BY 10337 C1 2008.02.28

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(12)

РЕСПУБЛИКА БЕЛАРУСЬ

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

- (19) **BY** (11) **10337**
- (13) **C1**
- (46) 2008.02.28
- (51) MIIK (2006) C 03C 10/00 A 61K 6/02

(54) СПОСОБ ПОЛУЧЕНИЯ СТОМАТОЛОГИЧЕСКОГО СТЕКЛОКЕРАМИЧЕСКОГО ОБЛИЦОВОЧНОГО МАТЕРИАЛА

- (21) Номер заявки: а 20060613
- (22) 2006.06.20
- (43) 2008.02.28
- (71) Заявитель: Учреждение образования "Белорусский государственный технологический университет" (ВҮ)
- (72) Авторы: Богданович Ирина Аркадьевна; Костюшко Юрий Леонардович; Бобкова Нинель Мироновна; Кузьменкова Наталия Михайловна (ВҮ)
- (73) Патентообладатель: Учреждение образования "Белорусский государственный технологический университет" (ВҮ)
- (56) US 6797048 B2, 2004. BY 1946 C1, 1997. US 4798536, 1989. JP 08040746 A, 1996. US 5653791 A, 1997. US 5698019 A, 1997. US 4604366, 1986. JP 2001-316130 A. JP 08277145 A, 1996.

(57)

Способ получения стоматологического стеклокерамического облицовочного материала, включающий получение шихты и ее термообработку, отличающийся тем, что термообработку шихты осуществляют по режиму, включающему нагрев шихты со скоростью 400-800 °C/час до 1250-1415 °C, выдержку ее при этой температуре в течение 3-12 часов, снижение температуры со скоростью 100-300 °C/час до 900 °C и выдержку при этой температуре в течение 3-100 минут, подъем температуры до 1000-1200 °C и выдержку при этой температуре в течение 1-10 часов.

Изобретение относится к производству стоматологических материалов, в частности облицовочных стеклокерамических материалов для металлокерамических зубных протезов.

Известен способ получения полевошпатового зубного фарфора [1], содержащего в качестве кристаллической фазы лейцит с размером кристаллов до 35 мкм в количестве не менее 45 %. Стоматологический материал характеризуется высокими прочностными показателями (предел прочности при изгибе не менее 110 МПа), имеет температурный коэффициент линейного расширения (ТКЛР) в диапазоне $(13-15)\cdot 10^{-6} {\rm K}^{-1}$. Способ включает приготовление шихты и ее термообработку по температурному режиму, включающему: нагрев шихты до температуры $1175-1286~{\rm C}$ со скоростью около $200~{\rm C}$ в час, выдержку расплава в течение $2-10~{\rm V}$ часов, охлаждение до температуры около $1040~{\rm C}$ со скоростью около $3~{\rm C}$ /мин и выдержку при этой температуре в течение $1-5~{\rm V}$ часов.

Недостатком данного способа является узкий диапазон значений ТКЛР материала, что не позволяет использовать его для всех сплавов, применяющихся для изготовления металлокерамических зубных протезов.

BY 10337 C1 2008.02.28

Наиболее близким к предлагаемому составу по технической сущности и достигаемому результату является способ получения стоматологического стеклокристаллического материала [2], включающий приготовление шихты из оксидов, гидроксидов и солей металлов, ее плавление при 1550-1750 °C в течение 2-5 часов и кристаллизацию расплава путем его охлаждения до 1300 °C со скоростью не более 100 °C/час. Материал содержит стеклофазу и кристаллы лейцита размером до 10 мкм в количестве до 43 %, характеризуется относительно широким диапазоном значений ТКЛР: (12,0-17,5)·10-6K-1.

Недостатками данного способа являются относительно невысокие прочностные показатели стоматологического материала (предел прочности при изгибе не более 125 МПа) и высокая температура варки стекла.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа получения стоматологического стеклокерамического лейцитсодержащего облицовочного материала, характеризующегося более широким диапазоном значений ТКЛР, высокими прочностными показателями и более низкой температурой варки стекла.

