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Introduction

Many reported works are concerned with the method of BBGKY correlation functions
(see, for example, original monographs [1, 2]) which consists in introduction of un-
conditional probabilities for arbitrary molecular groups within the whole configuration
space. Two junior functions, namely, unary and binary are of greatest importance. As
concerned with classical pairwise intermolecular interaction, the most important macro-
scopic properties of a medium may be expressed in terms of the two correlation functions.
Thus, the desired relation is generally found between thermodynamic and structure
properties of the material. In practice, however, search for correlation functions which
are the solutions of an infinite system of coupled integro-differential equations, involves
tremendous difficulties. The latter are overcome in the statistics of low density systems
(rarefied gas), but the theory of condensed media fails to do this.

Within the framework of the method of unconditional distribution correlation functions
the main problem seems to he unsolved: whether the Gibbsian statistical formalism
contains one and the same description for solid and liquid phases, naturally including
consideration of phase crystal-liquid, liquid-gas and crystal-gas transitions.

The above difficulties forced the workers to search for a new formalism in the corre-
lation functions theory which would be most suitable for description of condensed state.
The method of conditional distribution correlation functions has been developed as a
supplement to the BBGKY hierarchy.

The present review is the first attempt to give a systematic description of the method of
conditional distribution functions.
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1. Correlation Functions of Equilibrium State

The essence of the conditional distribution method is a description of individual states
of the whole system of particles rather than the states of individual molecular groups that
allows a set of successive approximations for description of condensed state.
We shall first consider a homogeneous one-component molecular system with central
(point) interaction. The statistical approach used implies that the whole volume V is
divided into N equal cells according to the particle number in the system. For conside-
ration of individual states of the system a set of double-index distribution functions Fs
is introduced which have a meaning of conditional probability densities of certain confi-
gurations of an arbitrary molecular group in a cell considered at a certain distribution
of other particles over the other cells [3].
The correlation function F~(gl...,qs) (@= 0,1,2,....k; k= 1,2,...,n; n<MN)
determines the density of probability of finding any a molecules at points q1, q s
within one of the cells at the condition that the other N —a molecules are distributed
so that more than k molecules cannot be found in any other cell.
So, for example, function Fntqd) refers to such states of the system when each of the
cells contains a single molecule. The function F2(q1, g2)means the density of probability
of finding any two molecules at qland q2 respectively, within the molecular volume vx
at the condition that the other N — 2 molecules are distributed so that more than two
molecules cannot be found in any other volume = V/N). The condition implies that
cells are either empty or contain one or two molecules. Alongside with the functions Fn
and F22 function FI12(ql) is also used. These are the junior functions most important for
investigation of condensed molecular systems.
Introduction of space cells in the conditional distribution method is a mathematical
instrument which allows a consistent consideration of statistical properties, being by no
means a physical limitation. In this respect the conditional distribution method is not
a modification of the so-called cell theory although it may be associated with the latter
as far as cells are concerned in both cases.
A model approach is known to neglect a priori a number of physical states although
realized by a system. The conditional distribution method means nothing of the kind,
since all the possibilities within the Gibbsian statistical formalism are described by the
theory (see Sec. 4).
In accordance with the above definition unary function Fu may be expressed in terms
of the configuration part of the Gibbsian distribution DN(qj, ..., gN) for the whole system
normalized to the configuration integral. In an explicit form this definition looks as
follows1)

Fniql) = Ni f dg2f dg3=mJ DNdgN, @)

Vvt Va VN

v2+ v2+ mm+ W= V—«, qlCv,;
Dn = exp Ux = Z p{\4i —4i\) ()

wliciv < in iir pairwise intermolecular potential, VN is the potential energy of the whole
w\illin 4 kT, where T is the absolute temperature, k is the Boltzmann constant.
I lie iiiu Mwa rITeetH us well us presence of external field are here neglected.

</, urn llin i<itn:Iknil iMol tinfinifo molecules.
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We shall also give an explicit expression for the binary distribution function F22(qd, q2)
(note that ql,g2a Vj). According to the definition

E2(qd.- ar) = N{N —i | |"ddi] dgt fAv dg*
+Jd g 3] dgd4ms |)NdgA +T1 j J dg3dg4mmj DNdgA

+ ) ) dg3dg4msD NdgN

dg3dqgij j dgbdgs mmf DvdgN+ €)
@ \ t3 3

1
+T

Each of the above integrals in the first square brackets of the right-hand side of equation
(3) accounts for such states of the system when only one of the N — 1 cells is empty,
whereas each of the others but v4cells contains one particle, respectively; the integrals
in the second square brackets account forthe states when already two cells, including,
contain two particles each, etc.

Equation (3) may be abbreviated as

22 (1¥-21:2)
F22{q],q2)=N\Aiz0 - © Avdg3mmdqN ()

*Hj Dp D =+ |;

The symbols (A and (N —2A—2) indicate the number of one-fold and two-fold inte-
grations over the cells. This implies that each of A+ 1 cells contains two particles while
other particles are distributed one per cell.

The first sum therefore contains CN§ 1terms; [N — 2/2] is the integral part. All the terms
in (4) refer to different physical states of the system.

Alongside with double-index correlation functions distribution functions of the form
Ff~rql g s+P)arealsointroduced. The latter determinesthe density of probability that
an arbitrary molecular volume vt but the considered vxcontaining p arbitrary particles
at q1, ..., gP, will contain s molecules at gP+1,  qv+s, and the distribution of other
particles is accounted for in the same way as by the function Fsk
FunctionsF”~q1q2,F*{g1 92,F~(qlq2qg3)or F*{ql,q2 g3 and F{(qy ..., ql) are
of practical significance in the theory. So, Ejjldetermines the density of probability of
finding any two molecules at q 1and g2being in two different cells v, and v2and of distri-
buting the other molecules so that any of the other N — 2 cells do not contain more than
one molecule. Then from the definition

Fn(ql,<f) =N |/ dq3f dg4 f DNdgN. ©)

Vi# Ve VN

10*
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The function F~fql,q2 g3 may he written as

[Ov-3/2) Il Trr(Ne-2A-3) T .
= i - Ds dql -qu, (6)
peo i)mmId 3 3

I Xj+p® P I; LLj,p, ml=223,...,k—1,k+ 1 , N.

The form (6) implies that one arbitrary molecule is in the cell vxat gland two particles
are in the cell vkat the g2and g3, respectively.
Functions and  aswell as F 2are of a binary type. But as distinct from F2(q1, q2)
which determines states of two particles in one molecular cell, they describe particle
distribution over two different cells. In the conditional distribution method F~*ql, q2)
is the simplest binary function.
Simultaneously with ternary function F[f or F§jf when three particles are distributed over
two cells, function Fffl is also used. It isnow implied that the coordinates q1, q2 q3for
three arbitrary particles belong to three different cells, respectively. The same refers to
the function Fffi. The difference between F ~ and Fffi is that in the former case presence
of only one particle in each cell is preconditioned whereas in the latter case such particle
distribution over the other but the three cells is implied when among these cells there
may be either empty ones or containing one or two molecules.
Besides the distribution functions which describe states of the cells containing one or
more particles, functions are used which describe such states when some of the cells
considered are empty. So, the functions Ffff determine the density of probability that a
group of s molecules will be at fixed points of an arbitrary molecular volume vt at the
condition that the first cell is empty and the other particles are distributed over the
other cells in the same way as determined by the function Fsk The function Fm which
will be used further affords an example of a function which describes such states of the
system when the first cell is empty and the other cells may not contain more than two
particles.
In a general case multi-index correlation functions account for various approximations
in the description of condensed media. Considering in the first main approximation (the
so-called &Rn-approximation) the distribution when each of the cells contains one molecule,
we introduce multi-particle distribution functions of the form Fjf~"(q1, q2 qn). The
symbol {n — 1} indicates that the group of n — 1 molecules is fixed at the points q1,
q2 . . gn~1which belong to n —1different cellsvlv2 v n landq" czv,,. The function
= F[f is a particular case of such functions.
All the above functions of conditional distributions will also be accompanied by twice
conditional functions. For exampiej the function Fjj’(g* [g2) will be considered alongside
with binary function F~fql, qi)(glcz vu ql cz Vi). The former determines molecule
distribution in the cell v{ at the condition that an arbitrary particle is fixed at the glin
vv The binary function F~ffgl, ') isrelated with Fu (q2) and Ff'figl\ql) by the probabi-
lity relation

