first main approximation (the 
so-called 7<’n -approximation) the distribution when each of the cells contains one molecule, 
we introduce multi-particle distribution functions of the form Fjf~ ̂ (q1, q2, qn). The 
symbol {n — 1} indicates that the group of n — 1 molecules is fixed at the points q1, 
q2, . . qn~1 which belong to n — 1 different cells v1,v2, v n_1 and q" cz v„. The function 

=  F[f is a particular case of such functions.
All the above functions of conditional distributions will also be accompanied by twice 
conditional functions. For exampiej the function Fjj’(q* [ q1) will be considered alongside 
with binary function F^fq1, q i)(q1 cz vu ql cz Vi). The former determines molecule 
distribution in the cell v{ at the condition that an arbitrary particle is fixed at the q1 in 
vv  The binary function F^ffq1, q') is related with F u (q'1) and Ff'fiq1 \ q1) by the probabi­
lity relation

F $ (q \  q*) =  Fn(q') F$(q< | qd) (7)

which is actually a definition of the two-particle correlation function Fu(</i I q 1)- 
The difference between the three-particle conditional function F ^ f q 1, <(\ qi) and the 
function F̂ 2\q j  I q1, q') is that in the latter case two arbitrary molecules are fixed at the 
coordinates q1 and q' in the cells vy and v((q> cz Vj), respectively.
The junior and major correlation functions are related by integral relationships. Con­
trary to the unconditional distribution method (the BBGKY-hierarchy) these relation­
ships are more convenient, since determination of, say, the unary function requires in­
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tegration of the binary function over the molecular volume rather than over the volume 
of the whole system

Fn  (q1) = f  f&Kq1, q {) < ¥• (8)
Vi

Normalization of correlation functions of conditional distributions will be considered 
later on.
The following F)2-approximation of the theory accounts for the states of the system 
when an arbitrary molecular volume may contain one or two particles or the cell is empty. 
A set of distribution functions for this approximation is considerably wider than in the 
previous one. Among these are functions of unary (F12, F^, ...), binary (F22, F^, F ^ \  
F fi , ...) etc. types.

2. Constitutive Integra-Differential Equations

The constitutive equations for correlation (partial) functions of conditional distributions 
may be found with the aid of an obvious differential relation for the configuration part 
of the Gibbsian distribution. Indeed, differentiation DK with respect the particle coordi­
nate over v, gives the equation

dDN 1 BU^
1чГ +  ё 7 ^ 2,' - ° ' (»)

The integro-differential equation for unary function Fn will be found from integration 
of equation (9) with respect to q2, ... q,v, assuming that two or more molecules cannot be 
simultaneously present in every individual cell. From definition (1)

Г ,  r ,  r8 D N d c ,  C n  7 1 0*11 to1)J  dq2 J  dq3 ... j  — dqN =  — J  dq2 -  J  Ay dqN =  ш
Vi  V i  V N  V i  V N

Integration of the second term in equation (9) yields

/ " « ■  -  /  §  -  /  >Ф" Х ~ g,l) D-
Vo V N  V i  V N

We shall separately consider one integral of the above sum. From definition (5) we have

dq2
сФ(\дл -  q2j) Dn dq '

- /»2
1

~  N

с;Ф(\qt -  <h\) 
cqi

V i  V N

, f  q2]) П М \  q2) dq*.

Av dqA

The whole sum is thus equal to

1
Ш

8Ф( Ig1
Bq1 Fiiiq1, q*) dq2 +

Г 8Ф( Iq1 — q3
J  Zq^ ~

F $ ( q \  q3) dq3 +

1  * r m q *  q>\) m q i>qi)dqj' 
! / + 1  j  °q
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Integration of (9) finally results in

SFnjq1)
dq1

I  » Г дФЦд1 -  qiI)
0  i t i j

F^iq1, qi) dqi =  0 ( 10)

VI

where q1 cz v1} qi cz V — vv
The constitutive equation for the function F ^ q 1) is to be found from integration of 
equation (9) with respect to variables q2, q3, qN, however, assuming that more than 
two molecules cannot be contained in each of the cells v2, v3, . . vN, with such scheme of 
particle combination the cells considered may either be empty or contain one or two 
particles. The derivation of the equation certainly becomes considerably more cumber­
some. The final form of the equation

8F12(q')
dq1

еф(|д! -  q2i\)
d q 1 Fi‘l (q l, q2’) dq2i

+ W ^ f f  ~ >{ l <q' <f’l) F ™{q1’ q2K q3i) ^  =  ° (11)
where q1 a  ; q2i, q3i cz V — vv
We shall also present the equation for binary correlation function

8F22( q \ q 2) , 1 ^ ( I g 1 -  q*\) „
eg1 bqF ^ 22(9’ 9 )

i  І  [  qS>l) m q 1, q2 q3i)в j+ i . dq1

1 Л  
& i f f  m q l qi q3’1- fS ta 1, g 3h qij) ^ d q *  = о ( 12)

as well as the equation for multi-particle function

8F{’r
dql

« I я- 1 m w
' a

q''I)
0  je, 8qn

Fln-i) f . iU l=n+1 ,
80(\q“ — qi\)

8 q n
F[n) dqi =  0. (13)

The desired correlation functions thus satisfy an infinite system of coupled integro- 
differential equations, and similarly to the BBGKY-method a general problem here 
arises of completing this system. I t  will be seen from what follows that solution of this 
problem in the conditional distribution method is based on specific possibilities afforded 
by this method.

3. Method of Average Force Potentials

Practical usage of the chain of integro-differential equations requires preliminary trans­
formation of the chain with the aid of certain approximations to a system of completed 
equations with respect to junior distribution functions. The BBGKY-method employs 
various approximations which allow equations for an unary or binary distribution func­
tions to be completed [4—7]. The validity of each of the approximations is limited by a 
certain range of thermodynamic parameters of the systemconsidered even within one 
phase.
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The method of conditional distributions has afforded a specific solution of the complete­
ness problem typical of this very method. Analysis of the used approximation which is 
called the method of average force potentials revealed that this is applicable over a wide 
range of thermodynamic parameters involving various states of aggregation of a mole­
cular system.
Following works [5—10] completing procedure will be considered for a condensed system 
in the main J' \ ,-approximatron of the theory.
Equations (10) and (13) defining the unary F u (q1) and binary F uiq1, q ‘) distribution 
functions are to be reduced to the form containing potential of average forces. To this 
end the first of the above equations will be divided by Fn (q1) and the second by F $  (q1, q ’;) 
to give

8: l n r u t f ) + i i ^  =  0 ,

—  In F[[4q\ q l)

8q-

S0(|qd

(14)

8q1

where

_ i  у  я ы ч 1 1 <r) 
& іЛ і 4 х

q1 cz Vi, g ‘ cz v{, qi cz (15)

f y i i i q 1)
dq1

Я пМ 1 1 g ;) 
t q 1

Г (Щ\дх -  дЦ
J  Ч 1

F $ (qi I g1) dqi,

Г ЙФ(|д1 -  g i|)
J  s g 1

F{n \ q i  I q1, q l) dqi.

