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The concept of the average force potentials is used to develop the truncation procedure for an 
arbitrary equation of the chain. The closed system of integral equations for the average force 
potentials is formulated. In the case when the truncation approximation involves the four-particle 
distribution function the expression for the configurational integral is derived. The internal energy 
and the pressure calculated in terms of the binary distribution function are thermodynamically 
compatible.

1. Introduction

In a recent series of papers1) (see ref. 2 for a review) the method of 
conditional distributions due to Rott3) was used for the description of 
condensed states of matter. In the main first approximation of the method all 
kinds of first order phase transitions (solid-liquid, solid-gas and liquid-gas) in 
molecular systems were obtained and the existence of the triple point 
followed from the calculations in a natural way. The second approximation 
did not make a marked difference to the properties of the solid phase but 
considerably improved the values of the param eters of the liquid state4). This 
led in turn to a reduction of the distance between melting and crystallization 
lines on the ( T - V )  phase diagram, increasing pressure of the solid-liquid 
phase transition, and decreasing of the triple point tem perature. That is to say 
it led to an even better coincidence of the theoretical calculations with 
experimental data.

In the method of conditional distributions the whole volume V  of an 
N -particle system is divided into N  equal molecular cells. The probability
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density of distribution of a selected group of particles is considered under 
some restrictions on the distribution of the other particles2'1). In the first 
approximation all the states of the system where each molecular cell is 
occupied by a particle are taken into account. In the following approximations 
of the method, as in the multi-occupied cell theory proposed by Janssens and 
Prigogine5), two-particle, three-particle, etc. occupation of a cell are consi­
dered.

In each approximation reduced distribution functions can be introduced. 
They obey infinite chains of integro-differential equations. The problem of 
truncation of these chains was specifically solved within the framework of the 
method1,2). The initial chains of integro-differential equations were initially 
transformed to the form of integral equations with respect to the so-called 
average force potentials. Then truncation at the lowest order equations 
preserved binary correlations. It has been shown10) that, when calculated in 
terms of the binary distribution function, the calorimetric and thermal equa­
tions of state are thermodynamically compatible. Some attem pts have been 
made to generalize the truncation procedure to take into account correlations 
of an arbitrary order2'6 * * *). In the present paper we refine the truncation 
procedure and apply it to close the chain of integral equations at an arbitrary 
level.

The necessary definitions and the chains of integro-differential and integral 
equations are introduced in the next section. Then the closed system of an 
iterative type for the average force potentials is obtained. The particular case 
when truncated equations take account of three-particle correlations is 
considered in section 4. The expression for the configurational integral of 
the system is also obtained in section 4. In the last section we discuss the 
problem of long range correlations.

2. The concept of average force potentials

We shall consider the first approximation of the method where a simplified
system of notations for distribution functions can be used and adopt here the
usual notations of the BBGKY method.

The «-particle conditional distribution function Fn(q‘\  q ‘2, . . . ,  q ‘n) defines
the probability density of distribution of n particles in n cells which are a part
of an N  -particle system of the volume V. It is equal to an integral of the
configurational part of the gibbsian distribution over the other cells under the
condition that each cell is occupied by one, and only one, particle2'3 *):

Fn(q‘\  q'2, . . .  , q ‘") = N \  J  d q ‘"+' . . .  J  ex p (- p U N) d q ‘N,

u N = 2 .  H = ikT)~'-
N

( I )
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where Ф is a pairwise intermolecular potential, T  is the absolute tem perature and 
к is the Boltzmann constant. The factor JV! appears because of permutations of 
particles.

According to definition (1) the configurational integral of the system is 
defined by the one-particle distribution function:

Q v = f  W ) d < z \  (2)

and the recurrence relation between two consecutive functions has the form

Fn( q \ . . . , q 4 =  I  Fn+I( g \ . . . , q ^ ) d q i- k  (3)
\ +l

Now we introduce Зм-dimensional space

(4)

where the operator R  puts the elements of row (ib i2, . . . ,  i„) in order of 
increasing numbers. The first derivative in such a space will be defined by

h  dqb- (5)

The operator (5) applied to the definition (1) gives rise to the nth equation 
of the initial chain

dFn({n})+ 0 dUn
dq{«} P S  Fn({n}) +13 2  [ Л я ( і  Ф « ) ^ .( { " } ,  q") dq ‘‘ = 0,

oQ i=n+\ J o q  \fc=  i /

Un = 2  Фікі,
>k<4

(6)

