УДК 535.37+541.65+543.4

Д.В. Кленицкий, канд. физ.-мат. наук, доц. (БГТУ, г. Минск);
Л.Л. Гладков, проф., д-р физ.-мат. наук (БГАС, г. Минск);
А.Б. Крылов, доц., канд. биол. наук;
И.В. Вершиловская, ст. преп., канд. биол. наук;
Н.Н. Крук, зав. кафедрой физики, проф., д-р физ.-мат. наук

## О НЕЭКВИВАЛЕНТНОСТИ NH-ЦЕНТРОВ В ЯДРЕ МАКРЦОИКЛА СВОБОДНЫХ ОСНОВАНИЙ КОРРОЛОВ

Тетрапиррольные макрогетероциклические соединения обладают развитой сопряженной электронной системой, которая обеспечивает коммуникацию  $\pi$ -электронов скелетных атомов по всему макроциклу. Синтез огромного количества макрогетероциклических соединений с молекулярной конформацией, характеризующейся значительными отклонениями от планарного строения макроцикла, и развитие концепции конформационной подвижности макроцикла [1] привели к необходимости пересмотра ранних представлений о формировании сопряженной  $\pi$ -электронной системы в макрогетероцикле.

Такие соединения могут быть ароматическими, причем в формировании ароматического π-сопряженного контура принимают участие все скелетные атомы макроцикла, вклады которых могут существенно варьироваться в зависимости от строения молекулы [2].

Характеристики межмолекулярных взаимодействий в ядре макроцикла в значительной степени зависят от ориентации пиррольных колец относительно средней плоскости макроцикла и свойств связей N–H, которые, в свою очередь, определяются распределением электронной плотности в макроцикле и степенью гибридизации атома азота.

Выполнение тетрапиррольными соединениями своих биологических функций сопряжено с перестройками молекулярной конформации макроцикла [3], и, соответственно, с изменениями указанных характеристик.

При этом необходимо учесть, что несимметричный характер архитектуры периферического замещения порфиринового макроцикла, либо асимметрия самих макрогетероциклов, приводят к тому, что атомы азота отдельных пиррольных колец обладают существенно отличающимися углом наклона  $\phi$  относительно средней плоскости макроцикла и значениями степени гибридизации  $\lambda^2$ .

Макроцикл корролов, которые представляют собой сокращенные макроциклические соединения, содержит три метиновых мостика, и, соответственно, два соседних пиррольных фрагмента соединены С<sub>а</sub>-С<sub>а</sub> связью, а сам макроцикл содержит три пиррольных и одно пирролениновое кольцо (рис. 1).

При этом пиррольный фрагмент донирует в  $\pi$ -электронную систему макроцикла на один электрон больше, чем пирролениновый, и данные структурные изменения компенсируют уменьшение количества  $\pi$ -электронов в макроцикле из-за отсутствия одного C<sub>m</sub>-атома углерода.

В результате наличия в ядре макроцикла трех протонов свободные основания корролов имеют дополнительные особенности. Вопервых, стерические взаимодействия трех протонов в ядре макроцикла приводят к нарушению его планарности даже при отсутствии любых других возмущающих факторов; во-вторых, свободные основания коррола всегда существуют в виде конформеров – NH-таутомеров, отличающихся расположением трех протонов в асимметричном тетрапиррольном макроцикле (рис. 1).



Рисунок 1 – Молекулярная структура NH-таутомеров коррола. Нумерация атомов дана согласно номенклатуре IUPAC

Такие структурные особенности приводят к значительным различиям в спектрально-люминесцентных и физико-химических характеристиках корролов по сравнению с порфиринами, а также различиям между двумя NH-таутомерами [4]. Выполненные оценки позволили предположить, что в силу структурных особенностей строения макроцикла степень гибридизации  $\lambda^2$  каждого из атомов азота в ядре макроцикла индивидуальна.

Для проверки данной гипотезы нами были выполнены расчеты степени гибридизации  $\lambda^2$  атомов азота для свободных оснований коррола с различной архитектурой периферического замещения, и их протонированных/N-алкилированных производных (см. табл. ниже).

Степень гибридизации  $\lambda^2$  атома азота рассчитывали по уравнению 1 +  $\lambda^2 \cos \theta = 0$ , где  $\theta$  – среднее арифметическое величин трех углов между направлениями связей атома азота с соседними атомами  $\theta$  (C<sub>a</sub>NC<sub>зам</sub>),  $\theta$  (C<sub>a</sub>NC<sub>a</sub>) и  $\theta$  (C<sub>a</sub>NC<sub>зам</sub>).

Расчеты выполняли для структур, молекулярная геометрия которых в основном синглетном S<sub>0</sub>-состоянии оптимизировалась методом функционала плотности (DFT) с обменно-корреляционнным функционалом PBE и трехэкспоненциальным базисом 3*z*, реализованном в программном пакете для квантово-химических расчетов «Природа» [5].

