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Abstract New energetic effects for cholesteric 
liquid crystals subjected to orientational 
deformation such as the heat production or 
absorption at isothermal deformation, the chemical 
potential changing of multicomponent cholesterics 
and the temperature variation at adiabatic 
deformation, the noticeable difference between the 
isothermal and adiabatic moduli of torsion are 
predicted. The theory of these effects is developed 
on the basis of the previously obtained 
thermodynamic relations for a deformed liquid 
crystal.

It is well known1 that crystals and liquids generate 
or absorb the entropy and the heat if they are subjected 
to the usual isothermal mechanical deformation connected 
with the volume and form variation. The entropy 
increment in this processes is defined by

Here T Zy, a~ are the tensors of force stresses, 
deformations and thermal coefficients, respectively, T 
is the temperature. We adopt summation convention over 
repeated indices.

For an isotropic case and for liquid crystals 
without the positional ordering we have

AS = (ХуАіу , ау=(дг~ / &T) . ( l )

[1857J/569



570/11858] V .B . N E M T S O V  A N D  V .S . V IK H R E N K O
where P is the pressure, V0 is the volume of a system 
before the deformation, 8V is the variation of volume 
V , 8.. is the Kroneker's symbol.

In the following we show that the isothermal 
orientational deformation , of the nonsymmetrical liquid 
crystals, especially the cholesterics, can cause the new 
energetic effects.

We rederive the previously obtained results2,3 and 
extend them on the case of multicomponent cholesteric 
liquid crystals.

The orientational deformation pseudotensor is 
defined by the expression4

У Ч=еш пт(дпь18х1) . (3)
where Пт is the director, einm is the Levi-Civita
tensor.

In equilibrium state of a cholesteric liquid crystal 
the tensor yik do not equal to zero due to the absence of 
the symmetry centre. In the coordinate system with x3- 
axis directed along the helical symmetry axis the 
director is represented by
«з=0, «,=cos0, n^sinO, Q = x3p̂  + const, where p0 is the 
helical pitch in the nondeformed state of the
cholesteric. According to (3) the only nonzero component 
of y.. is y33 = y0=2n / p0.

In analogy with the tensor a,̂. we introduce the 
tensor P̂  of the temperature orientational deformation 
coefficients by the relation

p,=(ey , i d T ) F f . (4)
Here Tty is the moment stress tensor (couple stress 
tensor)

The only nonzero component of the tensor P̂. ,

Рзз = P = ~і2к / ̂ )(Фо / дТ)Р'П ( 5)
exists in the above mentioned coordinate system.



D E F O R M A T IO N  E N E R G E T IC  E F FE C T S [ 1859]/571
The presence of a new energetic effect is proved 

using the thermodynamic expressions which generalize 
known ones for media with orientational ordering. The 
generalization accounts for the orientational 
deformation.

For the volume densities of the free energy F  and 
the Gibbs thermodynamic potential Ф = F  — XySy — nij'Yj the 
next relations

dF = XydZy + itydy у -  SdT, d<T> -  -ZydXy -  у yd%y -  SdT . (6)
are true. The last relation leads to the expressions

Eij = ~(дФ /дх )̂т'П,уу = ~(дФ /dn^T^S = ~(дФ /dT)^n, ( 7 )

Therefore the tensors of temperature deformation 
coefficients are determined in terms of the volume 
density of entropyа  у = (SS / 5т..)Г;Я, p „ = (dS / дпу)т^. (8)

Let us consider S as a function of Ту, Tly and T . 
Then

dS = a ydTy + p^7t.. + C xndT /T0, (9)

where Cxn—T0(dS / dT)xn is the heat capacity and TQ is the 
temperature of the nondeformed state. The quantities Cty, P(. and C xn are refered to the initial equilibrium state, 
so C  = C D. One can see on the basis of equation (2)T,7t г

that the term CtydXy takes the usual form Vq \6V  /dT)pdP . 
The increment of the entropy is expressed as

AS = а..Ат.. + р..я.. + C PAT/T0, AT = T  - T 0. (i o )
The additional variation of the entropy due to 

orientational deformation is determined by the second 
term in expression (10)

= P №  .
This quantity will be considered further in some 
details.

( 1 1 )
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The moment stress tensor is expressed through the 

orientational deformation tensor and the isothermal 
Frank's moduli K̂ kl

Kij = КУкі(УЫ~У°ы) • (12)
For nematics and other centresymmetric liquid 

crystals 7^=0. In this case the elastic moment stresses 
obey the conventional expression.

