И. М. ЖАРСКИЙ, В. П. ПАХОМОВ, Г. С. БОКУН, В. С. ВИХРЕНКО

ПРИМЕСНЫЕ ЭЛЕКТРОННЫЕ СОСТОЯНИЯ В ТВЕРДЫХ ЭЛЕКТРОЛИТАХ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ

Твердые электролиты, имеющие высокую ионную электропроводность, являются типичными ионными кристаллами. Они характеризуются наличием узких зон разрешенных электронных состояний и широкой запрещенной щелью между валентной зоной и зоной проводимости. Свойства диоксидициркониевых твердых электролитов в значительной мере определяются количеством и видом примесных катнонов пониженной валентности [1], стабилизирующих диоксид циркония в кубическую флюоритиую фазу. Ранее было рассмотрено влияние примесных катионов на свойства твердых электролитов в рамках классической модели твердого тела [2]. Для многих процессов необходимо также учитывать их электронные свойства.

Важную информацию о влиянии дефектов на свойства узкозонных ионных кристаллов можно получить, моделируя зоны вырожденными уровнями ионов [3]. В таком случае влияние конечной ширины зон может быть учтено на основании модели Костера Слэтера [4, 5]. При этом целесообразно выделить класс решении, соответствующий локализованным состояниям, что позволяет построить простои алгоритм для описания не только одиночных дефектов, но и их произвольных комилексов [6].

Волновую функцию дефектного кристалла ищем в виде

$$\psi(\mathbf{r}) = \sum_{\mathbf{q},l} U(\mathbf{R}'_{\mathbf{q}}) \chi_l(\mathbf{r} - \mathbf{R}'_{\mathbf{q}}), \qquad (1)$$

где χ_l (r — R_q) — атомная орбиталь, относящаяся к иону или дефекту, расположенному в узле R_q ; индексы l и q перечисляют неэквивалентные узлы в примитивной ячейке и ячейки кристалла соответственно.

Для искомых амплитуд используем представление

$$U_{l}(\mathbb{R}_{q}^{l}) = \int \omega_{l}(\mathbf{k}) e^{i\mathbf{k}\mathbf{R}_{q}^{l}} d\mathbf{k}.$$
 (2)

Интегрирование в (2) осуществляется по приведенной к единичному объему первой зоне Бриллюэна.

Используя (1), (2) в одноэлектронном уравнении Шредингера, приходим к системе интегральных уравнений относительно ω_l(k):

$$\int e^{i\mathbf{k}\mathbf{R}_{\mathbf{q}}^{\mathbf{l}}} \left[\left(\varepsilon_{\mathbf{11}}^{\mathbf{R}_{\mathbf{q}}^{\mathbf{l}}} - E \right) \omega_{1} \left(\mathbf{k} \right) + \varepsilon_{\mathbf{12}} \omega_{2} \left(\mathbf{k} \right) f \left(\mathbf{k} \right) + \varepsilon_{\mathbf{12}} \omega_{3} \left(\mathbf{k} \right) f^{*} \left(\mathbf{k} \right) \right] d\mathbf{k} = 0, \quad (3)$$

$$\int e^{i\mathbf{k}\mathbf{R}_{\mathbf{q}}} \left[\left(\varepsilon_{22}^{\mathbf{R}_{\mathbf{q}}^{2}} - E \right) \omega_{2} \left(\mathbf{k} \right) + \varepsilon_{12} \omega_{1} \left(\mathbf{k} \right) f \left(\mathbf{k} \right) \right] d\mathbf{k} = 0, \tag{4}$$

$$\int e^{i\mathbf{k}\mathbf{R}_{\mathbf{q}}^{2}} |(\varepsilon_{33}^{\mathbf{R}_{\mathbf{q}}^{2}} - E)\omega_{3}(\mathbf{k}) + \varepsilon_{12}\omega_{1}(\mathbf{k})f(\mathbf{k})] d\mathbf{k} = 0,$$
(5)

$$f(\mathbf{k}) = 4\cos\left(\frac{k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right)\cos\left(\frac{k_z a}{2}\right) - 4i\sin\left(\frac{k_x a}{2}\right)\sin\left(\frac{k_y a}{2}\right)\sin\left(\frac{k_z a}{2}\right)\sin\left(\frac{k_z a}{2}\right).$$
(6)