F$(a\ ) = Fn(q") F$(a<[qd) ™)

which is actually a definition of the two-particle correlation function Fu(</i 1q -

The difference between the three-particle conditional function F~fql, <(\ gi) and the
function P2\qj 191, q') is that in the latter case two arbitrary molecules are fixed at the
coordinates gland g in the cells vyand v((o> cz V), respectively.

The junior and major correlation functions are related by integral relationships. Con-
trary to the unconditional distribution method (the BBGKY -hierarchy) these relation-
ships are more convenient, since determination of, say, the unary function requires in-
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tegration of the binary function over the molecular volume rather than over the volume
of the whole system

Fn(q)) = f f&Kql qf) <¥e ©)

Vi

Normalization of correlation functions of conditional distributions will be considered
later on.
The following F)2-approximation of the theory accounts for the states of the system
when an arbitrary molecular volume may contain one or two particles or the cell isempty.
A set of distribution functions for this approximation is considerably wider than in the
previous one. Among these are functions of unary (F12 F~, ...), binary (F2 F~, F/™\
Ffi, ...) etc. types.

2. Constitutive Integra-Differential Equations

The constitutive equationsfor correlation (partial) functions of conditional distributions
may be found with the aid of an obvious differential relation for the configuration part
of the Gibbsian distribution. Indeed, differentiation DK with respect the particle coordi-
nate over v, gives the equation

dON 1 BUA
1ur + 87 A 20-° ®)

The integro-differential equation for unary function Fn will be found from integration
of equation (9) with respectto g2, ... g,v,assuming that two or more molecules cannot be
simultaneously present in every individual cell. From definition (1)

T dq23 dg3.. "82Nggn= -9 € dg2- SRy dgn= o} OFLLtoD)

Vi Vi VN Vi VN

Integration of the second term in equation (9) yields

["«m - | § -/ >®" X~ g,1) D-

Vo VN Vi VN

We shall separately consider one integral of the above sum. From definition (5) we have

dgz XMW g g cP(\gt - <hy Av dgA
Ny cqi
b Vi VN
1
~ Nof q2) M M\ g2 dg*.

The whole sum is thus equal to

1 8191
i Bgl

F8a(lgl—q3
Fiiigl ¢%) dg2+ | CD(quAq F$(q\ g3 dg3+

Lo*rmg* )m g i>qi)dgj’
L+t j °q
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Integration of (9) finally results in

SFnjq) | » adlal- qil)
dql 0 itij
where qlczvlqi cz V —w
The constitutive equation for the function F~q1) is to be found from integration of
equation (9) with respect to variables q2 g3 gN, however, assuming that more than
two molecules cannot be contained in each of the cellsv2 v3 . . vN, with such scheme of
particle combination the cells considered may either be empty or contain one or two

particles. The derivation of the equation certainly becomes considerably more cumber-
some. The final form of the equation

8F1Xq’) ep(la! - qay
dgl dgl

F~igl qgi)dgi= 0 (10

Fit(ql,q2)dqg2

+

W A ff ~Ffi<q <P)F™qrgKgi)r =° (1)

where qla ;94,93 cz V—w
We shall also present the equation for binary correlation function

8F2q\q2 , 17(lgl- o),

egl bgF  ~22(9'9)
3 j|+i.[ dqr ) m q 1q2q3)
1 N
g 1T f maqalgi xfstal, ¢dqijj~rdg=* =0 (12

as well as the equation for multi-particle function

8HF « 1 s1mw q"N Fln-i) 80(\g*“ —qi\) L
' i dgi = 0. (13
dql g je, 8qn fU'|£n+1, 8qn AR dai (13)

The desired correlation functions thus satisfy an infinite system of coupled integro-
differential equations, and similarly to the BBGKY-method a general problem here
arises of completing this system. It will be seen from what follows that solution of this
problem in the conditional distribution method is based on specific possibilities afforded
by this method.

3. Method of Average Force Potentials

Practical usage of the chain of integro-differential equations requires preliminary trans-
formation of the chain with the aid of certain approximations to a system of completed
equations with respect to junior distribution functions. The BBGKY-method employs
various approximations which allow equations for an unary or binary distribution func-
tions to be completed [4—7]. The validity of each of the approximations is limited by a
certain range of thermodynamic parameters of the systemconsidered even within one
phase.



Statistical Method of Conditional Distributions 139

The method of conditional distributions has afforded a specific solution of the complete-
ness problem typical of this very method. Analysis of the used approximation which is
called the method of average force potentials revealed that this is applicable over a wide
range of thermodynamic parameters involving various states of aggregation of a mole-
cular system.

Following works [5—10] completing procedure will be considered for a condensed system
in the main J\,-approximatron of the theory.

Equations (10) and (13) defining the unary Fu(ql) and binary Fuiql q°) distribution
functions are to be reduced to the form containing potential of average forces. To this
end the first of the above equations will be divided by Fn (ql)and the second by F$ (g1, q )
to give

S IlnrutfH)+ i i ~ = 0, 14
&8 ) (14)
So(|qd
— In F[[4\ ql) (lngl
_ 1y aeullw) 1cz Vi, g‘czv{ qicz 15
&iNi 4 x qlezMg*czvig 15
where
fyiiigy) T (W\ax- A co i 199 dai (w)
dgl | 41 (qi 193 dai,
: I Nd(ol- gi
AnM11g;) (n gIDF{l\qi 9L ql) dai. an
tql J sgl

In view of the definition of the twice conditional functions given in Sec. 1, <pij(qv) may be
considered as a potential of the average force exserted by a particle distributed within
the cell \f on a particle fixed at point gl of the cell r,. The quantity r/A\0g | 4r) has a
similar meaning, but at an additional condition that at g* of the third cell a particle is
fixed. It is obvious that the introduced potentials are not uniquely defined by equations
(16) and (17).

Formal solutions of equations (14) and (15) are

-*W) = Orlexp j- i Z ~NigaD!, (18)

F&iql g¥) = C2ql)exp s p\ax- <l +1+Z1 <FM 1<1) . (19)

Expressions (18) and (19) do not uniquely define potentials < besides they contain nor-
malization multipliers Qi and C2(g) that will further allow re-normalization potentials
Pto an arbitrary summand without thinking of possible violation of distribution function
normalization.

Use of relation (8) between junior and major distribution functions gives the first equa-
tion of new hierarchy that is advantageous over the initial system (10, 13). In the latter
the distribution functions which sharply change at small interparticle distances are
multiplied by also sharply changing derivatives of interparticle interaction potentials.
"This results in high sensitivity of integral terms involving such products to small vari-
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ations of the distribution functions. As distinct from (10), (13) the completing factors are
considered in a new hierarchy but rather represented by one integral term, namely, the
average force potential.