The next important step is a transformation of the initial chain of integro- 
differential equations with respect to distribution functions to a new one 
containing potentials of average forces. To do this we first divide eq. (6) by 
the distribution function F„({n}). The result can be written as

dqИ In Fn({n}) + (3Un + /3 2  <Pi\
l = n + 1

({«})] = 0, (7)

where the potential of average forces exerted by a particle distributed within the 
cell on the system of particles fixed in the cells u,,, vh, . . . ,  via is introduced by

<Рч({п}) =  J  ( S  & u J F n+i(.q'4{n}) d q 1'. (8)

«4
The twice conditional distribution function F„+1(g''/{n}) is defined by the 
probability multiplication theorem

F„+i({n}, q‘') = F„+1(9l'/{n})F„({u}). (9)
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Then, eq. (7) can be formally integrated

F„({n})= C MU3, v) e x p j -  P ^ U n + ^  ер,,({«})J J, (10)

and after use of the recurrence relation (3) we obtain the new chain of integral 
equations with respect to the average force potentials:

ехрГ-/3  X
L /=/i+i J

= ^  f е х р { - / з Г Х  ф /л+і+ X  Фі,({й + 1}) }dq'"+l.
l-{/?} J l  L A: = I l=n+2 J J

(П)

Normalization constants Сщ are functions of the thermodynamical variables 
and also depend on configuration of the cells i2, . . . ,  h-

The advantage of the new chain is that a system of equations in which 
sharply changing derivatives of the interparticle interaction potential are 
multiplied by sharply changing distribution functions, is replaced by a system 
involving rather smoothed average force potentials, so the new hierarchy is 
more suitable for approximations.

3. Truncation procedure

Owing to statistical effects the average force potentials are not additive 
even in the case of pairwise interatomic interaction*. We can decompose 
them into the sum of additive one-particle potentials and multiparticle 
perturbations. For example in the case of n = 2

<?,,({ 2}) = W )  + <ph(q‘2) + <P/,({2}), (12)

and we put ,(</'')= <p;,(</'') to unify the notations.
In the general case the decomposition may be written as

< Р , , ( М ) = Ё  X  < P i , ( M ) ,  ( I 3 )
w = l C,„({/i})

where 2 Cml)n() means that the summation is over all possible ordered sets of 
m particles from the group of n particles. Of course eq. (13) holds for any 
particular number n of particles but it is convenient to represent the (n + 1) 
particle potential in the form in which the highest order term is separated 
from the others:

<Pi,({« + 1}) = <Р;,({и + •})

+ X  X  <Рі,({"і }’ « ‘"+')+'Р/,({«})- (14)
m= 0 C„,(jn))

Non-additive interactions can easily be included in this scheme.
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To close the chain of equations (11) we may neglect the highest order term 
in (14)

<p„({n + l}) = 0. (15)

It is worth while to stress that this approximation involves the (n + 2) 
particle distribution function so that the (n + 1) particle correlations are 
preserved.

After substitution of expression (14) with the approximation (15) into eq. 
(11) we obtain the last equation of the closed chain

exp[— 0<Pi„+1({n})] = (=̂~ j  expj-0^2 Ф ІЛ+І
U'n + i

+ 2 X 2  <Р;,({т К fl’"*1) ] ] d<j'"+l, (16)
l —n+2 m = 0 Cm({n}) J )

which should be supplemented by the exact equations for smaller number of 
particles

exp[— Д<Р;р+|({р})]

_  Q p+i> 
" Q p)

[ ехР{ - р Г £ ф * +1 + 2  2  2J L U = 1 l-p+2 m-0 c~pl) JJ
'p+l

l ^ p ^ n - l .  (17)

To be really closed the system of equations (16) and (17) has to include 
equations for all possible configurations of up to (и + I) cells which cannot be 
transform ed in each other by translations, rigid body rotations or reflections.