(Ш)

(17)

In  view of the definition of the twice conditional functions given in Sec. 1, <pij(qv) may be 
considered as a potential of the average force exserted by a particle distributed within 
the cell Vj on a particle fixed at point q1 of the cell r,. The quantity г/^Дд' | дг) has a 
similar meaning, but at an additional condition that at g* of the third cell a particle is 
fixed. I t  is obvious that the introduced potentials are not uniquely defined by equations 
(16) and (17).
Formal solutions of equations (14) and (15) are

- * W )  =  O r1 exp j -  i  Z  ^іДд1)! ,

F&iq1, g*') =  C2(ql) exp
i " i

ф(\дх -  <rl) +  Z  <PiM1 1 <T)
1+1.» }■

(18)

(19)

Expressions (18) and (19) do not uniquely define potentials <p, besides they contain nor­
malization multipliers Qi and C2(g‘) that will further allow re-normalization potentials 
<p to an arbitrary summand without thinking of possible violation of distribution function 
normalization.
Use of relation (8) between junior and major distribution functions gives the first equa­
tion of new hierarchy that is advantageous over the initial system (10, 13). In the latter 
the distribution functions which sharply change at small interparticle distances are 
multiplied by also sharply changing derivatives of interparticle interaction potentials. 
'This results in high sensitivity of integral terms involving such products to small vari­
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ations of the distribution functions. As distinct from (10), (13) the completing factors are 
considered in a new hierarchy but rather represented by one integral term, namely, the 
average force potential.
The above mentioned property of new hierarchy allows an effective solution of the 
completing problem. At condensed state the average force on a molecule at q ‘ cr v( by a 
particle distributed within the cell Vj may be supposed to weakly depend on the fact 
whether within a certain third cell a particle is fixed or distributed over the cell volume. 
Therefore, the approximation seems quite reasonable

уіМ 1 I q1) - vaW)  (2°)

which allows the system to be completed already by the first equation.
Making use of approximation (20) in equation (19) and of the symmetry of F^(q1, q*) 
with respect to particle transposition, we can write now (19) in the form

Fiiiq1>qi) =  G r1 exp В
Ф(| q1 r l ) + 2 'J+l.i

[•Puiq1) +  Vaiq')] (21)

Use of the relation (8) between the unary and binary correlation functions, reduction of 
the same terms in the right-hand and lefthand sides of the equality and suitable re­
definition of the potentials yield the completed integral equation

r«

Equation (22) defines uniquely potentials <pu {q1)2). The above nonuniqueness is completely 
transferred to the normalization constant Qx and Q.,.
The above completing procedure is attractive in view of the possibility to extend it to 
the major equations of the hierarchy. I t  is convenient to use Зи-fold configurational space 
of n-particle system for this purpose.
On the base of equation (13) constitutive equation for the и-particle function in such a 
space can be written in the form

d In 1 8 ” . , ,
д ф ... I- +  & i q'~....Д- (lq ‘ qh I)

0  dq In-i-l = l І = 1
(23)

where =  <Р̂ іп+і̂ ЛІІ I ЧІ1> *11г’ ■ • •> > Ч1,п, ■ ■ ■> Ч1") is the potential of the average
force on the particle fixed at q li gJ  vt by the particle distributed within the cell v[n+1 
at the condition that in other n — 1 cells particles are fixed at qli, q Іг, ..., q1'-1,

П
qh >, ..., qln and 8j8ql*... ln =  2  8/8qli .

j= i

2) Expressions (22) are virtually a system of equations defining the average force potentials for 
different relative locations of the first and the i-th cells.
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The solution of equation (23) is of the form

1
F[x~r‘ =<Э»ехр \ — в

п N n
і ф Мі +  2  2 Ч Г Л ’i<j ’ - * -= l i=1 1-

(24)

Use of the relation between the junior and major functions gives the chain of integral 
equations with respect to average force potentials

Qn /
Qn+1J 

»*«+
exp ■

! - i

2  Фіп+iui=1

N
4- v‘ Ejln + 2 =

=j= llJ l2, .. •J ) ln+2 • *■J ln+1 ■

N n + 1
Vltln  4 dqln+1 , 

(25)

System (25) may be completed by any of the equations if use is made of the approxi­
mation [11]

qin) =  (qit I q h , q h - i ,  qhii, (26)

Upon substitution of (26) into (25), re-normalization of the average force potentials and 
some additional manipulations the equation completed with respect to <p!'n~ may be 
expressed as

(27)! , J 1
І= 1 /«42 = 1

j- dqln+l

в  ~  J
“ P ) -  w

" n— 1 N
2  фкіп+і +  2  95іГ+іг„+.1— 1 l и-|-2— 1

J  dq1"'1

^B+2 4“ I'll 4) • • •! t„-l > ІЦ+1 ■

The и-particle distribution function is expressed in terms of the average force potentials 
defined by equation (27) in accordance with (22).

4. Calculation of Configuration Integral and Free Energy

The configuration integral of a system is defined as

Q,\ J  H i f  (l(h  •" J  exp j -  dqN. (28)

In  view of division of volume V of the system into molecular cells in the conditional 
distribution method, expression (28) may be represented as

Qn d<h I dq2 exp -j —
N N
E E vj

i=  1 ;= 1
N
E vjck= 1

Ei
в ;} d<l\

=  i  д - z j  dih  f  d<h - f  exp { -  Щ  dqN. (29)
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Among all NN integrals of the above, both integrals which are only associated with one­
fold integration over each of the cells and integrals involving two-, three- etc. up to 
W-fold integrations over volumes of one and more molecular cells will be encountered. 
Let j  be multiplicity of integration over the volume of a certain cell (this implies account 
for the states when the cell considered contains j particles), n, is the number of cells of 
the given state containing j particles. Then the number of integrals in (29) covering the 
states at which there is at least one cell containing s particles and there is no cell con­
taining more than s particles is defined by the expression

I ,  =  W 2
nj

N\

' П  (?'■)’“
i- 2

(30)

w here^1 indicates summation over various sets of n,■ satisfying the conditions ̂  jrij sg N
ni s 3= 2

and ns 4= 0, £  jrij is the number of empty cells and cells containing more than one par-
j=2 s

tide or the number of particles which are more than one in a cell, £  (j — 1) n is the
3= 2

number of empty cells. When s =  1 the number of integrals representing the state when 
each of the cells contains one particle is N1. If s =  N  is assumed, then nN =  1 and n, =  0 
as j =f= N, then IN =  N. The latter case refers to the state when all N  particles are con­
tained by one of the cells.
Bearing in mind that function exp {— Z7/0) is symmetrical with respect to particle 
transposition, we shall write out in an explicit form all the terms of expression (29) 
associated with s =  1 and s =  N

Qn =  N\ J  dqj j  dq2 ■■■ J  exp j —  dqN 4- -
V2 Vn

+  N J  dq, J  dq2~- J  exp j — dqN. (31)

I t  is the first summand here which corresponds to 1<\ x-ap proxi mation of the theory. 
Bearing in mind definition (1) of the function F ^ q 1), we may write for this approximation
[3]

ftv(1) =  /  F u(q') dq1. (32)
Bi

I t  should be pointed out that contrary to the BBGKY-metbod in which integration is 
extended to the whole volume of the system, in the conditional distribution method the 
configuration integral is calculated by integration F n within one cell.
The subsequent T^-approximation together with the terms associated with s =  1 also 
accounts for two-particle filling of the cells (s =  2). Again the configuration integral may 
be found from integration of the junior functions of conditional distributions over the 
molecular volume [3]

Qx™ =  Fo: / Fuiq1) dq1 iff F22{qr, q2), dq1 dq2 (33)