The above mentioned property of new hierarchy allows an effective solution of the
completing problem. At condensed state the average force on a molecule at q‘ cr v(by a
particle distributed within the cell \j may be supposed to weakly depend on the fact
whether within a certain third cell a particle is fixed or distributed over the cell volume.
Therefore, the approximation seems quite reasonable

yiM 11q1) -vaWw) 2°)

which allows the system to be completed already by the first equation.
Making use of approximation (20) in equation (19) and of the symmetry of F~ (g1 q¥
with respect to particle transposition, we can write now (19) in the form

Filiqd) = Griexp | ®(ql r1)+ 2. [*PuigD) + Vaiq)] @

Use of the relation (8) between the unary and binary correlation functions, reduction of
the same terms in the right-hand and lefthand sides of the equality and suitable re-
definition of the potentials yield the completed integral equation

[ (<4

Equation (22) definesuniquely potentials u {q1)2. The above nonuniqueness is completely
transferred to the normalization constant Qxand Q,.

The above completing procedure is attractive in view of the possibility to extend it to
the major equations of the hierarchy. It is convenient to use 3u-fold configurational space
of n-particle system for this purpose.

On the base of equation (13) constitutive equation for the n-particle function in such a
space can be written in the form

din 1 8 S
ad..F + &ig-.4- (g* 9

23
0 dg InH=1 I=1 @)

where = <PV TUIDXT e >UL N, mmeUl) is the potential of the average
force on the particle fixed at gli g vt by the particle distributed within the cell v[nil
at the condition that in other n —1 cells particles are fixed at qli, qlr, ..., qI-1

n
gh>..., glhand 8j8ql*..In= 2 8/8qli.

j=i
2) Expressions (22) are virtually a system of equations defining the average force potentials for
different relative locations of the first and the i-th cells.
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The solution of equation (23) is of the form

n N n ”
M+ 2_, 24TN" (24)
Use of the relation between the junior and major functions gives the chain of integral
equations with respect to average force potentials

1
F[x~r* =<39»exp \—B i

N /o m 4 N+ dglnt
X 1IMHH i ’
o] p " 2, Gt 4B Vi q
ek (25)
FWe .., ) I %, Intlm

System (25) may be completed by any of the equations if use is made of the approxi-
mation [11]

gin) = (it lgh,qh-i, ghii, (26)

Upon substitution of (26) into (25), re-normalization of the average force potentials and
some additional manipulations the equation completed with respect to dn~ may be
expressed as

jdqgind
=1 [d2=1 b

"N N @7
“PY-w Py KM T”ﬁz_%ar+ir,,+.J dgI"1

! , J1
B ~ J

NB2 4% ['ll 4) ool t,,-I >l W

The n-particle distribution function is expressed in terms of the average force potentials
defined by equation (27) in accordance with (22).
4. Calculation of Configuration Integral and Free Energy

The configuration integral of a system is defined as
Q\ J Hif (h<"J expj- dgN. (28)

In view of division of volume V of the system into molecular cells in the conditional
distribution method, expression (28) may be represented as

Qn dh 1dg2  expi—Ei da
N N ) EN ) )}
E o EMo EF

=

=i g -z j dihf d<h- f exp {- LI dgN. (29)
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Among all NNintegrals of the above, both integrals which are only associated with one-
fold integration over each of the cells and integrals involving two-, three- etc. up to
W-fold integrations over volumes of one and more molecular cells will be encountered.
Let j be multiplicity of integration over the volume of a certain cell (this implies account
for the states when the cell considered contains j particles), n, is the number of cells of
the given state containing j particles. Then the number of integrals in (29) covering the
states at which there is at least one cell containing s particles and there is no cell con-
taining more than s particles is defined by the expression

N\
I, =W 2 o e (30)
1,09

where’\lindicates summation over various sets of nmeatisfying the conditions” jrij sg N
3=2
and ns 4—0 £ jrij is the number of empty cells and cells containing more than one par-

=2
tide or the number of particles which are more than one in a cell, £ (j — 1D n is the

number of empty cells. When s = 1the number of integrals representlng the state when
each of the cells contains one particle is N1. Ifs = N isassumed, thennN = landn, = 0
as j #=N, then IN= N. The latter case refers to the state when all N particles are con-
tained by one of the cells.

Bearing in mind that function exp {—Z7/0) is symmetrical with respect to particle
transposition, we shall write out in an explicit form all the terms of expression (29)
associated withs = lands = N

On=N\J dgjj dg2mm) exp]j— dgN 4- -
V2 vn
+ NJ dg,J] dg2—1] expj— dgN. (31)

It is the first summand here which corresponds to 1dxapproximation of the theory.
Bearing in mind definition (1) of the function F ~ g 1), we may write for this approximation

Bl e .
v() = / Fu(q') dgl (32
B

It should be pointed out that contrary to the BBGKY-metbod in which integration is
extended to the whole volume of the system, in the conditional distribution method the
configuration integral is calculated by integration F n within one cell.

The subsequent T~-approximation together with the terms associated with s = 1 also
accounts for two-particle filling of the cells (s = 2). Again the configuration integral may
be found from integration of the junior functions of conditional distributions over the
molecular volume [3]

Q™= Fo Fuigl) dq1 Iff F2Xqr, q2), dq1dg2 33)

/

The subsequent approximations include terms with progressively increasing values of s.
However for description of systems with high densities consideration of the first Fn-and



Statistical Method of Conditional Distributions 143

-A-approximations is sufficient. In this section calculation of the configuration integral
and free energy in the main Fu-approximation will be considered.

Direct usage of expression (18) in (32) is difficult because the form of the normalization
constant Qj(y, 0) suitable for (32) cannot be in principle found from solution of a chain
of equations. This difficulty may be overcome by using additional relations involving
Qn- Such possibility is afforded by the Gibbs-Helmholz equation for the potential contri-
bution to integral energy

d(ln Qn) (34)

E=02 o7,

Respectively, with the aid of binary function F ~ g 1 q') normalized to unity (these
functions and the normalization constans associated with them are indicated by a tilde;
the other functions are assumed normalized to Qn) the potential contribution to the inter-
nal energy may be written as

(gl —qDF~(al.q’) dg’. (35)
The normalization constant for the unary distribution function follows from (18) as

QiQnw . (30)

A normalization factor of a binary function may be found from the iteration equation

(22) multiplying the right-hand and left-hand sides by exp 1——£ V|||q1)} &nd inte-
grating it with respect to q1 N j+bl J

Q2—omit —lkp 9 (37)

where

Qu= I"exP|- \ 2> u(9)|dqi. (38)

Expression (35) may be transformed to (34) by differentiating expression (22) with (38)

with respect to 0 followed by mualtiplication of the result by Q, lexp j- —£ fjjlql)}
and integration with respect to gq1which results in

8In Q

80 f d~Wo6 )m Fn(qr)dgl= ~ J dqif 0(\q" - o®) F$(qg\ qi) dg’

Vi Vi Vi

f 0 jfrw , ¥ dgj dg*, (39

With account for the relation

8NQ Cy ddl
80 = jfkdﬂg Fn (k) dak (40)
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equation (39) will be reduced to

where 77ti/02is determined by the first summand in the righthand side of (39). Summa-
tion of (41) over i 3=1 with (35) yields the equation of the form (34)

N N 8 (~ N ~ - 1"2} )

Comparison of (42) and (34) gives the configuration integral of the system to within a
certain volume function

N /2

2= QW T (QuiQi) /1- 43)

To find f(v), we consider behaviour of QN{)) at high temperatures (<9"> 1) and fixed
volume. Under these conditions Qt ~ Qu ~ v accordingto (36) and (38), then from (43)
QA>~ VN(v). On the other hand, under the same conditions equation (32) implies that
21 = NV1va, therefore f —N\.
The quantity

F(v,0) = -6>In Q (44)
where

1/2

Q=Q N (Qniqi) (45)

may be conveniently used as free energy.
The pressure is then defined by

= —(8FI8v)e. (46)

The pressure calculated from (46) is consistent in the thermodynamic sense with caloric
state equation (35) as far as the Gibbs-Helmholtz equation is used for determination of
the normalization constant. In [12] it is demonstrated that the thermal equation of state
defined in terms of the binary function

j"dgqld (P'dgl—q‘) [gl—q\F~(q\ g dg” 7

Vi V-Vi L]

is equivalent to equation (46).

