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Correlation and Spectral Properties oi Individual Particles 
of Molecular Crystals with Isolated Point Imperfections
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The analogue o f the dynamical equations for a crystal lattice is used to calculate the momenta 
time correlation functions and vibrational spectral densities of individual particles in heavy rare gas 
solids with defects. Some peculiarities in the behaviour o f particles near a vacancy and light or 
heavy substitutional imperfections are discussed.

На основе аналога динамических уравнений кристаллической решетки вычислены 
временные корреляционные функции импульсов и спектральные плотности коле­
баний частиц в отвердевших благородных газах при наличии в них дефектов. Об­
суждаются некоторые особенности в поведении частиц кристалла вблизи вакансии 
и легкой или тяжелой примеси замещения.

1. Introduction

Many important properties of solids are connected with the presence of defects in 
them. The distinctions in the dynamic behaviour of particles with respect to their 
distances from a defect were pointed out in the pioneer works of Lifshits [1, 2]. 
Defects violate the translational invariance of the crystal lattice and the collective 
behaviour of particles in a solid is manifested in their individual characteristics in 
different ways.

The time correlation functions (TCFs) and their Fourier transforms are the most 
important characteristics of the collective properties of a crystal. In case of a perfect 
crystal the momentum autocorrelation function (MACF) of a particle is the same for 
all particles of the crystal, and in the harmonic approximation its Fourier transform 
determines the spectral density of vibrations of the crystal. In the presence of imper­
fections the MACF contains information about the collective properties of the system 
and at the same time reflects individual peculiarities of the particle behaviour.

Methods of the statistical mechanics allow the localization of particles near the 
lattice points to be used effectively and simultaneously the nonlinearity of intermole- 
cular interactions to be taken into account. The self-consistent phonon theory [3, 4] 
is an example of such an approach. Another statistical procedure based on the system 
of self-consistent integral equations for the conditional distribution functions [5] 
was proposed in [6, 7]. This procedure provides relatively easy consideration of both 
perfect and imperfect crystals [8, 9].

2. The Constitutive Equations

The problem of calculation of TCFs can be reduced to the investigation of the time 
behaviour of the special dynamical functions BN determined in phase space of the
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system of N  particles,

C(t) =  ( A (0) B(t)) =  J 4 (0) B N(t) d/V ,
Гя

- ~ ~  +  iBNB N(t) =  0 , B N(0) =  BDff .

(1)

( 2)

Equation (1) defines the TCE of A  and В  which are functions of the dynamical 
variables (coordinates q and momenta p  of particles of the system); ГN, L N are the 
phase space and the Liouville operator of the system; Dff  is the equilibrium Gibbs 
distribution function; angular brackets (...) mean the equilibrium averaging.

The reduced dynamical functions

bn =  f B K djTiV-я (3)
r N —n

and the system of integro-differential equations for them can be then generated. 
Their representation in terms of special orthogonal polynomials (Hermitian poly­
nomials in momentum space) and truncation at the lowest order results in a system 
of ordinary differential equations, which is formally the same as the equations of 
motion in the harmonic theory of the crystal lattice. Tn case of a perfect crystal the 
system of equations which defines the momentum TCFs has the form

cp(i; t) +  оАф(і; t) =  V  Ctj ф (4)
ІФІ

Ф (1; 0) =  Ё , ф ( г ф 1 ; 0 ) = 0 ,  ф(.-;0) =  0 , (5)

o>2 =  T  E  Сц : E , Cij / 9 \
\8qt Q qJ’

ф (і ; t) =  (Р г (О )р Л Ф К г* ) , Ф(*; t) = ( Р іФ )Р г (Ф І ( і>2> >

(6)

(7)

Ё is a unit matrix. The contribution of the elder polynomials is discussed in [13].
The most essential distinction of these equations from those in the dynamical theory 

of the crystal lattice is that the analogue of the dynamical matrix Gy is defined by 
the mean value of the second derivative of I lie intermolecular potential Фц. The condi­
tional distribution functions [5] are used in ((i) for averaging. So, the matrix Gy reflects 
the nonlinearity of the intermolecular potential and is a function of the thermo­
dynamic parameters, the temperature T, and the volume V of the system.

Further, an isolated point defect is supposed to exist in the lattice point d. The 
tensor G<|1 characterizes the effective interaction between the defect and the particle 
of the matrix near the lattice point i. Indeed, its properties differ from those of Gy, 
which characterizes the interaction between the particles i and j  of the matrix. The 
system of the constitutive equations has the form

Ф(і ; t) +  (о 2Ё '— Gia +  Ĝ 'P) -ф(г; t) =  \  Сц -ф(/; t) ; i =t= d , (8)
j+ i

фрІ-А) —  coiq>(d; t) =  V  cfP • ф(і; t); oj!  =  CfJ : Ё . (9)

The symbol (') at the sum in the right-hand side of (8) indicates that the summand 
at j  =  d should be multiplied by the ratio mlmd and Сц should be replaced by G\p in 
it; m and md are masses of a matrix particle and the defect, respectively. If a vacancy 

appears as a defect (d =  v), G\f =  0 and (9) should be omitted.
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In order to receive the momentum TCFs, a particle of the matrix or the defect at 

time / 0 is excited (see, e.g., (5)). Different TCFs (like (7)) can be received from I into
integration of the system (8), (9).