Система уравнений записана для случая кристалла со структурой

флюорита (а — расстояние между анцонными узлами, равное половине нараметра решетки) при условии предельной локализации волновых функций на узлах решетки. Соответственно отличны от нуля только диагональные (ε_{11} , ε_{22} , ε_{33}) и относящиеся к ближайшим соседям (ε_{12}) матричные элементы. Влияние дефектов передается возмущением диагональных элементов. Для невозмущенных узлов $\varepsilon_{1}^{a} = \varepsilon_{ll}$.

Радиусы-векторы возмущенных узлов обозначим как R_0 (l=1, 2, 3). Из вида системы (3)-(5) следует, что уравнения для невозмущенных узлов будут удовлетворены, если положить:

$$\omega_{1}(\mathbf{k}) \left(\varepsilon_{11} - E\right) + \varepsilon_{12} \omega_{2}\left(\mathbf{k}\right) f\left(\mathbf{k}\right) + \varepsilon_{12} \omega_{3}\left(\mathbf{k}\right) f^{*}\left(\mathbf{k}\right) = \lambda_{1}\left(\mathbf{k}\right), \tag{7}$$

$$\omega_2(\mathbf{k}) \left(\varepsilon_{22} - E\right) + \varepsilon_{12} \omega_1(\mathbf{k}) f(\mathbf{k}) = \lambda_2(\mathbf{k}), \tag{8}$$

$$\omega_{3}(\mathbf{k})(\varepsilon_{33} - E) + \varepsilon_{13}\omega_{1}(\mathbf{k})f^{*}(\mathbf{k}) = \lambda_{3}(\mathbf{k})$$
(9)

и определить функции, входящие в правые части этих уравнений, следующим образом:

$$\lambda_{l}(\mathbf{k}) = \sum_{\mathbf{Q}} B_{\mathbf{Q}}^{l} \exp\left(-i\mathbf{k}\mathbf{R}_{\mathbf{Q}}^{l}\right).$$
(10)

Из представлений (10) вытекает, что $\omega_l(\mathbf{k})$, определенные из (7)—(10), удовлетворяют всем уравнениям бесконечной системы (3)—(5) для невозмущенных узлов при произвольных значениях параметров $B_{\mathbf{q}}$.

Для определения последних и энергетического спектра локализованных состояний снова используем (7)—(9), но для тех уравнений исходной системы (3)—(5), которые относятся к возмущенным узлам. В результате приходим к системе:

$$B_{\mathbf{Q}}^{l} \frac{1}{V_{\mathbf{R}_{\mathbf{Q}}^{l}}} = \sum_{l'} \sum_{\mathbf{Q}'} B_{\mathbf{Q}'}^{l'} g\left(\mathbf{R}_{\mathbf{Q}}^{l} - \mathbf{R}_{\mathbf{Q}'}^{l'}\right), \tag{11}$$

$$g_{ll'}(\mathbf{R}_{\mathbf{Q}}^{\prime}-\mathbf{R}_{\mathbf{Q}'}^{\prime\prime})=\int \exp\left\{i\mathbf{k}\left(\mathbf{R}_{\mathbf{Q}}^{\prime}-\mathbf{R}_{\mathbf{Q}'}^{\prime\prime}\right)\right\}\omega_{l}^{l'}(\mathbf{k})\,\mathrm{d}\mathbf{\kappa}.$$
 (12)

Здесь об (k) — функция Грина для системы уравнений (7)—(9), а возмущение диагональных элементов в узлах, где расположены дефекты

$$V_{\mathbf{R}_{\mathbf{Q}}^{l}} = \varepsilon_{ll} - \varepsilon_{ll}^{\mathbf{R}_{\mathbf{Q}}^{l}},\tag{13}$$

определяется разностью диагональных элементов ионов матрицы и дефекта.