Thus, from approximation (20) used in the method of conditional distributions thermo-
dynamic consistency of the thermal and caloric equations of state naturally follows. All
the approximations used in the unconditional distribution method have not provided as
yet this consistency [15].

5. Thermodynamics of Molecular Condensed Systems and Phase Transitions
The structure of equation (22) allows the solution to be obtained on an electronic com-

puter using the iteration procedure. To this end, in the right-hand side of the equation a
certain trial function should be substituted for potentials <pij(@® then upon integration
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potential cpiisl) at the first approximation is to be obtained. Further, using the first
approximation in the right-hand side of (22) gives the second approximation, and the
iteration procedure is continued until two subsequent approximations appear sufficiently
close to each other.

Particular calculations are made on the computer Minsk-22M for systems with the inter-
action governed by the Lennard-Jones potential. In [14] it was found that the maxi-
mum configuration integral at thermodynamic parameters associated with crystal state
of material is realized when particles are located at points of a face-centered lattice. This
determined the dominant form of the molecular crystal structure. Although the method
of cell division seems to be of no essential importance, but for the sake of calculation
it appeared to be convenient to have molecular cell centers at the points of a face-cen-
tered lattice also at the region of liquid and gaseous states. Within calculations use was
made of some additional approximations to reduce the integral multiplicity, that is
described in more details in [A 15].

Equation (22) was solved with account for particle correlations with its twelve nearest
neighbours. Convergence of the iteration procedure was determined from relative root-
mean-square deviation offunctions ipu  -exp {—<Pul&] of two successive approximations
calculated at various points of volume ig. The calculations were ceased when |,, = [JFfy'i?
—Vu”VISbpii)¥2 (the sum is taken over all the points within iq which were used
in numerical integration; n and n — 1 are approximation number) reach the values of
10-4. Convergence of the iteration procedure was tested for various kinds of trail func-
tions [15]. Either the molecular potential or the average force potential at similar ther-
modynamic. conditions was taken as trail functions.

Figures 1 and 2 furnish the Helmholtz energy isotherms calculated from (44).

Figure 1refers to small molecular volumes and covers crystal-gas (curves 1, 2 below the
triple point) and crystal-liquid (curves 3—5) phase transitions. The behaviour of the
curves at the vicinity of the triple point isinherent. Whereas a liquid peak in curve 1 may
be hardly seen, in curve 2 this is clearly marked. However at the temperature 0 = 0.783)
the peak is still below the common tangent to the crystalline peak and the rarefied gas
curve. Thisindicates that 0 = 0.78 is somewhat lower than the triple point temperature.
But already at 0 = 0.80 the rising liquid peak “divides” the tangent into two sections
associated with phase transitions crystal-liquid (section a —b) and liquid-gas (section
¢ —d; point d is outside the plot, see also Fig. 2). Here points a show the subliming
points (curves 1, 2) and melting points (curves 3—5), b are crystallization points, c are
evaporation points and d are sublimation (curves 1, 2) and condensation (curves 3—5)
points. The sections of the Helmholtz energy isotherm to the left of a between band c and
to the right of d determine the steady state regions (of crystal, liquid and gas, respec-
tively).

Extrapolation of crystallization lines (locus of b) and evaporation (locus of ¢) show that
they intersect each other at 0 = 0.79 which is the triple point temperature (experimen-
tal 0 = 0.7). A straight-line can be drawn tangential to isotherm 0 = 0.79 at three
points which determine molecular volumes of the respective phases (crystal, liquid and
gas). They are found to be 1.05; 1.50; Gb (experimental values are 1.035; 1.185; >200).
As was expected, the differences between measured and calculated values become appre-
ciable for a rarefied gaseous phase. Here the Fu-approxmiation cannot pretend to the
main contribution to the material description.

Figure 2 is an illustration of the behaviour of the Helmholtz energy at large volumes and
temperatures below the triple point (curve 1) between triple and critical points (curve 2)
and above the critical point (curve 3). In curve 1a crystalline peak is only shown, and d
lies outside the plot (vd > 65). Peaks of the crystalline phase are omitted from curves 2

3 Temperatures and volumes are throughout measured in units of ejk and a3
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and 3. In curve 2 tangent ¢ —d is drawn which indicates the liquid-gas phase transition;
such atangent cannot“be drawn in curve 3, therefore the appropriate isotherms (0 = 1.6)
lie above the critical point. A more detailed investigation has revealed that the critical
point temperature is approximately 1.25, and molecular volume is about 4.0 (for argon
the experimental values are 1.26 and 3.16, respectively).

Phase diagrams of a simple system in terms of variables (0,v) and (p, 0) plotted in
accordance with the developed statistical theory are presented in Figure 3. Figure 4
demonstrates agreements between calculated and experimental melting b'nes for argon.
Information on the behaviour of a unary distribution function within the molecular
volume seems useful for identification of phase transitions (Fig. 5). Atthe thermodynamic
conditions corresponding to Helmholtz energy values to the left of a the unary function
has a marked maximum at the cell centre (curves 1, 2). Already at a distance of about
0.3 of the linear cell dimension from the centre the value of the function is by five orders
smaller than its maximum value, that allows usto identify the material state as a crystal.
Convergence of iteration procedure in this case is fair and the solution is obtained after
6 to 10 cycles.

Upon an inconsiderable change of the volume to the right of a the behaviour of the unary
function changes sharply. The probability density of finding a particle at the cell bound-

Fig. 1. Holmholtz energé isotherms at small values of molecular volume.
1,0 = 0.75;2, ©=0.78; 3, ©= 0.80; 4, 0 = 0.85;5 0 = 1.0
9, points calculated on a computer.
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Fig. 2. Helmholtz energy isotherms at mean values of molecular volume.
1,9=07; 2,87=1.0; 3,8 = 15.

L 1o 5

Fig. 3. Phase diagrams of a simple molecular system in /"n-uppvoximation. » . .
(@) in 0 —v variables; (b) inp —®©variables, 5, o experimental triple and critical points, respectively
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Jfig. 5. Unar% distribution function 0, 0). Axis x is chosen in the direction of one of the nearest ueighhours.
0=0851»=0096 k<= 10; 2,a=1,02 )i =10; 3,v= 110,4=1; 4,8B8= 160,44 =1
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ary appears to be higher than at the centre (curve 3) that indicates a sharp increase of
fluctuations which causes heterogeneous state of the system. Sharp deterioration of
iteration convergence is some kind of “a response” to transition of the system into the
heterogeneous state. The iteration equation is only solved upon 30 or 40 cycles.

At the liquid state convergence of the iteration procedure is improved and the unary
function has maximum at the cell centre, but its values at the boundary of the molecular
volume are also of importance (curve 4). As the volume further increases, particle dis-
tribution tends to equiprobable one over the cells.