All the above equations are written in a dimensionless form. The mass m, the energy 
e, and space a parameters of a two-parameter intermolecular interaction potential 
(Lennard-Jones potential, for example) between particles of the matrix are chosen 
as the scale parameters. The time scale is defined as

Integration with respect to time of equations (8), (9) could be performed without 
the use of the spectral representation, which is supposed to be a more natural way 
in the problem of calculating the TCFs. The methods of time integration for such 
systems were developed earlier [7]. The system (8), (9) is reduced to equations with 
respect to invariants of the tensors cp, and Verlet’s algorithm [10] of the second order 
in time step is used. The presence of defects in a crystal makes the tensor (]>;Pic) 
asymmetrical, and this peculiarity should be taken into account when the tensors tp 
are represented in terms of their invariants.

3. Results and Discussion
The results of computations of MACF are shown in Fig. 2 to 5. The Lennard-Jones 
potential was used, T e/£B, v =  VjN =  0.98cr8. The time step was taken equal to 
O.OIr. The frequencies are given in units of r 1. The appropriate tensors for second 
and fourth neighbours of the defect are represented by their diagonal elements in 
the system of principal axes. The axis n is directed to the defect, h lies in the plane 
(100), and / is perpendicular to w and k (Fig. 1). The к and l directions are not equi­
valent. In the /,■ direction the particle has a nearest neighbour while in the l direction 
a second neighbour.

The results for the particle which is a nearest neighbour of a vacancy can be found 
in Fig. 2u (MACF) and h (its Fourier transform). The behaviour of components к 
and / is similar and resembles the behaviour of the MACF of a particle in a perfect 
crystal, especially in a not very large period of time (see [7, 11] for comparison). 
On the contrary the n component shows some essential features, the most important 
of which arc the disappearance of the first maximum and irregular rapid damping. 
In the spectrum of the // component the high-frequency peak is absent and the low-
frequency one becomes ....re pronounced (in comparison with the perfect crystal
spectrum). Symbol 12 indicates the spectrum obtained as an average over n-, к-, and

Fig. 1. The coordinate system; d defect, 
i its nearest neighbour
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rig . 2. a) M At!I*’ and li) its Fourier transform for a nearest neighbour o f a vacancy

Fig. 3. a) MA(!L<’ and b) its Fourier transform for a nearest neighbour o f a light substitutional im­
perfection

Z-couiponents. This spectrum lins a rather poor structure which demonstrates an 
approximately uniform frequency distribution over a wide spectral range. One can 
notice the splitting of the low-frequency maximum into two peaks caused by inter­
ference of n- and t-, /-components. For the MACFs and their Fourier transforms of 
the fourth neighbour of a vacancy only some quantitative differences from those of 
a perfect crystal remain.

Similar peculiarities in the behaviour of the «-component of the MACF of a particle 
which is a nearest neighbour of a light substitutional imperfection can be found in 
Fig. 3a, b (40Ar in the matrix of 86Kr). In addition to these, there are local oscillations 
with frequencies beyond the major spectral range in the spectrum of the «-component 
in Fig. 3b. Their fraction is appreciably lower as compared with the imperfection
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spectrum indicated by i in Fig. 3 b, and it rapidly decreases with the particle distance 
from the defect (Fig. 4). It is useful to note that the drawings in Fig. 2 b demonstrate 
the absence of the local frequencies in the spectrum of a crystal with isolated vacancies 
and this statement is in agreement with the recent publication [12].

In case of a heavy substitutional imperfections (Fig. 5, 8eKr in the matrix of 40Ar) 
the frequencies of a nearest neighbour of the defect are redistributed in the low- 
frequency range of the spectrum. There is no visible evidence for the quasiresonance 
frequencies in the spectrum, while the quasiresonance peak forms to a considerable 
extent the spectrum of the defect (curve i in Fig. 5 b).

Some general properties in the behaviour of particles in the vicinity of a point 
defect could be noted. The TCFs decrease more rapidly than those in a perfect crystal. 
The most important dynamic characteristics of the defect manifest themselves, to 
a certain extent, in the behaviour of its neighbours. The influence of the defect strongly 
depends on the distance of the particle from the defect and becomes negligible after 
some lattice spacings.
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