Поставленная задача достигается тем, что способ получения стоматологического стеклокерамического облицовочного материала включает получение шихты и ее термообработку и отличается тем, что ее осуществляют по следующему режиму: нагрев шихты со скоростью 400-800 °С/час до 1250-1415 °С, выдержка ее при этой температуре в течение 3-12 часов, снижение температуры со скоростью 100-300 °С/час до 900 °С и выдержка при этой температуре в течение 3-100 минут, подъем температуры до 1000-1200 °С и выдержка при этой температуре в течение 1-10 часов.

Отличительным признаком, позволяющим решить поставленную задачу, является то, что в предложенном режиме термообработки предусмотрена стадия образования зародышей кристаллов лейцита при температуре около 900 °C, что позволяет управлять их размером и количеством и, соответственно, достигать более высоких прочностных показателей материала, а также в широком диапазоне регулировать ТКЛР материала.

Данный способ синтеза стеклокристаллического облицовочного материала позволяет получать продукт, характеризующийся пределом прочности при изгибе не менее 150 МПа и имеющим ТКЛР в диапазоне $(9,5-18,5)\cdot 10^{-6} \text{K}^{-1}$.

Материал содержит стеклофазу и распределенную в ней кристаллическую фазу (лейцит) в количестве до 65 %. Высокая прочность и износостойкость материала обеспечивается равномерным распределением кристаллов лейцита с размером от 0,5 до 10 мкм в объеме стеклофазы.

Изобретение поясняется примером.

Приготавливается шихта для получения стоматологического облицовочного материала путем тщательного смешения следующих компонентов: SiO_2 , Al_2O_3 , K_2O , Na_2O , Li_2O , CaO, MgO, CeO_2 , BaO, ZrO_2 , P_2O_5 , B_2O_3 , ZnO, KNO_3 .

Шихту подвергают термообработке по следующему режиму: нагрев со скоростью 650 °С/час до температуры 1350 °С, выдержка при этой температуре в течение 6,5 часов, снижение температуры со скоростью 250 °С/час до температуры 900 °С и выдержка при этой температуре в течение 65 мин, подъем температуры до 1080 °С и выдержка при этой температуре в течение 7 часов. Далее полученный материал подвергаем быстрому охлаждению, помолу до полного прохождения через сито № 0045.

Определение физико-механических характеристик (предела прочности при изгибе и температурного коэффициента термического расширения) проводим по стандартным методикам.

Подобным образом готовят ряд других образцов. Результаты приведены в таблице.

BY 10337 C1 2008.02.28

№ п/п	Параметры варки шихты			Параметры кристаллизации		Физико-механические	
				лейцита		свойства материала	
	Скорость подъема, °С/час	Температура варки, °C	Время выдерж- ки, час	Выдержка при температуре зародышеобразования, мин	Выдержка при температуре роста кристаллов, час	ТКЛР, ∙10 ⁶ К ⁻¹	Предел прочности при изги- бе, МПа
1	600	1250	4	3	1	9,5	151,5
2	400	1280	5	10	2,5	11,8	155,7
3	500	1300	5,5	25	3	13,0	159,3
4	600	1310	6	20	5,5	13,5	160,8
5	400	1315	8	55	6	14,1	167,7
6	700	1300	12	60	7	16,6	171,9
7	800	1390	10,5	100	8,5	17,0	180,0
8	600	1415	8	85	10	18,5	189,2
Ана- лог[1]	200	1175- 1286	2-10	-	-	13,0-15,0	110-140
Прото- тип [2]	-	1550- 1750	2-5	-	-	12,0-17,5	100-125

Как видно из данных, приведенных в таблице, предлагаемый способ получения стоматологического стеклокерамического облицовочного материала позволяет при более низкой по сравнению с прототипом температуре получать высокопрочный продукт, характеризующийся пределом прочности при изгибе не менее 150 МПа и имеющим широкий диапазон значений ТКЛР: $(9,5-18,5)\cdot 10^{-6} \text{K}^{-1}$.

Стеклокерамический облицовочный материал может быть использован в стоматологической практике при протезировании зубов.

Источники информации:

- 1. Патент США 4.798.536, МПК A 61C 013/08; A 61C 013/083; C 03C 010/10. High strength feldspathic dental porcelains containing crystalline leucite. 1989.
- 2. Патент США 6797048. МПК С 04B 035/19; С 04B 035/64; А 61K 006/27; С 03C 003/04. Method for preparing glass-ceramic. 2004 (прототип).