Existence of a crystalline phase may be inferred not only from the analysis of the unary
function behaviour within the molecular volume chosen. The conditional distribution
method allows demonstration in an explicit form of existence of a long-range order in
crystals. Indeed, one-particle distribution function for the whole volume of the system
follows in a straightforward manner from the obtained unary conditional function
determined in every molecular cell. In a crystalline phase the unary function has sharp
maxima at the lattice points. It may be clearly seen that the particles are localized at the
lattice points. This also may be inferred from a binary function determined in any of the
radial directions.

The situation is different upon transition into liquid or gaseous state. In this case unary
and binary functions only reveal existance of a short-range order.

In [16] radial function g(r) is calculated by integration of expression (21) from orientation
of vector g —qlat the condition that one particle is fixed at the centre of the first cell
(ql= g,1). It may be supposed that averaging with respect to particle locations in the
first cell in the liquid region may not essentially change the result. The calculations com-
pared with different methods are presented in Fig. 6.

Fig. 6. Radial distribution function at 0 = 1.057 and v = 1.528
1, theoretical at jFu-approximation; 2, calculated by the Monte Carlo method [34]; I, experimental [35].

On the basis of approximation (20) the binary function may be written in terms of unary
liinotions as

A'ul q) = CFu(4) Fuigt) exp j- ~ [®G< - q'1) - qu(gl)- bl 2 )]} @8

Two integral terms in (48) make an essential difference between the binary conditional
Iinotion approximation and the approximation of a binary function in terms of unary
ones widely used in the unconditional distribution method.

Il Zoltsehrift ,,Fortschritte der Physik*, Heft 3
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6. Method of Average Force Potentials at the Second Approximation of the Theory

The main Fn-approximation fairly describes molecular systems at high densities. So, a
melting line of a crystal obtained at this approximation differs from experimental data
only by several per cents. Simultaneously the error in the crystallization line increases.
This indicates that already at the liquid state region more precise definition of the theory
requires consideration of the subsequent -F12approximation which accounts for stronger
fluctuations of particle density (the second approximation describes the states when a
molecular cell may contain also two molecules).

The Fl2-approximation is of special importance in description of material, particularly,
at a state approaching to a critical one when many of the delicate peculiarities of its
behaviour are due to large density fluctuations which are not included by the Fu-
approximation.

In this Section we shall briefly discuss the possibility of breaking the equation chain by
the second approximation of the theory and the main difficulties involved.

As it was pointed out above, the FI2-approximation involves a wider set of distribution
functions which account for various levels of filling molecular cells. The configuration
integral in this case is defined by expression (33) or with account for certain symmetry
properties by a simpler expression [17]

MW= f FIXgqdql+ Jf F2(q\ g2 dgldg2 (49)

.

A system of constitutive integro-differential equations begins with equations (11) and
(12) for unary F~iql and binary F2Xql, q2) distribution functions determined in one
cell. Three new functions (binary F$, ternary jF} = F~ and four-particle FJf)
determined already in two cells enter into the two equations. Here the functions are
coupled not only according to the number of particles, but also according to the number
of cells in which the functions are determined, therefore the system of equations be-
comes a branched one. Schematically it may be presented as

Each function of the u-th row of the scheme determined in n molecular cells is coupled
via integral terms with two functions of the subsequent row determined in n -j- 1 cells.
The scheme accounts for symmetricity of the functions with respect to transposition of
indices (e.g. F[\9 = F[f'= F»1).

A scheme analogous to (50) may also be composed for the functions of which indices in-
volve zeroes indicating that one or several of the cells considered is empty. Functions
with different number of zeroes among indices are not coupled, and for functions witli the
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same number of zeroes a coupling scheme is similar to (50), e.g.

Of this system we need the equation which determines function

1 * frdo(i2j)

0», 2j
& il i]]J_ y )
+ 21, Of, 2j, 3/)] dg*idq3 = 0. (52

Here ®(1, 2j) = ®({gl —q4]), and (1, CF 2j, 3j) determines the probability density
of finding one of the molecules of the system in the first cell at q1, that the i-th cell is
empty and the two other molecules are in the j-th cell at points g2>and gq3. In this
Section a figure throughout indicates a particle number, a letter shows a number of the
cell containing the particle. For particles within vxthe number of the volume is not indi-
cated.

To break the system equations (50) transition to the average force potentials is necessary.
To this end in accordance with the probability multiplication theorem we introduce
twice conditional functions [17]

21 O) = FOOH) =1 10,
Fg(l, 2f) = F1XI) F<i(2f | 1),
(33)
F[f>(1, 2f, 3f, 4j, 5j) = Ff»(1, 2f, 3f) F<f>(4, 5 \ 1, 2f, 3f).

A potential of the average force is further introduced on a particle at g1 cz vr from one
or two particles in the cell

= ff ™ @f 11)] + | 3f)] dg* dg3i. (54)

Besides, potentials of the average forces are also introduced on a particle at qlcz vx
from the particles in *»at additional conditions that in a third cell one or two particle is
fixed, or the third cell is quite empty. To complete the system of equations, similarly to
the Fn-approximation, the above potentials of average forces are assumed equal

mil) = mill2?) = mill2j, 3j) = qu(l 10j). (55)

However the equations together with the mentioned potentials which are main terms
also involve potential du (l) of the average force on a particle at point qlcz v} by
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another particle distributed over the same cell and potential {1((1 | 2i) of the average
force on the particle at q1cz vlifrom the particle distributed within cell vland at the
condition that one particle is fixed at the same cell.

The completed system of equations includes two arbitrary constants. In this case one
Gibbs-Helmholtz equation is insufficient for complete determination of the constants.
The condition of free energy minimum is additionally used.

7. Multicomponent Systems

The statistical method of conditional distributions described above may also be exten-
ded to multicomponent mixtures [3, 18—20] If we bear in mind the completing proce-
dure for initial equations with the aid of average force potentials and calculation of confi-
guration integral, this extension is far from being trivial and involves additional prin-
ciple difficulties, that will be demonstrated on an example of a binary mixture.

Let the number of particles be n = na -j- nbwhere naand nbare the numbers of particles
of the a and b species, respectively. The whole volume V is divided into n equal cells.
A set of distribution functions Fskis introduced for description of individual states of
the system written almost in the same way as for a single-component system (the
molecular species will be indicated by appropriate index at the coordinate). Tor example,
binary function F2Xqal, gk means probability density of finding two arbitrary molecules
of a and b species within the cell vlat qland g2 respectively, and of finding not more
than two molecules of any species in other cells. Binary function F~(qgal qj) implies
that two arbitrary molecules are in different cells vliand vb and each of the other cells
may not contain more than one particle. In the same jFu-approximation ternary corre-
lation functions are used Auu(<//,qj, qj) (@ czvuqj czvi}qj cz vf, = a,h).
Integro-differential equations for the introduced correlation (particle) functions are
obtained by a more complicated procedure, but, in principle, in the same way as for a
single-component case, proceeding from the configuration part of the Gibbsian distri-
bution for the whole system.