Численное решение системы уравнений (11)—(13) позволяет рассмотреть локализованные состояния в кристалле [7]. На рис. 1 отражен сдвиг электронных уровней дефектов в кристаллах при различных значениях возмущения V. В зависимости от расположения дефекта в решетке возмущения, согласно (13), отсчитываются от уровня катнона или аниона матрицы и его абсолютная величина откладывается по оси ординат. По оси абсцисс откладываются соответствующие уровни в кристалле, отсчитываемые от дна зоны проводимости. Точки с и v днаграммы обозначают границы зон проводимости и валентной соответственно. Результаты получены при параметрах модели $\varepsilon_{11} = -4,2; \varepsilon_{22} = -11, \varepsilon_{12} = -0,2$ эВ, характерных для кристаллического дноксида циркония.

На диаграммы видно, что смещение энергий локализованных состояний по сравнению с вычисленными по схеме [3] (последним на рисунке соответствуют прямые линии) незначительно, если уровни дефекта в катнонном узле отделены от потолка валентной зоны промежутком, превышающим 2 эВ. Уровень же аннонного дефекта, в том числе и вакан-

4. Beend ALL EGGP No 3 (RIM.)

сии, еще менее подвержен влиянию зоны проводимости. Заметное смещение в этом случае наблюдается лишь при сближении уровня дефекта с границей зоны на интервал, меньший 1 эВ.

Отрезок АВ на диаграмме отделяет энергии свободных дефектов, попадающие в разрешенные зоны. В случае, когда уровень катиона по оценкам [3] попадает в валентную зону (часть кривой 1, расположенная выше AB), наблюдается выталкивание этого уровня в энергетическую щель. Аналогично и уровень анионного дефекта, оказавшийся, по

Рис. 1. Зависимость энергии локализованных уровней от величины возмущения (V) электронных уровней дефектов: 1 — дефект в катнонной подрешетке, 2 — аппонной подрешетке

Рис. 2. Зависимость ширины примесной подзоны от величины энергии возмущения примесного аниона либо вакансии. Обозначения см. на рис. 1

оценкам [3], в зоне проводимости, располагается в энергетической шели вблизи дна зоны.

Полная стабилизация диоксида циркония в кубическую фазу достигается введением примесных катнонов пониженной валентности в достаточно высоких концентрациях, что приводит к появлению большого количества вакансий в анионной подрешетке. В таких условиях примесные удовни могут образовывать в запрещенной щели примесную подзону. Для изучения возможных характеристик примесной подзоны вакансий предполагалось, что они регулярно, по закону ГЦК решетки с параметром 4а, распределены в объеме твердого электролита. При этом концентрация вакансий равна 6,25%. Кривые 1 и 2 на рис. 2 определяют границы примесной подзоны в зависимости от энергии возмущения V. Например, при V=3 эВ ширина примесной подзоны составляет 1,3 эВ. Отметим, что при V=5,6 эВ примесная подзона вакансий сливается с зоной проводимости. Возможность интерпретации экспериментальных данных по поглощению света кристаллами стабилизированного диоксида циркония с привлечением понятия о примесной подзоне вакансий рассмотрена в [8].

Summary

The model of Slater and Koster has been employed to investigate imperfect ionic crystals. The electronic impurity levels have been determined for the fluorite structure crystal.

Литература

1. Чеботин В. Н., Перфильев М. В. Электрохимия твердых электролитов.

M., 1978. 312 c.
2. Vikhrenko V. S., Kułak M. I., Pakhomov V. P., Zharskii I. M. // Exlended Abstracts of the 37th Meeting of ISE. Vilnius, 1986. Vol. 3. P. 195-197.
3. Levine J. D., Mark P. // Phys. Rev. 1966. Vol. 144, N 2. P. 751-763.
4. Wolfram T., Kraut E. A., Morin F. J. // Phys. Rev. 1973. Vol. 7B, N 4.