Для оптимизированной структуры рассчитывали энергию основного состояния молекулы, энергии молекулярных орбиталей и определяли длины связей между скелетными атомами макроцикла.

|                                                                           | $\lambda^2$ |        |         |          |
|---------------------------------------------------------------------------|-------------|--------|---------|----------|
| Молекула                                                                  | Пиррол      | Пиррол | Пиррол  | Пиррол D |
|                                                                           | A           | В      | C       | imppon D |
| Н <sub>3</sub> Кор                                                        | 2,010/      | 2,231/ | 2,002/- | -/2,022  |
|                                                                           | 2,096       | 2,078  |         |          |
| Н <sub>3</sub> ОктаАлкКор                                                 | 2,012/      | 2,262/ | 2,002/- | -/2,006  |
|                                                                           | 2,125       | 2,071  |         |          |
| Н <sub>3</sub> ТетраАлкКор                                                | 2,002/      | 2,268/ | 2,002/- | -/2,022  |
|                                                                           | 2,078       | 2,103  |         |          |
| Н <sub>3</sub> ТриАрилКор                                                 | 2,003/      | 2,234/ | 2,003/- | -/2,027  |
|                                                                           | 2,079       | 2,089  |         |          |
| H4Kop <sup>+</sup>                                                        | 2,202       | 2,297  | 2,293   | 2,203    |
| Н4ОктаАлкКор <sup>+</sup>                                                 | 2,228       | 2,306  | 2,300   | 2,225    |
| Н <sub>4</sub> ТриАрилКор <sup>+</sup>                                    | 2,166       | 2,297  | 2,289   | 2,154    |
| Н <sub>3</sub> (N <sub>21</sub> -CH <sub>3</sub> )ТриАрилКор <sup>+</sup> | 2,553       | 2,061  | 2,392   | 2,156    |
| Н <sub>3</sub> (N <sub>22</sub> -CH <sub>3</sub> )ТриАрилКор <sup>+</sup> | 2,057       | 2,700  | 2,153   | 2,253    |

Таблица – Степень гибридизации λ<sup>2</sup> для атомов азота пиррольных колец корролов с различной архитектурой периферического замещения и состоянием макроциклического ядра. Числитель и знаменатель у свободных оснований корролов относятся к NH-таутомерам T1 и T2

Анализ представленных в табл. результатов показывает, что степень гибридизации  $\lambda^2$  различна у атомов азота всех четырех пиррольных колец, причем каждый из двух NH-таутомеров обнаруживает собственный уникальный набор значений  $\lambda^2$ , при этом обнаруживается зависимость от архитектуры периферического замещения: алкилирование по C<sub>b</sub> атомам углерода сопровождается заметно меньшим значением степени гибридизации  $\lambda^2$  азота пиррола B, чем присоединение арильных групп по C<sub>b</sub> атомам.

У протонированных форм, которые являются более симметричными, степень гибридизации  $\lambda^2$  также различается у четырех атомов азота. При этом протонирование атома азота одного из колец либо образование ковалентной связи с алкильными или галоидалкильными группами приводят к значительному росту степени гибридизации  $\lambda^2$ атомов азота во всех пиррольных кольцах.

Таким образом, можно однозначно утверждать, что пиррольные кольца в макрогетероцикле не являются эквивалентными, и многоцентровые межмолекулярные взаимодействия в ядре макрогетероцикла должны анализироваться с учетом их неэквивалентности. Благодаря эффективной NH-таутомерии ядро макрогетероцикла представляет собой динамическую систему четырех индивидуальных центров.

Установление механизмов влияния гибридизации атомов азота пиррольных колец макрогетероцикла на его физико-химические и спектрально-люминесцентные характеристики является, по нашему мнению, ключевым элементом для моделирования межмолекулярных взаимодействий в ядре макроцикла при хелатировании ионов металлов, протонировании, комплексообразовании с анионами, специфической сольватации в растворах и связывании с (био)полимерами.

## ЛИТЕРАТУРА

1. Senge M.O., MacGovan S.A., O'Brien J. Conformational control of cofactors in nature – the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles // Chem. Commun. – 2015. – Vol. 51. –  $N_{2}$  96. – P. 17031–17063.

2. Fliegl H., Sundholm D. Aromatic Pathways of Porphins, Chlorins, and Bacteriochlorins // J. Org. Chem. – 2012. – Vol. 77. – № 7, – P. 3408–3414.

3. Senge M.O. The conformation flexibility of tetrapyrroles – current model studies and photobiological relevance // Photochem. Photobiol. – 1992. – Vol.16. –  $N_{2}$  1. – P. 3–36.

4. Beenken W.J.D., Presselt M., Ngo T.H., Dehaen W., Maes W., Kruk M.M. Molecular Structures and Absorption Spectra Assignment of Corrole NH Tautomers // J. Phys. Chem., A. – 2014. – Vol. 118. –  $N_{2}$  5. – P. 862–871.

5. Laikov D.N. Fast evaluation of density functional exchangecorrelation terms using the expansion of the electron density in auxiliary basis sets // Chem. Phys. Lett.  $-1997. - Vol. 281. - N_{2} 1. - P. 151-156.$