For unary and binary functions Fn and F$ the equations are of the form

F$(q/,q9,2dg* = 0, (56)

N, is the mole fraction, of the v component (Nt = nvn)

(57)

The constitutive equations for functions F122and F2 will now be presented

(58)
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N 2(gp,gZ , 15®(a/- g2)m , 1 v om V Tep(Il4/-“%31) pm X
- +0---7"2+ 81 N 41 24-

() (h1*jda*j = 0_ (59)
r),£=a,b =H o4in

For derivation of the constitutive equations it is convenient to introduce first the
correlation functions for certain (fixed) particles and then to find the governing equations
for them. The initial equation for the unary function will be

do(\gqs - <-/,l!)F As 4iv) daf =
H d Ry i u(@™> 4y dagf = 0-  (60)
v

The unary and binary functions are related by the integral relation which follows from
the definition

Fn(qvy)= / Z K - <v) Incyib 4i) dgfm 01)

Practical use of equations (60) is difficult because they contain particle numbers naand
nbas factors. It is therefore more convenient to pass over to correlation functions depen-
dent on the coordinates of arbitrary particles

Fn(g/) = V'n(9i")> )

Fll(q/n qS) =bln,- <v)~u(Qib QC)-

If the latter equalities are divided by mdra — 1)! and n~nv—<8\])(» — 2)!, respective-
ly, and the thermodynamic limit is passed over to when na, w, =00, F -> oobutv = VjN
and NM—njn remain constant, then after the substitution into equation (60) we get
equation (56) with isolated partially concentration dependence.

Extension of the completing procedure for an infinite chain of equations with the aid of
average force potentials to a binary mixture requires transition to twice conditional
correlation functions

Fii (a/, 0, = Fu(q.) F*(a.i \q,1), (63)
F$49Z q\qj) = F$(a/, aj) F$'(aj \a,. 1 a.}). (64)
These are the functions in terms of which the average force potentials are determined

= *_ -~ ii
W Sf V:Za,b N I'Iq,ﬂLLT Fii{q41q9z 4 Z m
fidgriial -z MYAM A" prqjig, aj) daj. (66)
u J v=ab vap

llore (puigp) is the average force potential on a molecule of the /k species located at g1
of cell vl from a molecule of any species in cell vt. Potential <pu{gp | qj) has the same
meaning but at the additional condition of finding a particle of the v species at ¢> cz vf.
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Using notations (65) and (66) we write down formal solutions of equations (56), (57)

Fu(q/) = Cpexpj- " jt (<)} (67)

Iq/) = CM/) exp |- ' o) + 2 <Paiellql) | (68)

Integration constants will be designated by symbol with a bar when they depend on
thermodynamic variables alone.

As in the case of a condensed one-component system, it is assumed that fixed particle in
the first cell v1slightly changes the averaged effect of the particle in the j-th cell on the
particle at g “in cell vt. Moreover, this effect is assumed to be independent of the particle
species fixed in the first cell. In view of the above, approximation of the average force
potentials becomes

<puNe 1q/) = <puNo)- (69)

The relation between CJ and the coordinate is found from the symmetry property of the
binary function

Fn(q/) F$?(aj 1q/) = Fn{g*) F$(q/ 1g.)m (L
Substitution of (67), (68) and (69) into (70) followed by separation of variables gives
CAq/) =  exp \\<Pu(q/): (71)
0

where is the separation ofvariables constant depending both on mutual location of the
first and the i-th cells and on molecular species contained by the cells.
Relations (67)—(69) and (71) allow the form

N/q Naqi) = exp ! - " o3gq/ - qj\) +Z (<Pu@/) + @NIL (72)

cl c,Jl-

Then use will be made of the relation for passing from major functions over to junior ones

Fu(q/) :V:Za.bN,j F${q/> qJ) dgA (73)

Substistution of (67) and (72) into (73) results in acompleted system of integral equations
with respect to average force potentials
F o1 r L
exPj—a <PUG, .| ZN VR exp Wq/ ‘h+ z |(ql) dav
S (74)

Equations (74) include greater number of coefficients G compared to appropriate equa-
tions for a one-component medium. Their calculation involves considerable difficulties
peculiar of multicomponent mixtures. From the condition of correlation weakening
coefficients C/vmay be expressed as [20]

CL, = au/Q™Q, (75)
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2 / (70)

The expression for Qvis similar; au is a factor dependent on locations of cells iq and v;:
alone. Since the configuration integral of the system Qnat the Fu-approximation will be

@ =/ Fti(@,S)dqi @7

»l
then it follows from (07) and (77) that

CrQ”IQ,, CQ = GQt. (78)
With account for (75) and (78) system (74) becomes

' : i da.
eﬂ-h —erern | Gq' p Otah-aJth) +2<Pula) €4

(79)

where

Qn=f expj

The right-hand sides of each of the above equations include one and the same quantity
aulQn X The average force potentials may therefore be renormalized so that (79) would
not contain unknown coefficients. Passing over to potentials qu + tu —qu, we get the
set of equations

P 1- qsl)+ng)iqu9) daf

. _/'n .c expb ”
exPJ AM— (80)
f V—%,bZ\I;eq b APiafda)
Uncertainty of constant au related with au by
(81)

where .
w=i P2 )

is transfered to the constant in expression (67) for the unary function which is determined
from the normalization condition.

System (80) may be solved on a computer using the iteration procedure. The values of
the average force potentials allow the configuration integral and free energy of the mix-
ture to be found.

8. Correlation Functions of Mixed Type
There is a wide class of physical systems whose statistical description may be effective if

correlation distribution functions of mixed type are used. A binary mixture with con-
stituent molecules with sharply different masses and interaction (e.g. helium solutions)
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affords an example of such systems. The lighter component forms a “rarefied” sub-
system, the heavier component should be considered as a condensed molecular medium
(interstitial solutions). For such systems it is convenient to describe particle configu-
rations of the “rarefied” subsystem using unconditional probabilities but the condensed
system may be conveniently described with the aid of conditional distribution functions.
The whole system is actually described by correlation functions of a mixed type [21].
Coordinates of the light particles will be designated through rt,r2 ..., rnmqu g2 ... gN
are used to denote coordinates of the heavy particles. The Gibbsian distribution function
DN, then depends on n -(- N variables and equations for DNHY(rlt mq,,..., g
become

oPyss . ) ( n -
doi ~ & \qild 24>{q' G) + g, ®(b.rh) Avin= 0, @)
fiPyn | (8T N

8rt + B | 5 <)+ £ (r',,,0).1

where @ are pairwise interaction potentials of respective particle species, n  N.

The whole volume V of the system will again be divided into N equal cells of volume
v = V]jN and distribution functions F *wpa, ..., rm gl ..., qs) will be introduced which
determine the probability density of finding m arbitrary light particles at r1r2 ...,
r'“cz V and of finding s arbitrary heavy particles in a selected molecular cell vx at
qlL g2 ..., qsczvt at the condition that each of the other molecular cells v((i 4= 1) may
not contain more than k heavy particles and n —m light particles are distributed in an
arbitrary way over volume V.

For example, according to this definition

Py'H’l'O

nIN\
f'ﬂm_(n m)” drml ) dvn f dg2mm] DNndgA (83

Integration of (82) gives constitutive integro-differential equations for correlation func-
tions of a mixed type. These are for the two junior functions Fjjj and FH)

milig) 1 F&)(q\r)drl+ 1] Fftligl q2dg2= 0,
gl +0J <
vV V-v, (84)

Mui)yl ¢~ p(r\ .
dr)l(y) Aoj (dr? Fw)(r\»)dr2+ = f "ot/ M X, Yhdgl= 0

The superscripts at F~ I indicate tlia-t two heavy particles are in different cells (g1 cz tq,
g2cz v2).