The subsequent approximations include terms with progressively increasing values of s. 
However for description of systems with high densities consideration of the first Fn- and
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-^-approximations is sufficient. In this section calculation of the configuration integral 
and free energy in the main Fu -approximation will be considered.
Direct usage of expression (18) in (32) is difficult because the form of the normalization 
constant Qj(y, 0) suitable for (32) cannot be in principle found from solution of a chain 
of equations. This difficulty may be overcome by using additional relations involving 
Qn- Such possibility is afforded by the Gibbs-Helmholz equation for the potential contri­
bution to integral energy

E  =  0 2
d(ln Qn)

80 ' (34)

Respectively, with the aid of binary function F ^ q 1, q') normalized to unity (these 
functions and the normalization constans associated with them are indicated by a tilde; 
the other functions are assumed normalized to Qn) the potential contribution to the inter­
nal energy may be written as

Ф(|q l — q ‘I) F ^ (q l , q') dq '. (35)

The normalization constant for the unary distribution function follows from (18) as

QiQnw . (30)

A normalization factor of a binary function may be found from the iteration equation
Г 1 n  1

(22) multiplying the right-hand and left-hand sides by exp 1— — £  Viiiq1)} £ 
grating it with respect to q1 ' ^  j+Ы J

Q 2 — QiQit —■ QzQ?,d)

and inte- 

(37)
where

Qu =  I' exP | -  \  2 > u(9,')| dqi. (38)

Expression (35) may be transformed to (34) by differentiating expression (22) with (38)

with respect to 0  followed by mu 
and integration with respect to

8 In Qj
80

f  1 лг )
raltiplication of the result by Q., 1 exp j -  — £  fjj iq1)} 
q1 which results in I J

f  d{~ U% ) m  Fn(qr) dq1 =  ^  J  d q i f  0(\q' -  q*\) F $ ( q \  qi) dq'
Vi  Vi_ Vi

f  Д  j  f  Г ’Ш ,  ¥ )  dqj  dq*,

With account for the relation

8 In Qj
80 =

С у  d\<Pkj{'
J j+k 8 F n (qk) dqk

(39)

(40)
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equation (39) will be reduced to

ulQi] - 2  J F n (q i )  dq> (41)

where ?7ti/0 2 is determined by the first summand in the righthand side of (39). Summa­
tion of (41) over i =j= 1 with (35) yields the equation of the form (34)

N N 8 (~ Г N ~ -  1^21}. (42)

Comparison of (42) and (34) gives the configuration integral of the system to within a 
certain volume function

<2v(1) =  Q\N П  (QuIQi)
L«'+i

N /2

/ И - (43)

To find f(v), we consider behaviour of QN{1) at high temperatures (<9^> 1) and fixed 
volume. Under these conditions Qt ~  Qu ~  v according to (36) and (38), then from (43) 
QA'(1> ~  vNf(v). On the other hand, under the same conditions equation (32) implies that 
<2_v(1) =  fV"! Vя , therefore f — N\.
The quantity

F(v, 0) =  -6> ln  Q (44)
where

Q =  Qi П  (QnlQi)
•=M

1/2
(45)

may be conveniently used as free energy. 
The pressure is then defined by

V =  —(8FI8v)e. (46)

The pressure calculated from (46) is consistent in the thermodynamic sense with caloric 
state equation (35) as far as the Gibbs-Helmholtz equation is used for determination of 
the normalization constant. In [12] it is demonstrated that the thermal equation of state 
defined in terms of the binary function

j" dq1 J  (P'dq1 — q ‘|) |q 1 — q‘\ F ^ (q \  q {) dq‘
Vi  V - V i  ■

(47)

is equivalent to equation (46).
Thus, from approximation (20) used in the method of conditional distributions thermo­
dynamic consistency of the thermal and caloric equations of state naturally follows. All 
the approximations used in the unconditional distribution method have not provided as 
yet this consistency [15].

5. Thermodynamics of Molecular Condensed Systems and Phase Transitions

The structure of equation (22) allows the solution to be obtained on an electronic com­
puter using the iteration procedure. To this end, in the right-hand side of the equation a 
certain trial function should be substituted for potentials <pij(q*) then upon integration
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potential срйіЯ1) a t the first approximation is to be obtained. Further, using the first 
approximation in the right-hand side of (22) gives the second approximation, and the 
iteration procedure is continued until two subsequent approximations appear sufficiently 
close to each other.
Particular calculations are made on the computer Minsk-22 M for systems with the inter­
action governed by the Lennard-Jones potential. In [14] it was found that the maxi­
mum configuration integral at thermodynamic parameters associated with crystal state 
of material is realized when particles are located at points of a face-centered lattice. This 
determined the dominant form of the molecular crystal structure. Although the method 
of cell division seems to be of no essential importance, but for the sake of calculation 
it appeared to be convenient to have molecular cell centers at the points of a face-cen­
tered lattice also at the region of liquid and gaseous states. Within calculations use was 
made of some additional approximations to reduce the integral multiplicity, that is 
described in more details in [A, 15].
Equation (22) was solved with account for particle correlations with its twelve nearest 
neighbours. Convergence of the iteration procedure was determined from relative root- 
mean-square deviation of functions ipu - exp {—<Pul&] of two successive approximations 
calculated at various points of volume iq. The calculations were ceased when l„ =  [JFfy'i? 
— Vu^VISbpii)2]1̂2 (the sum is taken over all the points within iq which were used 
in numerical integration; n and n — 1 are approximation number) reach the values of 
10-4. Convergence of the iteration procedure was tested for various kinds of trail func­
tions [15]. Either the molecular potential or the average force potential at similar ther­
modynamic. conditions was taken as trail functions.
Figures 1 and 2 furnish the Helmholtz energy isotherms calculated from (44).
Figure 1 refers to small molecular volumes and covers crystal-gas (curves 1, 2 below the 
triple point) and crystal-liquid (curves 3—5) phase transitions. The behaviour of the 
curves at the vicinity of the triple point is inherent . Whereas a liquid peak in curve 1 may 
be hardly seen, in curve 2 this is clearly marked. However at the temperature 0  =  0.783) 
the peak is still below the common tangent to the crystalline peak and the rarefied gas 
curve. This indicates that 0  =  0.78 is somewhat lower than the triple point temperature. 
But already at 0  =  0.80 the rising liquid peak “divides” the tangent into two sections 
associated with phase transitions crystal-liquid (section a — b) and liquid-gas (section 
c — d; point d is outside the plot, see also Fig. 2). Here points a show the subliming 
points (curves 1, 2) and melting points (curves 3—5), b are crystallization points, c are 
evaporation points and d are sublimation (curves 1, 2) and condensation (curves 3—5) 
points. The sections of the Helmholtz energy isotherm to the left of a between b and c and 
to the right of d determine the steady state regions (of crystal, liquid and gas, respec­
tively).
Extrapolation of crystallization lines (locus of b) and evaporation (locus of c) show that 
they intersect each other at 0  =  0.79 which is the triple point temperature (experimen­
tal 0  =  0.7). A straight-line can be drawn tangential to isotherm 0  =  0.79 at three 
points which determine molecular volumes of the respective phases (crystal, liquid and 
gas). They are found to be 1.05; 1.50; G5 (experimental values are 1.035; 1.185; >200). 
As was expected, the differences between measured and calculated values become appre­
ciable for a rarefied gaseous phase. Here the F u -approxmiation cannot pretend to the 
main contribution to the material description.
Figure 2 is an illustration of the behaviour of the Helmholtz energy at large volumes and 
temperatures below the triple point (curve 1) between triple and critical points (curve 2) 
and above the critical point (curve 3). In  curve 1 a crystalline peak is only shown, and d 
lies outside the plot (vd >  65). Peaks of the crystalline phase are omitted from curves 2

