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Tbe momenta-time correlation functions and their spectral densities are studied for rare gas 
crystal atoms at the (100) and (110) surfaces. Their characteristics essentially differ from the bulk 
behaviour for particles lying in the surface plane, but already in the third subsurface atomic plane 
the differences from the bulk crystal spectrum are only slight. Distinct quasi-resonance peaks 
observed in the spectral densities may be an information source for experimental analysis of the 
surfaces.

Изучен характер временных корреляционных функций импульса и их спектраль
ных плотностей для частиц кристаллов благородных газов вблизи поверхностей 
(100) и (ПО). Эти характеристики существенно отличаются от объемного поведе
ния для частиц, леж ащ их в плоскости поверхности, но уж е в третьей от поверх
ности плоскости наблюдаются лиш ь небольшие количественные отличия от объем
ного спектра кристалла. Наличие в спектральных плотностях четко выраженных 
квазирезонансных пиков может служить источником информации при экспери
ментальной диагностике поверхности.

1. Introduction
The presence of surfaces brings about some changes in the spectral properties of crys
tals and in the vibrational characteristics of their particles. These changes are localized 
in the near-surface region [1, 2] and may be viewed as specific surface states. Advances 
made by vibrational spectroscopy in the research of crystal surfaces, particularly due 
to the experiments on low-energy atomic beam scattering [3, 4], encourage more de
tailed theoretical investigations of the spectral and correlation properties of crystal 
atoms in the near-surface region.

The time correlation functions (TCF) of particle momenta contain important infor
mation about the dynamical properties of crystals [2]. The vibrational spectral densities 
of crystal particles can be obtained as the Fourier transform of the TCF.

According to definition the TCF of dynamical functions A  and В  is

C(t) == <A(0) B (t) )  =  / A(0) B(t) D % \ rN) dF n ,
Г я

where is the equilibrium Gibbs distribution function and i 'N the phase space of 
a system of N  particles. l iy  being the integral of a Liouville operator L N, one can ob
tain [8]

B(t) B f ( F N) =  eiLsl 171(0) D f ( r N)] =  В A t) , 

where B N(t) obeys the Liouville equation

QBN(t)
Ы

iL KB N(t)
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with the initial value

B N(0) =  B D ^  .

G(t) becomes the momentum TCF if one puts A =  р\ В  =  p k, where // and />'• are 
momenta of i-th and A'-tli particles.

The reduced dynamical functions

b/j(t) =  J B N(t) dr N- n
Г я-п

and the integrodifferential chain of equations for them can be then generated. As usual 
the chain is truncated after a few lowest equations and the younger functions blt b2, ... 
are represented [5] in terms of Hermitiun polynomials H s in the momentum subspace 
and special orthogonal polynomials (n l>, I, 2, ...) in I lie coni igurational subspace. 
For example, the representation of the one-particle lunetion is as follows:

ъ м \ р \ 1) fMV.O I ".M'V.') \ О -I ... I 
M°V,<) = [# 0)(0 I Qi<rk>,l\ t ) I -I
MV, t) =  bp*'’У )  I \ - \  W )  etc.

Here F ^ p * )  and /''T1(f/,:) are the equilibrium Maxwell distribution function and the 
one-particle equilibrium distribution function of a crystal particle near a lattice point, 
respectively. The latter is used as the generating function for the orthogonal polyno
mials Qs.

The functions (pt’n\t) obey a system of ordinary differential equations and after 
some transformations and restriction of the coefficients of the polynomials to the first 
order this system of equations can be written [5] with respect to functions =
=  (pk(t) (k =  1, 2, ... , N ). It  is easy to see that due to the orthogonality of the poly
nomials these very functions describe the momentum TCF.

Earlier, the time correlation functions of particle momenta for perfect and imperfect 
crystals were considered within the method of conditional distributions [5, 6]. In 
what follows, characteristic features of the particle behaviour in the near-surface 
region will be discussed.

2. Constitutive Equations and Method of Their Solution
The system of equations describing the TCF evolution in the first order with respect 
to the orthogonal polynomial series [5] is of the form

where Фщ is the potential of the central pair interaction between the j -th and &-th 
particles, N  the total number of crystal particles, qk are the coordinates of the fc-th 
particle.

Angular brackets in (2) imply Gibbs averaging. In accordance with the adopted 
met hod of conditional distributions, averaging is performed over the Wigner-Seitz 
ivlls containing the y-fh and fc-th particles with the use of the equilibrium distribution
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functions. The Ini.ter are determined from the solution of the special system of nonlinear 
integral e(|nations 17].