The presented completing procedure for an infinite system of equations for correlation
functions of conditional distributions may also be extended to equations (84). In this
case it may be reasonably assumed that light particles have a slight effect on the distri-
bution of heavy particles and, vice versa, distribution of the light particles is primarily
determined by their correlation with solvent molecules rather than by their mutual
correlation. Therefore the relation may be used

Fa>(\r2q9g) = F$,(ri, ) F<&(r2 qJ),
9199 = F,(.(r)Fgl*qlq2), (85)
glczvl, q2cz v2.
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With F3U  PR\} a completed system of equations for unary and binary functions
Faliql), FiwiVl), Fw)(r\ r2), g2, F ~ r 1 q2) will be obtained.

9. Kinetic Functions. Constitutive Equations

In [22, 23] the conditional distribution method was developed for nonequilibrium pro-
cesses in systems with central and noncentral intermolecular interactions. Kinetic
functions of conditional distributions wdl be considered in this succession.

Let a one-component homogeneous system consist of N particles. As in the equilibrium
case the whole volume Vis divided into N cells. Kinetic function FX{gq™.p1 . . gs,ps,t)
then determines the probability density that at moment t dynamic states of an arbitrary
group of s molecules are associated with the values q1,p1 g2, p2 . . gs,ps coordinates
and momenta in infinitesimal phase volumes clqg1dpl . . dgsdps, the points of the con-
figuration space being in one of the cells v, the other N —s molecules being distributed
so that any other cell may not contain more than K particles.

The constitutive equations for kinetic particle functions are found from the Liouville
equation with respect to the distribution function of dynamic states of the whole system
D(t, gxPi,..., gN,pN). We shall present here equations for junior functions.

According to the definition the unary kinetic function is

Fu(g\PLt)=N\ f dg2f dg3-—f dgNf D dp2mmdpN (86)
v2 v3 vn Q

where Qp is the momenta space.
A simplest binary function is determined as

FQiqgLPLg- P2t)=N1f dg3f dgAee/ dgNf D dp3 dpN,
v3 vt vn Qp
87)
glczvl, g2c=V2.

If the Liouville equation is now integrated over the variables q2 p2 s qx, Px so that
each cell of the volume V cannot simultaneously contain two or more particles, then with
the definition of the unary and binary functions we finally obtain

8Fu(g\p\t) 1d_dFn = I I'm\gx- g2)_clFftigLp\ q2p2t)
dt m dgl J dql dpl
-V

r

3 (88)
. Op
For function F1XgfL, p 1, t) the equation becomes

N2 pl 8Fn _ T T80\ - gq2) _dF™(g\plLg2p2t)

¢ 'm dgl J J dg1 dpl
LV q p

The additional distribution function is here introduced F*q1p1q2P21t) = F~(q\
pLg2p2t)+ f f RljgfLpL g2p2 q3 p3 t) dg3dp3whicli determines the probability

density of find\ioncgg;p the molecule in the selected cell vxat point < wil li momentum />, of
finding the second molecule in another cell \j at q2with momentum p2at the condition
that in the same j-th cell there is one molecule more, and the other N — "3 molecules are
distributed over the other N — 2 cells so that each cell may not contain more than two
molecules.
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The method of obtaining integro-differential equations for kinetic functions has been
extended to multi-component systems with point (central) interaction [23].

A system of nonspherical molecules with noncentral interaction will now be considered
[24]. In view of a molecular system of rigid dipoles, translational and rotational degrees
of freedom will only be considered. A state of an individual molecule is described in
terms of a vector-radius of its inertia centre g, the momentum p conjugated with it,
variables determining orientation of molecule ap (a set of angular coordinates is for
convenience denoted through a) and intrinsic angular momentum I. Then unary func-
tion Fn will depend on the variables g, p, a, | and t. Binary function F]\" depends now
on the variables qLplal 1, g2p2a2l2t.

The initial Liouville equation for the system considered is of the form

SO *pk 8D Ada 8 X/ 8 , 8D\ __ "
IF  +g4, ij, + AHIoST,  (F«' Fii%+ "« O

where Fij and MK are the force and the moment of couple of intermolecular interaction
on molecule number k from the j-th molecule. If unit vector e is introduced which is
rigidly joined with the linear molecule and thus characterizes the molecule orientation,
then the moment of couple may be expressed in terms of a pairwise potential as

Mki = ek X 8P4
8e,

For a system with noncentral interaction the relation holds

Mki ‘b Mjk + t X Fj = 0,  Flj= o0,
The Hamilton of the whole system may conveniently be written down as

i 1 N
- Pi? , y ]IL _ . 91
H=s lmoon e o 3006 eke)) (91)

where laare principal moments of inertia of molecules.
With the definition of the unary function in mind

FnitfiPL «S I1Lt) = N\ f dgq2f dg3mmf dqNf D dp, smdpNda2mmdaNd|2 mmdlp
2 3 w i
(92;

we shall integrate equation (90) with respect to variables q2,p2 2 12,. . gN,pN, aN, IN
so that any molecular cell may not contain simultaneously two or more molecules.
Finally, the equation is obtained

SFM v e aji+ .8 i
¢ m Sdl 8al T d42dp2dazdi2
F—2 i
m i
- f - 811 dg2dp2da2dl2 (93)

VARY
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where F(r12 al, a2) and M(r12,al,a2)is the force and the moment of couple on a molecule
at state (L, p1 al 19); F*ql q2 ...) is the binary function (qlcr vl g2cr vt), r2—q?2

3
—ql am8/8a=JV pg/ooip.

In [23—25] well’fkrlwwn phenomenological transfer equations (conservation laws) of
continuum are obtained with the aid of kinetic functions of conditional distributions.
The attention is immediately attracted to the fact that the methods of deriving transfer
equations employing kinetic functions of conditional and unconditional distributions
appear unadequate. The main difference consists in the fact that in accordance with the
statistical method of conditional distributions used, transfer equations may be obtained
in any desired approximation that makes them applicable to transfer processes in
molecular condensed media.

The transfer equations were originally obtained in the Fvi-n|>proxiination for systems
with central (point) interaction. In this approximation a mean value of the physical
quantity F(([, p, t) is defined by the equality

4+ R,p, )FIqg+ R, p, )dR dp (94)
< *> .o/

Al
where n(qg, t) = f F1Xq, p, t) dp is the particle number density. Vector-radius q is chosen

within the molecular averaging volume. The averaging operation is usually implied.
Multiplying equation (89) by W and integration over the momentum space give the
transfer equation for W,

The developed derivation procedure of conservation laws was then extended to systems
with noncentral interaction (systems of nonspherical molecules with rotational degrees
of freedom) with the aid of equation (93). Particularly, for statistical justification of
angular momentum conservation law of the system the following expression was chosen
as the quantity 4f to be averaged

W= —sa—ed gp{py —muy) (95)

where s = (I1/m) f 1 F12dg is mean intrinsic angular momentum of molecule; egy is the
Levi-Cevita tensor; u is the macroscopic flow velocity (mean particle velocity); mis the
particle mass; dg = dp da dl.

10. Determination of Relaxation and Kinetic Characteristics of Molecular Systems

The conditional distribution method has been used for evaluation of some Kkinetic
coefficients. These were expressed in terms of integrals of time correlation functions.
Calculation of the integrals involves the extremely difficult problem of determining the
time dependence of correlation functions. The problem may be somewhat simplified by
introduction of the concept of mean relaxation time T of certain dynamic quantity A
by the equality

[ {A{0)A{t))dt = {AD rA (96)

(o]

Here (+e*) denote statistical averaging over the equilibrium assembly. In cases of physi
(»1 interest the averaging may be carried out with the aid of junior distribution func-
tions.
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Calculation of mean relaxation times is an important stage of the procedure. In [26, 27]
equations for kinetic functions of conditional distributions were suggested for this
calculation.