3) Temperatures and volumes are throughout measured in units of ejk and a3.
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and 3. In curve 2 tangent c — d is drawn which indicates the liquid-gas phase transition; 
such a tangent cannot^be drawn in curve 3, therefore the appropriate isotherms (0 =  1.6) 
lie above the critical point. A more detailed investigation has revealed that the critical 
point temperature is approximately 1.25, and molecular volume is about 4.0 (for argon 
the experimental values are 1.26 and 3.16, respectively).
Phase diagrams of a simple system in terms of variables (0 , v) and (p, 0) plotted in 
accordance with the developed statistical theory are presented in Figure 3. Figure 4 
demonstrates agreements between calculated and experimental melting b'nes for argon. 
Information on the behaviour of a unary distribution function within the molecular 
volume seems useful for identification of phase transitions (Fig. 5). At the thermodynamic 
conditions corresponding to Helmholtz energy values to the left of a the unary function 
has a marked maximum at the cell centre (curves 1, 2). Already at a distance of about 
0.3 of the linear cell dimension from the centre the value of the function is by five orders 
smaller than its maximum value, that allows us to identify the material state as a crystal. 
Convergence of iteration procedure in this case is fair and the solution is obtained after 
6 to 10 cycles.
Upon an inconsiderable change of the volume to the right of a the behaviour of the unary 
function changes sharply. The probability density of finding a particle at the cell bound-

Fig. 1. Holmholtz energy isotherms at small values of molecular volume. 
1 ,0  =  0.75; 2, © = 0.78; 3, © =  0.80; 4, 0 =  0.85; 5, 0  =  1.0 
9 ,  points calculated on a computer.
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Fig. 2. Helmholtz energy isotherms at mean values of molecular volume. 
1, 9  =  0,7; 2, в  = 1.0; 3, в  = 1.5.

51______________L5 _1_
Ю 15 v

Fig. 3. Phase diagrams of a simple molecular system in /''n-uppvoximation.
(a) in 0 — v variables; (b) in p  — © variables, д , о experimental triple and critical points, respectively
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Jfig. 5. Unary distribution function 0, 0). Axis x is chosen in the direction of one of the nearest ueighhours. 
0  =  0.85. 1, » =  0.96, /< =  10; 2, a =  1,02, )i = 10; 3, v =  1.10, ц  =  1; 4, в =  1.60, ц = 1.
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ary appears to be higher than at the centre (curve 3) that indicates a sharp increase of 
fluctuations which causes heterogeneous state of the system. Sharp deterioration of 
iteration convergence is some kind of “a response” to transition of the system into the 
heterogeneous state. The iteration equation is only solved upon 30 or 40 cycles.
At the liquid state convergence of the iteration procedure is improved and the unary 
function has maximum at the cell centre, but its values at the boundary of the molecular 
volume are also of importance (curve 4). As the volume further increases, particle dis­
tribution tends to equiprobable one over the cells.
Existence of a crystalline phase may be inferred not only from the analysis of the unary 
function behaviour within the molecular volume chosen. The conditional distribution 
method allows demonstration in an explicit form of existence of a long-range order in 
crystals. Indeed, one-particle distribution function for the whole volume of the system 
follows in a straightforward manner from the obtained unary conditional function 
determined in every molecular cell. In  a crystalline phase the unary function has sharp 
maxima at the lattice points. I t  may be clearly seen that the particles are localized at the 
lattice points. This also may be inferred from a binary function determined in any of the 
radial directions.
The situation is different upon transition into liquid or gaseous state. In this case unary 
and binary functions only reveal existance of a short-range order.
In  [16] radial function g(r) is calculated by integration of expression (21) from orientation 
of vector g* — q1 at the condition that one particle is fixed at the centre of the first cell 
(q1 =  g,,1). I t  may be supposed that averaging with respect to particle locations in the 
first cell in the liquid region may not essentially change the result. The calculations com­
pared with different methods are presented in Fig. 6.

Fig. 6. Radial distribution function at 0  = 1.057 and v =  1.528.
1, theoretical at jFu-approximation; 2, calculated by the Monte Carlo method [34]; Д , experimental [35].

On the basis of approximation (20) the binary function may be written in terms of unary 
liinotions as

Я'Шч1’ q1) =  CFu(41) Fuiqt) exp j -  ~  [Ф(і</' -  q'l) -  <pu(ql) -  Ы 2 1)]}- (4=8)

Two integral terms in (48) make an essential difference between the binary conditional 
I'll notion approximation and the approximation of a binary function in terms of unary 
ones widely used in the unconditional distribution method.

I I Zoltsehrift „Fortschritte der Physik“, Heft 3



150 L. A. Rott and V. S. Vikhbhnko

6. Method of Average Force Potentials at the Second Approximation of the Theory

The main Fn-approximation fairly describes molecular systems at high densities. So, a 
melting line of a crystal obtained at this approximation differs from experimental data 
only by several per cents. Simultaneously the error in the crystallization line increases. 
This indicates that already at the liquid state region more precise definition of the theory 
requires consideration of the subsequent -F12-approximation which accounts for stronger 
fluctuations of particle density (the second approximation describes the states when a 
molecular cell may contain also two molecules).
The _F12-approximation is of special importance in description of material, particularly, 
at a state approaching to a critical one when many of the delicate peculiarities of its 
behaviour are due to large density fluctuations which are not included by the Fu - 
approximation.
In  this Section we shall briefly discuss the possibility of breaking the equation chain by 
the second approximation of the theory and the main difficulties involved.
As it was pointed out above, the _F12-approximation involves a wider set of distribution 
functions which account for various levels of filling molecular cells. The configuration 
integral in this case is defined by expression (33) or with account for certain symmetry 
properties by a simpler expression [17]

QnW =  f  F12(qx) dq1 +  J f  F22(q \  q2) dq1 dq2. (49)
» 1  I ) ,

A system of constitutive integro-differential equations begins with equations (11) and 
(12) for unary F^iq1) and binary F22(q1, q2) distribution functions determined in one 
cell. Three new functions (binary F $,  ternary jF}| =  F^  and four-particle FJ,f) 
determined already in two cells enter into the two equations. Here the functions are 
coupled not only according to the number of particles, but also according to the number 
of cells in which the functions are determined, therefore the system of equations be­
comes a branched one. Schematically it may be presented as

Each function of the и-th row of the scheme determined in n molecular cells is coupled 
via integral terms with two functions of the subsequent row determined in n -j- 1 cells. 
The scheme accounts for symmetricity of the functions with respect to transposition of 
indices (e.g. F[\2) =  F [f'=  F»1’).
A scheme analogous to (50) may also be composed for the functions of which indices in­
volve zeroes indicating that one or several of the cells considered is empty. Functions 
with different number of zeroes among indices are not coupled, and for functions witli the
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same number of zeroes a coupling scheme is similar to (50), e.g.

Of this system we need the equation which determines function

1  * f r d0(i,2j)
& і й i J J  ч

V] Vj

0», 2j)

+  F<°22>(1, Of, 2j, 3/)] dq*idq3i =  0. (52)

Here Ф( 1, 2j) =  Ф({q1 — q2i|), and (1, Of, 2j, 3j) determines the probability density 
of finding one of the molecules of the system in the first cell at q1, that the i-th cell is 
empty and the two other molecules are in the j-th cell at points q2> and q3i. In  this 
Section a figure throughout indicates a particle number, a letter shows a number of the 
cell containing the particle. For particles within vx the number of the volume is not indi­
cated.
To break the system equations (50) transition to the average force potentials is necessary. 
To this end in accordance with the probability multiplication theorem we introduce 
twice conditional functions [17]

F<°2>(1, Of) =  F 02(Of) F<°>(1 I Of), 

F g ( l, 2f) =  F 12(l) F<1a>(2f I 1),

(53)

F[f>(l, 2f, 3f, 4j, 5j) =  Ff»( 1, 2f, 3f) F<f>(4j, 5j \ 1, 2f, 3f).