According to eq. (8) each average force potential is not uniquely defined as 
one can always add to it a function of thermodynamical variables only. But it 
is convenient to define the average force potentials uniquely. To do this we 
adopt the following:

Cm
Q p+i}

f dq’1... f expj— /3 2  2  S
P  J  J  l  /= p + 2  m =0 Cm({p}> J

■'r
1 =£ p =S n — 1; (18)

V:11

f  e x p j— () X  S  S  <Pi,({'nW"+,)}dfl'"+l.
J  t  l=n+2 m= 0 C,„()n() J

( l ‘>)

With such a choice of relations between the normalization constants, the 
system of equations (16) and (17) becomes suitable for an iterational pro­
cedure and the uncertainty of the potentials is transferred onto the normal 
ization constant C, of the unary distribution function. This function may In- 
normalized to unity, but our purpose is the calculation of the configurational
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integral. The system of equations (16) and (17) results from the initial chain of 
integro-dilferential equations and therefore it does not contain enough in­
formation for this purpose. To obtain additional information the G ibbs- 
Helmholz equation has been used1,2) in the case of n = 1. Furtherm ore, such 
an approach is applied in the case of и = 2.

4. Configurational integral in the case of n — 2

We shall close the system of equations (11) at the second equation. So we 
adopt the following expressions for the first three distribution functions (in 
slightly simplified notations)

Ft(q' )= Ci(P, v) exp j — (3 X  (20)

р 2ІЧ V )  = CuiP, V) e x p { -  /З^Ф„ + ^Z[<p,(q') + Ф,ІЧ‘) + <р,(4 У )]]} , (21)

F}(q' q'q1) = C UjiP, v) exp j -  /3 ^Фі; + Ф,у + Ф/,

N “I 'j
+ 2  [<?/(<?’)+  <P/(<j‘) + Ф М )  + Фl(q'ql) + фl^q'ql ) + ф/iq'q1)] [.

i * u i  JJ
(22)

The average force potentials obey the system of ilerative equations

e x p [ -Э<р,(</')] =  Qu J  expj р ^ Ф и + IФl^q')+ <P/(<t V ) ] J }  dq‘\ (23)

exp{- j8[<pj(q') + ф№‘) + viiq'q')]}

= Qu) J  e xp |- 0^Ф|, +  Ф„ + 2). IVi(q') 1 фі(‘і 'я ')  + Фl(qlq ,) ] ^ d q ,, (24)
vi

where

Qi = J e x p { - 0  X<p,(</’)} d<z\ (25)

Q u  =  ~ f  J  e x p { - P ] ^  № i ( q ‘ ) + ф | ( q ' q ' ) ] J  d q 1 d q ‘ , (26)
U,  Vj

Q iij = ^ 2  J  d<?' j  dq ‘ Je x p | -/ 3  Д) [ ф ^ ' )  + ф ^ ^ ’) + ф ^ ^ ‘)]^ dq'. i l l )
V\  Vj  Vj

Expression (25) is needed for further calculations.
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One can use two different expressions for the potential part of the internal 
energy of the system per particle. On the one hand the Gibbs-Helmholz 
relation gives it in terms of the configurational integral

U = - ^ \ n Q -  Qn = Q n. (28)
dp

On the other hand, according to the definition, the internal energy is determined 
by the normalized to unity binary distribution function

l / = l £  f [фйР2(д'Чі)(ід1(іді =^(Ф,і)-
iV l J  J  iV l

(29)

Normalized to unity distribution functions and their normalization 
constants are marked by sign л , so according to (20)—(22) we have

Ci = Q r‘; Си = (Q iQ i,) '1; Сиу =  (QiQiiQii,Tl- (30)

Now we shall try to reduce eq. (29) to the form of eq. (28). To do this we 
differentiate the iterative equation (23) previously multiplied by 0i, with 
respect to the inverse of the tem perature, then multiply the result by

C„ exp [-/3  X  <Pf(«')l L /*і/ J

and integrate over q 1. After some simple algebra we find

_ d _

e p
( l n ^ )  + 2 f

yl

= <ф ,/) + f  f  - ^ [ іР Ф іія 'ч ^М 'г іЛ ч ' dq'.

I he sum over i gives

d p ' ( n f )Q\ /
£ l n  - 2 —  (In Q,)

dP

I  f f  J p t f V i i q ' v ^ q ' q ^ d q ' d q 1.