A molecular system of nonspherical particles will be now considered. The kinetic equation
for unary function in the Fn-approximation is given by expression (93). The two-particle
correlation function entering into the integral term is approximated by the following
relation

<pa2—qlala2 ) FAqlplal ILp2 12 ). (97)

The function >which acts as a non-equilibrium radial function is assumed to depend
only on mutual orientation of the particles and the vector-radius which connects their
centers of masses. Expression (97) may be suggested valid for times in excess of those of
momentum relaxation when for the latter the Maxwellian distribution may be adopted.
It is evident that in this case

//DFn(q\p],al,ILpZIZt)dedIZ: Fu(g\plIlayt). (98)
Q

We so isolate the Maxwellian part from Fn

Fn(q, P, <1, t) = F"ig, p, a, I, t) exp foov2 oi 1] .

(%99
Ast tp (tpis the characteristic time for the Maxwelban momentum distribution to
develop or in other words, the momenta relaxation time) F[t will be slightly dependent
on molecular momenta.

Substitution of (97)—(99) into (93) yields now the following equation for the unary
function

SF{\i .. Mix
st "8 A0

= | / >
1 vva J [ Vv fa 1 ()

wherev = pl[misthe linear velocity of the centre of mass of the particle, o>is the particle
angular velocity.

Solution of equation (100) is sought as the Fourier series with the coordinates of the
inertia centre and expansion with respect to generalized spherical functions T '${aX)

Fn = Z atmnsIPL, F, t) eikgl T/n(cd). (102)

kmns

We suppose that a time exists determining relaxation of unary function Fn. This is
equivalent to the statement that the dominant contribution to solution (101) is due to
the zeroth term of the expansion.

It may be found from the equation

(102)



Statistical Method of Conditional Distributions 161

Solving equation (102) and assuming a certain correlation between the average force
acting on the particle and the particle velocity (e.g. in the sense of the Langevin equa-
tion), we write down

aot) ~ exp {—<frq—fir,}. (103)

The above equation includes parameters t? and rv which may be considered as mean
relaxation times of the quantities determined by the coordinates of the centre of molecule
inertia and the molecule orientation, respectively,

0 0
L, W T “ <|]»/j><N>-

(104)

Mean absolute values of force and moment of couple acting on the molecule are defined
by the expressions

(IFD = i J |F] 9(r12 a1, a2) dri2da2,
Y-,
(105)
<Mp> = IM| rp(r2 a1, a2 dr2da2.
V-vx On

Here the radial equilibrium function should be used as o Evaluations demonstrate that
zQand rv are of the same order. Over the liquid-vapour coexistence curve in the conden-
sed phase they are of an order of 10"12s. The relaxation times r9and tvas well as the
relaxation time tq = rqfig(Tg+ T) have been used for estimations of viscosities of simple
and asymmetric media, calculation of anisotropy relaxation time in the theory of mole-
cular light scattering. The quantities just mentioned were determined in terms of time
correlation functions of the quantities dependent on the particle positions (forces, mo-
ments of couples, etc.). In \28\ the procedure for determining relaxation time rq is
extended to binary systems that allowed a discussion of experimental peculiarities of
concentration behaviour of shear viscosity of hydrogen isotope mixtures.

Use of a mean relaxation time implies the assumption of exponential decay of the time
correlation function. In reality the function however has a more complicated structure
of which specification requires consideration of the subsequent terms of series (101) with
K 3=0. Vector K has a physical meaning of a description microscopic space nonunifor-
mity of the medium. A supposition is thus natural that fora liquid the term associated
with K ~ ir113is the next dominating term after the zeroth one. Solution of equation
(100) with series (101) at k #=0 implies that function Fn(t) becomes oscillating with
the oscillation period close to the relaxation time \29\.

Mean relaxation times of linear and angular momentum may be readily calculated from
the Langevin equation governing the Brownian molecular motion which for a point
particle in the Markovian approximation is of the form

d
d'f - P+ S (106)

Friction function | isdetermined in terms of the time integral of the correlation function
of the force acting on a molecule. For calculation of the integral use will bo made of the
relaxation time rq

00

O Fpd= T (107)
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Equation (106) contains a typical parameter which may be considered as a mean time
of momentum relaxation

m BTO

(108)
=T = <EV/

It is peculiar that xpand xqarerelated by an inverse relation. The values estimated from
(108) demonstrate that over the liquid-vapour coexistence curve ina condensed phase
Tp~ 10-13- 10-U4s.

Liquid shear viscosities may be calculated in terms of the relaxation times xgand rp.
A strict expression of the shear viscosity on the basis of the Kubo formalism is [30]

V= Jy f (JN20)n 1At)) dt (109)
(o]
where is the microscopic stress tensor
w . neong - qly

na,= - V. g% @ - q?)- (110,

r
itlh m 9L, - q
Use of approximation of the type (96) gives the following form of expression (109)

Oxv 21X, Cd
O -~vbjarPs i {ri(iy jelndr (4 ar's=r;) (iii)

orV

V=~*P + sy (lrrM____ T) (112)

where h1” is the high-frequency shear modulus.

It is widely recognized that the shear viscosity is proportional to the shear modulus
(1 = r/i). Ya. I. Frenkel interpreted the proportionality factor r as settled lifetime of a
particle [31]. In fact, as far as the liquid in the moderate temperature range is concerned
(say, at the coexistence curve), the first (kinetic) term in (112) is essentally smaller than
the second one (potential) and Frenkel’s assumption is statistically verified.

rg has the meaning of the settled lifetime of the particle. At higher temperatures or at
higher pressures (at a distance from the coexistence curve) however the kinetic part
becomes comparable with the potential part, then the former will become in excess of the
latter. The relation between viscoelastisities is now more complicated.

Alongside with the above example, we may mention of calculation of self-diffusion co-
efficients. Although the assumption of the Markovian motion of a molecule used here
may be adopted with certain restrictions, the orders of kinetic coefficients calculated are
not only correct, but also give a correct temperature behaviour.

For determination of the relaxation time of angular momentum, besides equation (106)
the theorem of angular momentum change should be written down. In a general case a
set of two vectorial equations is obtained which involves tensors of friction factors at
translational and orientational motions of the particle as well as tensors of cross-corre-
lations of these motions.
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The Langevin equations now become [32]

Yy m-1+ el-)ep0- ($pe/-1+ S,, m£) mh + 8(1),
(113)

*lgqg + $99 ¢+7"9q) "Po ~ ($94 '*49 + $99 '7N99) ' *0 + -l O

The pole 0 chosen here does not necessarily coincide with the centre of inertia of the
molecule; {logaP = To™, L= /0 is the tensor of inertia moments of the particle over
the pole, Iw = are antisymmetric pseudotensors (the superscript T indicates a trans-
pose operation). Tensors of friction factors are determined in terms of correlation func-
tions of the forces and moments of forces similarly to (107).

With the assumption that quickly-oscillating random forces S(t) and M(t) satisfy the
requirements of Markovian-Gaussian processes the correlation matrix may be obtained

= TOYyE+ *NO.  yT= {V0t0) (114)

(...)(D denotes averaging over equilibrium distribution of dynamic variables of all the
particles in the system but the Brownian particle considered. Expression (114) may be
written as

lr) = <{exp (—on} *1 1,
S (115)

The matrix $ does determine a set of relaxation parameters.

It follows from the analysis of the matrix that the cross-correlation of translational and
rotational variables is essential for a number of processes, especially those developing
over time intervals of an order of relaxation times of momentum or angular momentum.
In [33] it is demonstrated that this cross-correlation is very essential for dielectric
behaviour of a system of polar molecules.
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