A potential of the average force is further introduced on a particle at q1 cz vr from one 
or two particles in the cell

=  f f  ™  (2f I 1)] +  I 3f)] dq* dq3i. (54)
Vi Vi

Besides, potentials of the average forces are also introduced on a particle at q1 cz vx 
from the particles in *>,• at additional conditions that in a third cell one or two particle is 
fixed, or the third cell is quite empty. To complete the system of equations, similarly to 
the F n -approximation, the above potentials of average forces are assumed equal

m i 1) =  m i  1 I 2?) =  m i 1 I 2j, 3j) =  <pu( 1 I 0j). (55)

However the equations together with the mentioned potentials which are main terms 
also involve potential g?u (l) of the average force on a particle at point q1 cz v1} by
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another particle distributed over the same cell and potential <p1(( 1 | 2i) of the average 
force on the particle at q1 cz v1 from the particle distributed within cell v1 and at the 
condition that one particle is fixed at the same cell.
The completed system of equations includes two arbitrary constants. In  this case one 
Gibbs-Helmholtz equation is insufficient for complete determination of the constants. 
The condition of free energy minimum is additionally used.

The statistical method of conditional distributions described above may also be exten­
ded to multicomponent mixtures [3, 18—20 ]. If we bear in mind the completing proce­
dure for initial equations with the aid of average force potentials and calculation of confi­
guration integral, this extension is far from being trivial and involves additional prin­
ciple difficulties, that will be demonstrated on an example of a binary mixture.
Let the number of particles be n =  na -j- nb where na and nb are the numbers of particles 
of the a and b species, respectively. The whole volume V is divided into n equal cells. 
A set of distribution functions Fsk is introduced for description of individual states of 
the system written almost in the same way as for a single-component system (the 
molecular species will be indicated by appropriate index at the coordinate). Tor example, 
binary function F22(qa1, qb2) means probability density of finding two arbitrary molecules 
of a and b species within the cell v1 at q1 and q2, respectively, and of finding not more 
than two molecules of any species in other cells. Binary function F^(qaL. q j)  implies 
that two arbitrary molecules are in different cells v1 and vb and each of the other cells 
may not contain more than one particle. In  the same jFu -approximation ternary corre­
lation functions are used А ц11 (</,/, q j ,  q j)  (q^1 cz vu q j  cz vi} q j  cz vf, =  a, b).
Integro-differential equations for the introduced correlation (particle) functions are 
obtained by a more complicated procedure, but, in principle, in the same way as for a 
single-component case, proceeding from the configuration part of the Gibbsian distri­
bution for the whole system.
For unary and binary functions Fn and F $  the equations are of the form

7. Multicomponent Systems

F $ ( q / ,q ,2)dq* =  0, (56)

N,, is the mole fraction, of the v component (Nt =  nv/n)

(57)

The constitutive equations for functions F12 and F22 will now be presented

Vi

(58)
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^ 22( q p ,q Z  , 1 5Ф (|д/ -  q?\) и , 1 v  лт V Г еф(ІЧ '/-“ % 3,'І) pm ><
—  +  0 - - - ^ 22 +  в  Л ь  Л  J  4 }  22 Ч ’

r),£=a,b j=1=1
j,(|) ( h l * jd q *j =  0 _

с)Ч/л
(59)

For derivation of the constitutive equations it is convenient to introduce first the 
correlation functions for certain (fixed) particles and then to find the governing equations 
for them. The initial equation for the unary function will be

H d - ZIZI /-Jв І*  1 /
V]

d 0 ( \ q s  -  <-/,■-!)

4 i “
Fu(q^> 4iv) dqf  =  0- (60)

The unary and binary functions are related by the integral relation which follows from 
the definition

F n ( q v ‘) =  /
Vi

Z  К  -  <V) J'nC'/i'b 4i) dqf ■ (01)

Practical use of equations (60) is difficult because they contain particle numbers na and 
nb as factors. I t  is therefore more convenient to pass over to correlation functions depen­
dent on the coordinates of arbitrary particles

Fn (q /)  =  V 'n(9i")>

Fl i ( q / ,  qs) =  Ы п, -  < V )  ^ u ( Q i ' b  qc)-
(62)

If the latter equalities are divided by мДга — 1)! and n (̂nv — <5M„)(» — 2)!, respective­
ly, and the thermodynamic limit is passed over to when na, щ —> oo, F -> oo but v =  VjN 
and NM — n jn  remain constant, then after the substitution into equation (60) we get 
equation (56) with isolated partially concentration dependence.
Extension of the completing procedure for an infinite chain of equations with the aid of 
average force potentials to a binary mixture requires transition to twice conditional 
correlation functions

Fii (q / ,  q,‘) =  Fu (q„l) F^(q,i \ q,,1) , (63)

F $ 4 q Z  q ,\  q j )  =  F $ ( q / ,  qj)  F $ '(q j  \ q,,1, q.}). (64)

These are the functions in terms of which the average force potentials are determined

= f  2  N * - П ч ,Л т- ~  Fii{q>11 q z  4 Z  m
Щ ц  J  v = a,b Щ ц

f y id g ? 1 1 q j )
Pr* 1C4,u

=  Z N ,
J  v=a,b

m \  qM q,'
v q p

FftKqj  I q,}, q j )  dq j. (66)

I lore (puiqp) is the average force potential on a molecule of the /« species located at q1 
of cell vl from a molecule of any species in cell vt. Potential <pu{qp | q j)  has the same 
meaning but at the additional condition of finding a particle of the ц species at q> cz vf.
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Using notations (65) and (66) we write down formal solutions of equations (56), (57)

F u(q/)  =  Cp exp j -  ^  j t  <Pi#(«/)}» 

I q / )  =  C M / )  exp | -  ' 9.*\) +  Z  <Ра(ч>11 q / )
УФ1.» 1 -

(67)

(68)

Integration constants will be designated by symbol with a bar when they depend on 
thermodynamic variables alone.
As in the case of a condensed one-component system, it is assumed that fixed particle in 
the first cell v1 slightly changes the averaged effect of the particle in the j-th cell on the 
particle at q ‘ in cell vt. Moreover, this effect is assumed to be independent of the particle 
species fixed in the first cell. In view of the above, approximation of the average force 
potentials becomes

<рц№ I q / )  =  <рц№)- (69)

The relation between CJ and the coordinate is found from the symmetry property of the 
binary function

F n(q/)  F$?(qj I q / )  =  Fn {q,*) F $ ( q /  I q.1) ■ (Щ

Substitution of (67), (68) and (69) into (70) followed by separation of variables gives

C A q/)  =  exp \<Pu(q/)\
\  o  \

(71)

where is the separation of variables constant depending both on mutual location of the 
first and the i-th cells and on molecular species contained by the cells.
Relations (67)—(69) and (71) allow the form

П / q Л q i)  =  exp ! -  ^ Ф(Іq / -  qj\) + Z  (<Pu(q/) +  ^#(д/))11, (72)
i+ i.i JJ

C l c ,Jl-

Then use will be made of the relation for passing from major functions over to junior ones

Fu (q /)  =  Z  N, j  F${q/> qJ) dq A  (73)
v=a.b

Substistution of (67) and (72) into (73) results in a completed system of integral equations 
with respect to average force potentials

f 1
exP j — q  <Pu(q:

• ' l - .