(31)

(32)
И*I i’i »I

I"  іЦ і huh I lit Iasi term in eq. (32) we differentiate eq. (24) multiplied by 
I 1 " I ,  I , I,i I i i i  p ,  multiply the result by

14|t ф || I 2іТ\ц I <P/( ') + <Pi(q‘) + <P/(«V )]]]>

uni lull цмі» и 11 ./1 ind q' After excluding the mean values (Ф,у) and (Ф;,) 
iih iii- In Ip и ч  I "Hi like (31) the final result becomes
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l)
I  I  ^ - [ Р Ф М 'Ч ‘) Ш Ч'Ч‘) 6 Ч' dq ‘
V\  Vj  P

+ I I  dq
UI Vj

+ J  J  jp iP v i iq 'q 'W F i iq 'q ^ d q 1 dq1. (33)
Vj  Vj

Summing over i and j ( i V /, jV  1), i.e. over all possible configurations of 
cells Vi and Vj with respect to a, makes all the terms on the right-hand side of 
eq. (33) equal to each other, so that

?  /  /  ~ д р № ^ 4 '4 '' ^ ^ 4 ' q ‘)dq '  dq1
ij #  I Vj  Vj

(34)

With these results eq. (29) is easily reduced to the form of eq. (28) with

Q = (35)

It should be stressed that because of the derivative with respect to the 
inverse of the tem perature in eq. (28) the result (35) could include a factor 
which is a function of the volume only. Hut consideration of the boundary 
condition /3 —>0 shows that this factor does not depend on volume and 
therefore eq. (35) uniquely defines the configurational integral in the ap­
proximation when triple correlations are taken into account.

Another possibility to derive an expression for the configurational integral 
is connected with the virial theorem for pressure. The theorem can be 
reduced to the form

p = U3v)-, + f } ' - ^ \ n Q

by taking derivatives'o f eqs. (23) and (24) with respect to volume. These 
calculations are rather more tedious because they involve the Bogolubov’s 
scale transform ation of volume7) (see also ref. lc). The result of the cal­
culations is exactly the expression (35) and it proves thermodynamical 
compatibility of the calorimetric and thermal equations of state in our 
approach.

The transition from eq. (35) to the expression of the configurational integral 
in the case when the chain of integral equations was interrupted at the first 
equation is not evident. We cannot simply put tp^q'q1) = 0 because it violates 
eq. (24). However, if we imagine that the situation <p/(<iV) = 0 exists then
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from eq. (24) it follows that Q i;,Qi = QuQa and expression (35) becomes
/ N Л \ 1/2

с? =  < ? . ( П т г )  • ( 36)Vivi Q, /

This is a result of the previous papers1'2). Therefore the quantity

calculated under the condition vi(q'q') = ipi(q‘qj) = 0, provides a measure of 
accuracy of the truncation procedure within the framework of the first 
equation of the chain.

5. Discussion

Eqs. (23), (24) and (35) present the thermodynamics of a molecular system 
when the chain of integral equations is truncated at the second equation. 
However, for n > 2 the formulae become very complicated and the system of 
iterative equations can hardly be solved even with the help of powerful 
computers.

On the other hand it is worth while to note that the system of equations (23) 
and (24) as well as eq. (23) with tpdq'q') = 0 involves correlation ranges which 
arc compatible with the range of interparticle interaction, so the problem 
appears to take account of long range correlations which can play an im­
portant role in some situations. It seems that the general result [eqs. (16)—(19)] 
can provide a basis to handle this problem.

Another possibility of taking into account long range correlations is 
concerned with the method of construction of self-consistent equations for 
the average force potentials proposed by Barker8). The expansion of the 
configurational integral in the series of Mayer-like functions

fa = exp{- /3[Ф„ -  (pi(q') -  <p,(«')]} -  1 

averaged with the distribution function

2> W ~ exp{- p  X  <Py(«')}>

is the basis of the method. The self-consistent equation results if one puts the 
second term (/,,) in the expansion equal to zero. Of course the systematic 
approach implies the use of the cumulant expansion instead of the simple one 
used by Barker. But his result [eq. (23) with <pi(qlq ‘) = 0 and Q , instead of Qu 
and (,)N Qf1 for the configurational integral] remains unchanged. It is possi­
ble to go on and obtain the expansions* for the unary and binary distribution

1 ( Iwinji lo the self-consistency condition all the connected graphs which have at least one field 
point joined to the others by only one line do not contribute to these expansions.
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functions too. In the same approximation these expansions will be equivalent 
to eqs. (20) and (21) with <p,(<q'q') = 0 [the result of papers1'2)]. Although 
generalization of Barker’s method to take account of stronger fluctuations of 
density of the system (two-particle occupation of a cell, for example) is a rather 
difficult problem, still in the Mayer-like expansions of the configurational 
integral and distribution functions some classes of the diagrams can probably be 
summed and thus the long range correlations will partially be taken into account.
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