In order to calculate the momentum TCFs of the crystal particles, (1) should be solv
ed with the following initial conditions [8]:

4 (0) =  E , & (0) =  0; 4 (0) =  0 , 4 (0) =  0 ;
1c =  2,3, . (3)

The disturbance is prescribed at a certain cell (e.g., with index 1), and its subsequent 
propagation over the crystal provides information on the evolution of momentum 
TCFs according to the relations

<PS) ~  <Рг(0) P 1̂ ) ) I (p 2> ,

Pk{t) =  <p1(0 )p k(t))[(p ^ ) , (4)

<p2> =  3ткъТ  ,

where m is the particle mass, TcB the Boltzmann constant.
In a perfect infinite centrosymmetrical crystal, TCF tensors such as (p,:(0) pk(t) )  are 

symmetrical, which may be proved by using the time reversibility of microscopic equa
tions of motion and the lattice invariance for translation and inversion. With impurities 
or surfaces present, the crystal symmetry if lowered, and in a general case, the TCF ten
sors become asymmetrical [6, 9]. The tensors remain symmetrical only for the particle 
pairs lying in the symmetry planes of the crystal considered. Therefore, when the crys
tal is restricted by a surface, the tensors <рк are expressed for the general case by the 
nine components <pyk >

у О • •
<Pt =  <Pk K K ', у, О =  1, 2, 3 . (5)

Tlie unit vectors iy make up an orthogonal basis. As follows from the definition 
the tensor <!/.j is symmetrical and may be expressed by

+ ■ (6)
II is <i I hi 11 ним I here that the principal values of the tensor for the axes perpendicular 

In the line connecting I lie centres of the /й-til and )-th cells (nkj is the unit vector along 
11 n m ill reel lull) lire equal. The coefficient 'Я ( t  and (Jlj are estimated from (2).

The Hilled 11 ill ii I n ill (ft) and ((() into (I ) and scalar multiplication of the resultant 
relation by I and then by i . given, system of equations defining the components of 
4' h (sil 1 1 1 HIM I ІОІI over repented indices is implied),

Л'
'/’* -  l r 'w(v) V V) I < ) ("H  • v )  (<pf — 9^)1 • (7).M-*

For concrete ені ішмі ioiim n sysl em was chosen in which the interparticle interael ion 
is described by the I , ennui d .lone potential (<i 12). Bare gas crystals forming a face-
centred cubic lattice a fiord an example of such systems. The linear length < r and 
energetic potential r are dimensional parameters. The coefficients C* and <!K were 
found with 0 = knT/r I and I (I.DHir* (V  is the Wigner-Seitz cell volume). The 
time is expressed in units of r <r |Imjv eipial to 2.16 x 10-12 s for argon and 2.88 
X 1(F12 s for krypton.

The system (7) was solved on a K( 1-1033 computer with a numerical method lining 
Verlet’s difference scheme [6, 10 1. The motion of particles near the (100) and (I 10) 
surfaces was studied. The axes xt and :r„ were brought in coincidence with the atomn 
surface plane, and xa was directed normally to the surface into the lmll< ітуніпі, \l
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the initial moment, a particle w h ich  wiih cither at the surface or in the neighbouring 
atomic planes, was excited. The boundary conditions (presence of the surface) were 
observed by the suitable rearrangement of summation on the right-hand side of (7) 
involving just those particles w h ich  belong to the system.

Naturally, numerical methods cannot be used for a semi-infinite system. The com
putations were carried out for the ease when the lattice point coordinates satisfy the 
inequalities

-4 .5a  ^  * M , xk2 ^  4.6a, (I g  хкя ^  4.5« , (8)

where a =  (4F )1/3 is the lattice parameter, ж., 0 being the crystal surface. The other
confining planes isolated a system of particles from the infinite half-space for the sub
sequent computer operation. It  is noteworthy that when numerical methods are used 
in the dynamic lattice theory for computation of the spectral properties, the size of 
the system considered is implicitly restricted by choosing the interval in the inverse 
£-space.

Since only one particle was excited at the initial moment, the disturbance propa
gated over the system with time and was reflected from the confining planes. When 
the reflected signal was returned to the considered particle, the restriction of the 
system dimensions began to affect its motion [11]. Therefore, the system dimensions 
prescribed by (9) were chosen so that the boundary effects (naturally, except for the 
crystal surface x3 =  0) might be neglected during the time interval of interest.

3. Results and Discussion
3.1 (100 )  surface

The computed momentum autocorrelation functions (ACF) </h(0 of particles lying 
in the near-surface region (see Fig. 1 a, b) show that only the time interval (0,2r) 
may be taken for the study. It should be noted that a negligibly small influence of 
the model system dimensions constrained by (8) on the computation results is ensured 
during this interval.