ГІІІ
Z N V ^

v=a,b С /л
exP L Щ q / ‘I) +  Z  <Pi (ql) dqv'

(74)

Equations (74) include greater number of coefficients G compared to appropriate equa­
tions for a one-component medium. Their calculation involves considerable difficulties 
peculiar of multicomponent mixtures. From the condition of correlation weakening 
coefficients C/v may be expressed as [20]

СЦ =  au/Q^Q, (75)
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where

Qn= f  exp j— 2 / (70)

The expression for Qv is similar; au is a factor dependent on locations of cells iq and v,: 
alone. Since the configuration integral of the system Qn a t the Fu -approximation will be

Qn(1) =  /  Ftl(q,S) d q i  (77)
»1

then it follows from (07) and (77) that

C ^ Q ^ I Q , ,  C,Q, =  G,Qt . 

With account for (75) and (78) system (74) becomes

exp {- h  = £ f c f  Л I  exp {" b 0(\q/} - q J \ )  +2<Pu(qj

(78)

d q ' .

(79)

The right-hand sides of each of the above equations include one and the same quantity 
aulQn x)- The average force potentials may therefore be renormalized so that (79) would 
not contain unknown coefficients. Passing over to potentials <pu +  txu —> <pu, we get the 
set of equations

e-xP j— ̂  <Pn('/,/)j =/ л . с е х р Ь ^ Ф^ , 1 -  qs  I) +  2  v u № )
У=Н»і

dqf

f  2  7Г exp (- 4  Z< P ii(qA dqJ
J v=a,b 4v { u  y + l . i  J

(80)

Uncertainty of constant ocu related with au by

(81)
where

Qu =  j  exp |— ~ 2  <Рц{(1у) j dq j
Vi

is transfered to the constant in expression (67) for the unary function which is determined 
from the normalization condition.
System (80) may be solved on a computer using the iteration procedure. The values of 
the average force potentials allow the configuration integral and free energy of the mix­
ture to be found.

8. Correlation Functions of Mixed Type

There is a wide class of physical systems whose statistical description may be effective if 
correlation distribution functions of mixed type are used. A binary mixture with con­
stituent molecules with sharply different masses and interaction (e.g. helium solutions)
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affords an example of such systems. The lighter component forms a “rarefied” sub­
system, the heavier component should be considered as a condensed molecular medium 
(interstitial solutions). For such systems it is convenient to describe particle configu­
rations of the “rarefied” subsystem using unconditional probabilities but the condensed 
system may be conveniently described with the aid of conditional distribution functions. 
The whole system is actually described by correlation functions of a mixed type [21]. 
Coordinates of the light particles will be designated through r t, r2, ..., rn ■ q u q2, ... qN 
are used to denote coordinates of the heavy particles. The Gibbsian distribution function 
DN+„ then depends on n -(- N  variables and equations for DN+n(rlt rn, q , , ..., q„) 
become

д-Ру+в . J_ 
dqi ^ &

ft-Py+n I__j_
8rt +  в

( 8 Г я n
\т— 2  4>{qi, q,) +  2  Ф(Ъ, r f)
\C(l  1 U=2 J=1

( 8 Г ” N
Ы і5 ф<г" г') + £ ф(г',,,і).

}
1

P.V f n 

-Py+n

=  0, 

- o

(82)

where Ф are pairwise interaction potentials of respective particle species, n N.
The whole volume V of the system will again be divided into N  equal cells of volume 
v =  VjN and distribution functions F ^ w(»a , ..., r m, q1, ..., qs) will be introduced which 
determine the probability density of finding m arbitrary light particles at r 1, r2, ..., 
r"‘ cz V and of finding s arbitrary heavy particles in a selected molecular cell vx at 
q1, q2, ..., qs czv t at the condition that each of the other molecular cells v((i 4= 1) may 
not contain more than к heavy particles and n — m light particles are distributed in an 
arbitrary way over volume V.
For example, according to this definition

p m  _  
J  mm —

n!N\
(n — m) j j  drm+1 J  dvn f  dq2 ■■■ J  DN+n dqA (83)

Integration of (82) gives constitutive integro-differential equations for correlation func­
tions of a mixed type. These are for the two junior functions Fjjj and FHi)

m i l iq 1) 1
'<q 1 +  0 J <~ql

V

М ці)(yl) 1 (  ̂ Ф(г\ Г2)
dr1 ^  0  J  dr1

F&)(q\ r 1) dr1 +  I J  F ft’iq1, q2) dq2 =  0,
V - v , (84)

Fw)(r \  »’2) dr2 +  ± f  ' Ф̂ г/  ] П Ж ,  Ч1) dq1 =  0.

The superscripts at F ^ 1’ indicate tlia-t two heavy particles are in different cells (q1 cz tq, 
q2 cz v2).
The presented completing procedure for an infinite system of equations for correlation 
functions of conditional distributions may also be extended to equations (84). In this 
case it may be reasonably assumed that light particles have a slight effect on the distri­
bution of heavy particles and, vice versa, distribution of the light particles is primarily 
determined by their correlation with solvent molecules rather than by their mutual 
correlation. Therefore the relation may be used

F a>,(r\ r 2, q 1) =  F $ ,(ri, q1) F<&(r2, q1),

q1, q2) =  F, („(r1) FgJ^q1, q2) , (85)

q 1czv l , q2 cz v2.
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With F3U) Р(2\\} a completed system of equations for unary and binary functions 
Faliq1), FiwiV1), Fw )(r \  r 2), q2), F ^ r 1, q1) will be obtained.

9. Kinetic Functions. Constitutive Equations

In [22, 23] the conditional distribution method was developed for nonequilibrium pro­
cesses in systems with central and noncentral intermolecular interactions. Kinetic 
functions of conditional distributions wdl be considered in this succession.
Let a one-component homogeneous system consist of N  particles. As in the equilibrium 
case the whole volume V is divided into N  cells. Kinetic function Fxk(q .̂ p 1, . . qs, p s, t) 
then determines the probability density that at moment t dynamic states of an arbitrary 
group of s molecules are associated with the values q 1, p 1, q 2, p 2, . . q s, p s coordinates 
and momenta in infinitesimal phase volumes clq1 dp1, . . dqs dps, the points of the con­
figuration space being in one of the cells v, the other N — s molecules being distributed 
so that any other cell may not contain more than к particles.
The constitutive equations for kinetic particle functions are found from the Liouville 
equation with respect to the distribution function of dynamic states of the whole system 
D(t, q x, P i , ..., qN, pN). We shall present here equations for junior functions.
According to the definition the unary kinetic function is

Fu(q\ P1, t ) = N \  f  dq2 f  dq3 --- f  dqN f  D dp2 ■■■ dpN (86)
v2 v3 v n  Qp

where Qp is the momenta space.
A simplest binary function is determined as

FQiq1, P1, q- P2 t ) = N l  f  dq3 f  dqA ••• /  dqN f  D dp3 dpN,
v3 vt v n  Qp

q1 c zv 1, q2 c= v2.
(87)