P. 1677-1693.

5. Вольтфрам Т., Эллиалтноглу Т. // Теория хемосорбции / Под ред. Дж. Смита. М., 1983. С. 211--255.

50

6. Бокун Г. С., Вихрепко В. С., Жарский И. М., Шванова Н. П. // Вссці АН БССР, Сер. хім. навук. 1987. № 1. С. 121.

7. Жарский И. М., Бокун Г. С., Вихренко В. С. и др. // Алгоритмы и программы. ГосФАП СССР. ВНТИЦ ГКНТ. 1988. № 3. С. 5.

8. Александров В. А., Батыгов С. Х., Вишиякова М. А. и др. // Физика твердого тела. 1984. Т. 26, № 5. С. 1313—1318.

Белорусский технологический институт им. С. М. Кирова Поступила в редакцию 15.10.87

УДК 666.01

Л. М. СИЛИЧ, Н. М. БОБКОВА, Л. Ф. ПАПКО

ОСОБЕННОСТИ СТРОЕНИЯ БЕСЩЕЛОЧНЫХ АЛЮМОСИЛИКАТНЫХ СТЕКОЛ С ДВУМЯ ДВУХВАЛЕНТНЫМИ КАТИОНАМИ

Системы типа RO—Al₂O₃—SiO₂—TiO₂ привлекают внимание многих исследователей, так как являются основой для синтеза стеклокристаллических материалов с высокими характеристиками. Как правило, объектом исследования являются системы, в которых RO представлен оксидами MgO, CaO, SrO либо BaO. Однако введение двух двухвалентных катионов одновременно позволяет изменить физико-химические характеристики стеклокристаллических материалов и получать, таким образом, материалы с комплексом заранее заданных свойств. В связи с этим представляет интерес изучение строения стекол, содержащих катионы с близкими (Sr²⁺, Ba²⁺) и резко отличными (Mg²⁺, Ba²⁺) кристаллохимическими и энергетическими характеристиками. Полученные стекла содержат от 40 до 50 мол. % SiO₂ и от 20 до 35 мол. % RO.

Исследованием физико-химических свойств стекол установлено, что повышение содержания оксидов группы RO, а при их постоянном суммарном содержании замена MgO, SrO на BaO вызывает снижение показателей таких структурно-чувствительных свойств, как микротвердость, температура начала размягчения, кислотоустойчивость. Поскольку данные характеристики определяются прочностью химических связей катион—анион в его структуре, то снижение степени ковалентности связей металла с кислородом при введении BaO, имеющего самый большой ионный радиус и наименьшую степень ковалентности связи Ba—O из числа всех катионов группы R²⁺, и вызывает снижение показателей данных свойств.

Электронно-микроскопическое исследование стекол систем MgO— BaO—Al₂O₃—SiO₂—TiO₂ и SrO—BaO—Al₂O₃—SiO₂—TiO₂ выявляет их микронеоднородное строение. Четко выраженная капельная форма и резко обозначенные границы неоднородностей в стеклах с содержашием Al₂O₃ до 20 мол.% свидетельствуют о ликвационной природе данных исоднородностей. Расплывчатая форма неоднородностей, характерная для стекол высокоглиноземистой области (свыше 20 мол.% Al₂O₃), не позволяет четко отнести данную структуру к ликвационной. Возможно, развитие ликвационных явлений в высокоглиноземистых стеклах затруднено их высокой вязкостью. Нужно отметить, что при переходе от марниевых и стронциевых стекол к бариевым количество ликвационных капель уменьшается. Повышение степени однородности структуры при эквимолекулярной замене MgO, SrO на BaO подтверждается данными инфракрасной спектроскопии.

Инфракрасные спектры поглощения стекол системы SrO—BaO— Al₂O₃—SiO₂—TiO₂ с преобладающим содержанием SrO состоят из основной полосы поглощения в области 900—1100 см⁻¹ с резкими максимумами при 1040—1020 см⁻¹, т. е. основные структурные комплексы представлены дисиликатными группировками слоистого типа [1]. Менее ин-