The momentum ACF <p(t) of a particle lying in the crystal surface atomic plane 
(plane 1) and the vibrational spectral density <p(w) (Fig. 1 a, c) essentially differ from 
the bulk ones. When the vibrations are polarized normal to the surface, a distinct 
quasi-resonance peak is present in the low-frequency spectral range. The momentum 
ACF is markedly different from the bulk case, quickly and regularly decaying with 
time. When vibrations are polarized parallel with the surface, the spectrum retains its 
main features characteristic of the built vibrations but with a lower high-frequency 
peak and an additional narrow peak in the low-frequency range.

For a particle in the second atomic plane, these essential differences from the bulk 
behaviour are not observed (Fig. lb, d), but for the perpendicular polarization, cp(t) 
is rapidly, though irregularly, damped with time, and in <p(a>) a typical trough of anti
resonance type is observed at the frequencies corresponding to the peak in the surface 
particle spectrum.

An adatom is characterized by irregular and slowly decaying momentum ACF and 
a complicated spectrum composed of several distinct peaks. For both polarizations, 
a peak at on =  9 is observed, and there are three non-coinciding peaks at 15 <  ют <C 

30. All the peaks are located within the allowed vibrational frequency range of 
the perfect infinite crystal. It  seems of interest that four adatoms located at nearest 
square vertices, ensure for the atom of the surface plane under the square centre that
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Fig. 1. Correlation and spectral properties of the particles in the a), c) first and b), d) second 
near-surface (100) planes. The solid and dashed curves indicate vibrations perpendicular to the 
surface plane and parallel to it, respectively

all the characteristic features of the particle vibrations in the second plane in the 
absence of adatoms would be preserved, the former being more pronounced than the 
latter (Fig. 2 and Fig. Id ).

For a heavy substitutional impurity (86K r for 40Ar) in the first surface plane, quasi
resonance peaks in the low-frequency spectral range (at cor 9) are observed for both 
polarizations, and in the case of light impurities (4HAr for 8*Kr), the peaks are found 
in different spectral ranges (Fig. 3). It  seems important that local vibrations are not 
split off from the major frequency range as is observed for light impurities in the bulk 
[6,9].

3.2 (110 )  surface

There are three inequivalent vibrational polarizations: 1110], [001] in the surface 
plane, and [110] prependicular to the plane. In the surface plane, the points make up 
a rectangular lattice with the sides a/i/2 (| 110] direction) and a ([001] direction).
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Fig. 2. Spectral densities of the particle vibrations in the (100) surface plane under four adatoms. 
Notations as in Fig. 1

Fig. 3. Spectral densities of 40Ar substitutional impurity in the surface plane of the 8eK r matrix. 
Notations as in Fig. 1

For a particle belonging to the surface plane, the spectral vibrational density in the 
direction perpendicular to the surface, just as for the (100) surface, has a peak at 
on «  13 but with a larger half-width (Fig. 4a). The lowest-frequency vibrations con-

planes. The solid, dashed, and dash-dotted curves show [110], [001], and [110] vibrations, respect
ively
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Fig. 5. Spectral vibrational densities of the particles 
in the second near-surface (110) plane with an ada
tom. Notations as in Fig. 4

centrated within a narrow frequency range are 
observed in the [001] direction, whereas the 
[110] frequencies are actually uniformly distri
buted over a wide range, and apeak in the high

er x ------ frequency range is observed. These peculiarities
are closely related to the (110) surface structure.

For a particle in the second subsurface plane, the differences from the bulk spec
trum are still essential (Fig. 4b). Only for the [110] direction, there appear particular 
features of the particle behaviour in the bulk, and the spectral distribution for the two 
other polarizations resemble those for a particle in the surface plane, being, however, 
shifted to the higher-frequency range. I t  seems interesting that for second-plane 
particles, low-frequency vibrations are virtually suppressed up to an ~  10.

The presence of an adatom on the same line (with the particle) prependicular to 
the surface markedly alters only the structure of [001] vibrations (Fig. 5). The vibra
tional structure of the adatom itself consists of three bands with widths of about 2/r 
at on =  10.6; 13.2; 17.7 for the [110], [100], [110] polarizations, respectively, and is 
much simpler than that for the (100) surface.

The vibrational spectral characteristics and momentum ACF of particles belonging 
to the third plane are mainly consistent with the bulk vibrational pattern.

The fact that in the vibrational spectral characteristics of the particle within the 
near-surface region there are distinct quasi-resonance peaks corresponding to energies 
(hm) of several meV may be a source of information useful for the analysis of surfaces 
with low-energy atom beams.
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