If the Liouville equation is now integrated over the variables q2, p 2, • ■ ■, qx, Px so that 
each cell of the volume V cannot simultaneously contain two or more particles, then with 
the definition of the unary and binary functions we finally obtain

8Fu( q \ p \ t )
dt

1 -d _ dFn =  Г Г m \ q x -  q21) _ clFftjq1, p \  q2, p 2, t) 
m dq1 J J dq1 dp1

r - v , Op

(88)

For function F 12(qf1, p 1, t) the equation becomes

^Fi2 p 1 8Fn _  Г Г 8Ф(\д' -  q2\) _ dF™(q\ p 1, q2, p 2, t) 
dt ' m dq1 J J dq1 dp1

V-v, Qp

The additional distribution function is here introduced F ^ q 1, p 1, q2, P2, t) =  F ^(q\  
p 1, q2, p 2, t) +  f  f  FJI’jqf1, p 1, q2, p 2, q3, p 3, t) dq3 dp3 whicli determines the probability

V) Qp
density of finding the molecule in the selected cell vx at point </' wil li momentum />', of 
finding the second molecule in another cell Vj at q2 with momentum p2 at the condition 
that in the same j-th cell there is one molecule more, and the other N — '3 molecules are 
distributed over the other N — 2 cells so that each cell may not contain more than two 
molecules.
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The method of obtaining integro-differential equations for kinetic functions has been 
extended to multi-component systems with point (central) interaction [23].
A system of nonspherical molecules with noncentral interaction will now be considered 
[24]. In  view of a molecular system of rigid dipoles, translational and rotational degrees 
of freedom will only be considered. A state of an individual molecule is described in 
terms of a vector-radius of its inertia centre q, the momentum p  conjugated with it, 
variables determining orientation of molecule ocp (a set of angular coordinates is for 
convenience denoted through a) and intrinsic angular momentum l. Then unary func­
tion Fn will depend on the variables q, p, a, l and t. Binary function F]\' depends now 
on the variables q1, p 1, a1, l1, q2, p 2, a2, l2, t.
The initial Liouville equation for the system considered is of the form

SD * p k 8D A, da, 8D JL / 8D , 8D\
IF + Д ,  m' i j ,  + Д  H i • ST, (F« ' гй + " «  ' w j=  0 (90)

where Fkj and Mkj are the force and the moment of couple of intermolecular interaction 
on molecule number к from the j-th molecule. If unit vector e is introduced which is 
rigidly joined with the linear molecule and thus characterizes the molecule orientation, 
then the moment of couple may be expressed in terms of a pairwise potential as

Mk i =  ek X 8Фц
8e, '

For a system with noncentral interaction the relation holds

Mki “b Mjk +  t'kj X Fkj =  0, Fkj = 8Фкі
Sr,;  '

The Hamilton of the whole system may conveniently be written down as

H = ~  I
"  Ar= 1

P i?  , у  ]L

m  '' Л  I a
1 N

-Г 2 1 ф(Гкі, ek, e})
^  k^rj

(91)

where Ia are principal moments of inertia of molecules.
With the definition of the unary function in mind

F n itf iP 1, «S l1, t) =  N\ f  dq2 f  dq3 ■■■ f  dqN f  D dp, ■■■ dpN da2 ■■■ daN dl2 ■■■ dlд
z>2 г’з vn Opai

(92;

we shall integrate equation (90) with respect to variables q2, p 2, ct2, l2, . . qN, pN, aN, lN 
so that any molecular cell may not contain simultaneously two or more molecules. 
Finally, the equation is obtained

SF  и 
ct

+  £ . .  dJ ji  +  . 8h i
m Sq1 8a1

F —г?! Qi

—4  dq2 dp2 da2 dl2 bp1

- f
V—Vi Qi

m i
811 dq2 dp2 da2 dl2 (93)
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where F(r12, a1, a2) and M(r12, a1, a2) is the force and the moment of couple on a molecule 
at state (q1, p 1, a1, l1); F^^q1, q2, ...) is the binary function (q1 cr v1; q2 cr vt), r 12 — q2

3
— q1, a ■ 8/8a =  JV д/доір.

/3 =  1
In [23—25] well-known phenomenological transfer equations (conservation laws) of 
continuum are obtained with the aid of kinetic functions of conditional distributions. 
The attention is immediately attracted to the fact that the methods of deriving transfer 
equations employing kinetic functions of conditional and unconditional distributions 
appear unadequate. The main difference consists in the fact that in accordance with the 
statistical method of conditional distributions used, transfer equations may be obtained 
in any desired approximation that makes them applicable to transfer processes in 
molecular condensed media.
The transfer equations were originally obtained in the Fvi-n| > proxi i n ati on for systems 
with central (point) interaction. In this approximation a mean value of the physical 
quantity F(([, p , t) is defined by the equality

< * > - = / /Vi Qp
4J(q +  R, p , t) Fl2(q +  R, p, t) dR dp (94)

where n(q, t) =  f F12(q, p, t) dp is the particle number density. Vector-radius q  is chosen
Qp

within the molecular averaging volume. The averaging operation is usually implied. 
Multiplying equation (89) by W and integration over the momentum space give the 
transfer equation for W.
The developed derivation procedure of conservation laws was then extended to systems 
with noncentral interaction (systems of nonspherical molecules with rotational degrees 
of freedom) with the aid of equation (93). Particularly, for statistical justification of 
angular momentum conservation law of the system the following expression was chosen 
as the quantity 4f to be averaged

W =  — sa — еф др{ру — mu y) (95)

where S =  ( l /м) f  I F12 dg is mean intrinsic angular momentum of molecule; еару is the 
Levi-Cevita tensor; и is the macroscopic flow velocity (mean particle velocity); rn is the 
particle mass; dg =  dp da dl.

10. Determination of Relaxation and Kinetic Characteristics of Molecular Systems

The conditional distribution method has been used for evaluation of some kinetic 
coefficients. These were expressed in terms of integrals of time correlation functions. 
Calculation of the integrals involves the extremely difficult problem of determining the 
time dependence of correlation functions. The problem may be somewhat simplified by 
introduction of the concept of mean relaxation time тл of certain dynamic quantity A 
by the equality

OO

/  {A{0)A{t))dt =  {A2) rA. (96)
о

Here (•••) denote statistical averaging over the equilibrium assembly. In cases of physi 
(»1 interest the averaging may be carried out with the aid of junior distribution func­
tions.
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Calculation of mean relaxation times is an important stage of the procedure. In  [26, 27] 
equations for kinetic functions of conditional distributions were suggested for this 
calculation.
A molecular system of nonspherical particles will be now considered. The kinetic equation 
for unary function in the Fn -approximation is given by expression (93). The two-particle 
correlation function entering into the integral term is approximated by the following 
relation

<p(q2 — q1, a1, a2, t) F ^ q 1, p 1, a1, l1, p 2, l2, t). (97)

The function >p which acts as a non-equilibrium radial function is assumed to depend 
only on mutual orientation of the particles and the vector-radius which connects their 
centers of masses. Expression (97) may be suggested valid for times in excess of those of 
momentum relaxation when for the latter the Maxwellian distribution may be adopted. 
I t  is evident that in this case

/  /  Fn (q \ p 1, a 1, l1, p 2, l2, t) dp2 dl2 =  Fu(q \ p 1, l1, a 1, t) . (98)
Qp Di

We so isolate the Maxwellian part from Fn

f v 2 Oi l]
Fn(q, P, «> l, t) =  F^iq, p, a, l, t) exp . (99)

