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FAST SEARCH FOR SHORTEST PATHS IN LARGE SPARSE GRAPHS 
DIVIDED INTO CONNECTED DENSE CLUSTERS 

The aim of the paper is to solve the problem of finding shortest paths between all pairs of vertices in 
simple directed weighted large sparse graphs. It is assumed that the graphs with positive and negative 
real weights of edges are decomposed into unequally sized weakly connected clusters. Since the problem 
has numerous practical applications in various domains, and the graphs may be too large, our goal is to 
speed up the problem solving on modern heterogeneous multiprocessor systems and multi-core proces-
sors. The paper extends the capabilities of existing blocked algorithms by utilizing blocks of unequal 
sizes. The extension supports natural graph modeling of real-world networks and allows the use of large 
sparse graphs divided into dense weakly connected clusters in the shortest path problems. Our approach 
is to compute shortest paths for all-pairs of cluster vertices represented by the cost adjacency matrix in 
advance, and afterward compute the shortest paths between vertices of different clusters through inter-
connect (bridge) edges in real time on demand. The approach is based on developing a new fast operation 
that accurately computes the shortest paths between vertices of one cluster that pass through the vertices 
of another neighboring cluster and through the edges connecting the clusters. Applying this operation to 
pairs of clusters allowed us to develop an approximate parallelizable algorithm, efficient regarding the 
CPU time and memory space consumed, that computes the shortest paths between the vertices within 
clusters and then between clusters. The algorithm can introduce inaccuracies in shortest paths when the 
weights of edges connecting clusters are small. It finds accurate solutions when the weights of these edges 
are larger than the weights of edges within clusters, e. g., in the case of road networks. 
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БЫСТРЫЙ ПОИСК КРАТЧАЙШИХ ПУТЕЙ 

В БОЛЬШИХ РАЗРЕЖЕННЫХ ГРАФАХ, РАЗДЕЛЕННЫХ  
НА СВЯЗНЫЕ ПЛОТНЫЕ КЛАСТЕРЫ 

Целью статьи является решение задачи поиска кратчайших путей между всеми парами вер-
шин в простых ориентированных взвешенных больших разреженных графах. Предполагается, что 
графы с положительными и отрицательными действительными весами ребер декомпозированы 
на слабосвязанные кластеры разного размера. Поскольку задача имеет множество практических 
приложений в различных областях, а графы могут быть слишком большими, наша цель − уско-
рить решение задачи на современных гетерогенных многопроцессорных системах и многоядер-
ных процессорах. В статье расширяются возможности существующих блочных алгоритмов за 
счет использования блоков неравных размеров. Расширение поддерживает естественное и адек-
ватное графовое моделирование реальных сетей и позволяет использовать большие разреженные 
графы, разделенные на плотные слабосвязанные кластеры, при решении задач о кратчайших пу-
тях. Наш подход заключается в том, чтобы заранее вычислять кратчайшие пути для всех пар вер-
шин кластеров, представленных матрицей стоимости-смежности, а затем по запросу определять 
кратчайшие пути между вершинами разных кластеров в реальном времени. Подход основан на 
разработке новой быстрой операции, которая точно вычисляет кратчайшие пути между верши-
нами одного кластера, проходящие через вершины другого соседнего кластера и через ребра, со-
единяющие кластеры. Применение этой операции к парам кластеров позволило нам разработать 
приближенный распараллеливаемый алгоритм, эффективный по потребляемым процессорному 
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времени и объему памяти, вычисляющий кратчайшие пути внутри кластеров, а затем между кла-
стерами. Алгоритм может вносить неточности в кратчайшие пути, когда веса ребер, соединяющих 
кластеры, малы. Он находит точные решения, когда веса этих ребер больше, чем веса ребер 
внутри кластеров, например, в случае дорожных сетей. 

Ключевые слова: разреженный граф, кластер, задача о кратчайших путях, блочный алго-
ритм, блоки неравных размеров, пространственная и временная эффективность. 
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зико-математические науки и информатика. 2024. № 2 (284). С. 96–103 (На англ.). 

DOI: 10.52065/2520-6141-2024-284-13. 
 

Introduction. In this paper we consider the prob-
lem of finding shortest paths between all pairs of ver-
tices in simple directed weighted large sparse graphs 
whose edges have positive and negative real weights, 
and which are decomposed into unequally sized clus-
ters. Since the problem has numerous practical appli-
cations in various domains, our goal is to speed up 
the solution of the problem on the available resources 
of modern heterogeneous multi-processor systems 
and symmetric multicore processors. 

Two main families of algorithms for solving the 
all-pairs shortest paths problem (APSP) are known: 
1) those based on the Dijkstra-type SSSP-algorithm 
with a single-source (-sink) [1]; 2) those based on 
the Floyd-Warshall APSP algorithm [2]. Any algo-
rithm from the first family must be applied to each 
source (sink) vertex. Each algorithm of the second 
family returns a complete solution to the problem.  