The nonvanishing component of niy is
n33= K 2(y - y 0) , y  = dQ/ dz - 2n / p,  (13 )

where K°2 is the isothermal modulus of torsion, p is the 
spiral pitch for deformed state of the cholesteric.

Taking into account equations (11), (13) and (5) one
finds the entropy increment and the heat production

Д/>„ =-(2я / д5)(3д /вГ),.ЛГ20(у - Го), л а = - т д S„. (14)
The temperature increment caused by the adiabatic 

orientational deformation is equal to
A T = - C vJ f i K 02{ y - y 0), (15)

where CVy is the volume density of heat capacity at 
constant volume

The difference between the adiabatic K 2 and
isothermal K2 Frank's moduli is determined by the 
expression2 <2

k 2 - k q2 =-c-;rp2fc)2. 1 1 6)
We now turn to the discussion of the caloric effect. 

According to equation (14) the heat is absorbed (Д& >0) 
if 7 > 7 0 and {др0/дТ)< 0 or 7<70 and (dp0/dT)> 0; 
otherwise the heat is liberated (AQn <0).

For the most part of cholesterics the helical pitch 
decreases as the temperature increases (dp0 / dT <0) and 
the magnitude of р0(др0/дТ) varies within the wide
limits5 and ranges up to about 100K-1. For the unwinding



of the cholesteric structure when y —>0 (p—>co) equations 
(14) reduce to ASn = (4k2 / ĵ )K°(dp0 IdT),AQn = T0ASn•

Typically for K j —10 nN, T0 =300 K, p0 =6-10 7m,
Pb'(dPb / dT) = —10 К 1 we find ASn =104J / mK ,
AQ% =3 -106J /m3. For fully untwisted spiral the entropy 
increment ASn is of the order of cholesteric-isotropic 
transition entropy difference.

For the multicomponent cholesterics instead of the 
relation (6) for the volume density of Gibbs
thermodynamic potential one would write

сІФ = —Zjjdty ~Y ijdKj — SdT + ^ M ca. <17>
a

where |la and Ca are the chemical potential and the 
volumetric molar concentraction са =Па IV , na is the
quantity of moles in the system.

Equation (17) yields
e, = -(аФ/5т,)л^, у, = -(0Ф

S ^ - і д Ф І д Т ) ^ ,  [Іа ={дф/дса)т̂  . (1 8 )

If the chemical potential is considered as a 
function of Ту, Пу, T and q,, its variation is

Ф  a = ( ф а / dTy)dTy + ( ф а / dn^dUy +

(dllJdT)dT+^(dlla Idc, )dc,. (19)

For the simplification of notations here and below 
the indices which define the character of the partial 
derivatives are ommited.

Taking into account the relations
Ф а  / dx,j = / дса , ф а / дПу = ~дуу / дса , (20)

which results from equations (18) the equation (19) can 
be written in the form

Ф а  = -(Ф, /d c j d x у -(дуу  Idca)dnу +
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(5ца / dT)dT + £  (дца / дс̂  )dcp, (21)

p
where all the derivatives are refered to the initial 
nondeformed state.

Then the increment of Ца is equal to

= -(5s,y !dca)̂ ij -(дУц /5са)Д7;. +

(5ца/5Г)А7’ + ̂ (Фа/5Яз)ДЯз- (22)p
By the use of equation (2) the term -(as.. / <Эса )dxij can 

be written in the traditional form: VadPa, where 
Va = dV/dna is the partial molar volume. Due to moment 
stresses the additional term in the chemical potential
variation appears and it is defined by Ац* = ~{dytJ /5са)я... 

In the introduced cordinate system
У33 = 2 n /р0,{дУ33 / d c j = -(2к / tf)(dp0 / dca)

and the increment Ap,* can be expressed as
АЦа =(2 к / fr0){dp0/дса)К°( у - у 0). (23)
For the unwinding of the cholesteric structure
A|i* = -(4к2 / ){dp0 / dca)K *. (24)
For the small concentration of the component (X one 

finds p0= A / c a and (др0 / дса) -  -p 0 / ca. This gives the
possibility to estimate the magnitude of Ац*.

It is interesting to note that for P = const,T = const 
and Jxa -const from equation (22) we get immediately

(&YV / dCa К  = Z  (5̂<* / ̂  )АЯЗ < 2 5 >
P

or in the coordinate system

~(2п/р20){др0/дса) К ° { у - у 0) = ^ {д [іа / d c ^ j A (2 6 )
The last relations mean that the orientational 

deformation can result in changing the component 
concentration.
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