As t tp (tp is the characteristic time for the Maxwelban momentum distribution to 
develop or in other words, the momenta relaxation time) F[t will be slightly dependent 
on molecular momenta.
Substitution of (97)—(99) into (93) yields now the following equation for the unary 
function

8t
8F{ i

v ■ — ^  4- oj '8q
M ix
da

=  | І / +  (10»)1 V—Vi a« J [ V-V, fla 1
where v  =  p l[m is the linear velocity of the centre of mass of the particle, o> is the particle 
angular velocity.
Solution of equation (100) is sought as the Fourier series with the coordinates of the 
inertia centre and expansion with respect to generalized spherical functions T"$n{ax)

Fn =  Z  atmnslP1, F, t) eik ql T^n(cd). (101)
kmns

We suppose that a time exists determining relaxation of unary function Fn. This is 
equivalent to the statement that the dominant contribution to solution (101) is due to 
the zeroth term of the expansion.
I t  may be found from the equation

(102)
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Solving equation (102) and assuming a certain correlation between the average force 
acting on the particle and the particle velocity (e.g. in the sense of the Langevin equa­
tion), we write down

a0(t) ~  exp {—</rq — f/r,,}. (103)

The above equation includes parameters t? and rv which may be considered as mean 
relaxation times of the quantities determined by the coordinates of the centre of molecule 
inertia and the molecule orientation, respectively,

0  0  
, , _ w  T* “ <|]»/j><N>-

(104)

Mean absolute values of force and moment of couple acting on the molecule are defined 
by the expressions

(|F|) =  j  J  |F| <p(r12, a1, a2) dr12 da2,
У-fl,

(105)

<|M|> = |M| rp(r12, a1, a2) dr12 da2.
V - v x On

Here the radial equilibrium function should be used as <p. Evaluations demonstrate that 
zQ and rv are of the same order. Over the liquid-vapour coexistence curve in the conden­
sed phase they are of an order of 10^12 s. The relaxation times r9 and tv as well as the 
relaxation time tq =  rqTlpj(Tq +  т̂) have been used for estimations of viscosities of simple 
and asymmetric media, calculation of anisotropy relaxation time in the theory of mole­
cular light scattering. The quantities just mentioned were determined in terms of time 
correlation functions of the quantities dependent on the particle positions (forces, mo­
ments of couples, etc.). In \28\ the procedure for determining relaxation time rq is 
extended to binary systems that allowed a discussion of experimental peculiarities of 
concentration behaviour of shear viscosity of hydrogen isotope mixtures.
Use of a mean relaxation time implies the assumption of exponential decay of the time 
correlation function. In  reality the function however has a more complicated structure 
of which specification requires consideration of the subsequent terms of series (101) with 
к  =j= 0. Vector к has a physical meaning of a description microscopic space nonunifor­
mity of the medium. A supposition is thus natural that for a liquid the term associated 
with к ~  ir113 is the next dominating term after the zeroth one. Solution of equation 
(100) with series (101) at к  =(= 0 implies that function Fn(t) becomes oscillating with 
the oscillation period close to the relaxation time \29\.
Mean relaxation times of linear and angular momentum may be readily calculated from 
the Langevin equation governing the Brownian molecular motion which for a point 
particle in the Markovian approximation is of the form

dp
dt ~ P  +  S(f)- m

(106)

Friction function I is determined in terms of the time integral of the correlation function 
of the force acting on a molecule. For calculation of the integral use will bo made of the 
relaxation time rq

OO

i f '
(()) . F(<)> dt =  4<*”>-

:u~> (107)
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Equation (106) contains a typical parameter which may be considered as a mean time 
of momentum relaxation

m ЪтО
Tp =  T  =  < E V /

(108)

I t  is peculiar that xp and xq are related by an inverse relation. The values estimated from 
(108) demonstrate that over the liquid-vapour coexistence curve in a condensed phase 
Tp ~  10-13 -  10-14 s.
Liquid shear viscosities may be calculated in terms of the relaxation times xq and rp. 
A strict expression of the shear viscosity on the basis of the Kubo formalism is [30]

V =  J y  f  (JTl2(0) n 12(t)) dt (109)
о

where is the microscopic stress tensor

n a„ =  -  r W  , Л  Ф'(\q’ -  q l\)
О —  (.V* -  q.*) (я?’ -  q?)-i t l m 2  іЦ  I q> -  q 

Use of approximation of the type (96) gives the following form of expression (109)

( 110)

0xv 2лх„ C d
0 --------b »v Іэгг

oo

S i { ri(i y j (p[r)dr ( 4 л г ° з = г ; )  ( i i i )

or V

V =  ~ * P  +  r<'• (‘"™ ~  Т) ( 112)

where /1 ^ is the high-frequency shear modulus.
I t  is widely recognized that the shear viscosity is proportional to the shear modulus 
(r] =  r/i). Ya. I. Frenkel interpreted the proportionality factor r as settled lifetime of a 
particle [31]. In fact, as far as the liquid in the moderate temperature range is concerned 
(say, at the coexistence curve), the first (kinetic) term in (112) is essentally smaller than 
the second one (potential) and Frenkel’s assumption is statistically verified. 
rq has the meaning of the settled lifetime of the particle. At higher temperatures or at 
higher pressures (at a distance from the coexistence curve) however the kinetic part 
becomes comparable with the potential part, then the former will become in excess of the 
latter. The relation between viscoelastisities is now more complicated.
Alongside with the above example, we may mention of calculation of self-diffusion co­
efficients. Although the assumption of the Markovian motion of a molecule used here 
may be adopted with certain restrictions, the orders of kinetic coefficients calculated are 
not only correct, but also give a correct temperature behaviour.
For determination of the relaxation time of angular momentum, besides equation (106) 
the theorem of angular momentum change should be written down. In a general case a 
set of two vectorial equations is obtained which involves tensors of friction factors at 
translational and orientational motions of the particle as well as tensors of cross-corre­
lations of these motions.
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The Langevin equations now become [32]

Ў  ■ I - 1 +  • I - 1) • p 0 -  ($qq • / - 1 +  S„ ■ I £ )  ■ h +  8(t),
(113)

• I q q  +  $ 9 9  • ^ 9 q ) ' P o  ~  ($ 9 4  ' * 4 9  +  $ 9 9  ' ^ 9 9 ) '  *0 +  - Щ 0  •

The pole 0 chosen here does not necessarily coincide with the centre of inertia of the 
molecule; {Iqq)aP =  тд^, I,pv =  / ,0) is the tensor of inertia moments of the particle over 
the pole, Iw =  are antisymmetric pseudotensors (the superscript T indicates a trans­
pose operation). Tensors of friction factors are determined in terms of correlation func­
tions of the forces and moments of forces similarly to (107).
With the assumption that quickly-oscillating random forces S(t) and M(t) satisfy the 
requirements of Markovian-Gaussian processes the correlation matrix may be obtained

=  (y T(t) y(t +  *))(1), y T =  {v0, to) (114)

(...)(D denotes averaging over equilibrium distribution of dynamic variables of all the 
particles in the system but the Brownian particle considered. Expression (114) may be 
written as

Щг) =  <9{exp (—gr)} • I 1,

S (115)

The matrix $ does determine a set of relaxation parameters.
It follows from the analysis of the matrix that the cross-correlation of translational and 
rotational variables is essential for a number of processes, especially those developing 
over time intervals of an order of relaxation times of momentum or angular momentum. 
In  [33] it is demonstrated that this cross-correlation is very essential for dielectric 
behaviour of a system of polar molecules.
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