The first family includes Dijkstra’s algorithm 
assuming that the weights of the edges are positive, 
the Bellman-Ford and Johnson’s algorithms assum-
ing that the weights are positive and negative, and 
others [1, 3, 4]. The second family includes the 
Floyd-Warshall (FW) algorithm [2], the blocked 
Floyd-Warshall (BFW) algorithm proposed by Ven-
kataraman, Park, Katz et al. [5–7], the graph exten-
sion-based algorithm GEA and the heterogeneous 
blocked APSP algorithm HBAPSP proposed by Pri-
hozhy and Karasik in [8–11]. It is shown in [10–18] 
that blocked algorithms provide the following ad-
vantages: 1) suitability for parallelization; 2) local-
ity of data references and efficient handling of CPU 
caches; 3) solving the graph scaling problem; 4) re-
duced power consumption; 5) use of GPUs; 6) use 
of dataflow networks of actors; 7) ability to handle 
unequally-sized blocks.  

The blocked algorithms of the Floyd-Warshall 
family have computational complexity of O(N3) and 
space complexity of O(N 2 ), where N is the number 
of vertices in graph. As N increases, the algorithms 
begin to consume huge amounts of CPU time and 
memory space. For example, if N = 31,623, then 
N 3 = 31,623,446,801,367 and N 2  = 1,000,014,129. 
A 4 GHz processor or core requires about 
k1 ⋅ 7906 sec = k1 ⋅ 2.196 hours of CPU time and 
about k2 ⋅ 1 GB of RAM where k1 and k2 are  

factors. In many application domains the size of 
real graphs is much larger. 

To solve the graph scaling problem, we develop 
an approach that decomposes a large sparse graph 
into dense parts (clusters) and sparse parts (inter-
connections of clusters). The former can be pro-
cessed in the style of Floyd-Warshall family algo-
rithms, and the latter can be processed in the style 
of Dijkstra family algorithms. When the size of the 
clusters is approximately the same, the spatial com-
plexity of the dense parts can be reduced by the 
number, M of clusters. Thus, the algorithms we de-
veloped in this paper have a spatial complexity of  
<clusters_size> + <interconnections_size> that is 
<all_graph_size> / M + <interconnections_size> in 
the case where the clusters are of equal size. For 
sparse graphs, the <interconnections_size> is not 
large because it is only associated with bridge edges. 
Moreover, the CPU-time needed to execute FW on 
all clusters is M 2  times less than the CPU-time to ex-
ecute FW on entire graph. 

The main contribution of the paper is the devel-
opment of a fast heterogeneous blocked approxi-
mate APSP algorithm for finding shortest paths in 
unequally sized clusters of large sparse directed 
graphs, as well as for finding shortest paths between 
vertices of different clusters in real time. The algo-
rithm extends the heterogeneity of previously devel-
oped blocked algorithms with respect to both com-
putation and allocation in memory of various types 
of blocks. It can give accurate solutions in such do-
mains as road and other real-world networks.  

Main part. The paper has the following struc-
ture: 1) introduction of all-pairs shortest paths algo-
rithm on built unequal-size block matrices; 2) for-
mulation of requirements for solving the shortest 
path problem on large sparse graphs partitioned into 
clusters; 3) development of an operation and algo-
rithm for computing shortest paths between vertices 
of one cluster passing through vertices of other clus-
ter and edges connecting the clusters; 4) develop-
ment of fast algorithm calculating all-pairs shortest 
paths between vertices within clusters; 5) develop-
ment of a fast algorithm computing shortest paths 
between vertices of different clusters in real time. 
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Blocked APSP algorithm working with blocks of 
unequal sizes. Let G = (V, E) be a simple directed 
graph with real edge-weights consisting of a set V 
of vertices numbered from 1 to N and a set E of 
edges. Let W be a cost adjacency matrix for G. Let dij 
be a length of shortest path from vertex i to vertex j, 
and let D be a matrix of path distances for all pairs 
of vertices. The task of the APSP algorithm is to 
compute matrix D through matrix W. 

In our recent work [11], we proposed to decom-
pose a graph G into subgraphs (clusters) and to de-
compose the adjacency matrix into a matrix B of 
blocks of sizes defined by vector S = (S1…SM). All 
diagonal blocks Bii[Si × Si], i = 1…M are square, and 
all non-diagonal blocks Bij[Si × Sj] are rectangular. 
We extended BFW to the all-pairs shortest path algo-
rithm APSPUS (Algorithm 1) to handle unequally 
sized blocks. Its time complexity is N 3 (M 3 in terms 
of the number of blocks) and its spatial complexity 
is N 2 (M 2) because each block has the layout of tghe 
shortest path distance matrix (DiM).  

 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 1: Extension of BFW to account for the use of une-
qually sized blocks (APSPUS) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Input: A number N of graph vertices 
Input: A cost adjacency matrix W[N × N]  
Input: A number M of blocks 
Input: A vector S = (S1…SM) of sizes of vertex subsets 
Output: A blocked matrix B[M × M] of path distances  

B[M × M] ← W[N × N] 
for m ← 1 to M do 

BCUS(S, B, m, m, m)                              // D0 
for v ← 1 to M do 

if v ≠ m then 
BCUS(S, B, v, m, m)                   // C1 
BCUS(S, B, m, m, v)                   // C2 

for v ← 1 to M do 
if v ≠ m then 

for u ← 1 to M do 
if u ≠ m then 

BCUS(S, B, v, m, u)        // P3 
return B 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 2: Calculation of unequally sized blocks (BCUS) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Input: A vector S of sizes of graph vertex subsets 
Input: A blocked matrix B[M × M] of path distances 
Input: Indices v, m, u of vertex subsets 
Output: Recalculated block Bv,u of matrix B 

for k ← 1 to Sm do  
for i ← 1 to Sv do 

for j ← 1 to Su do 
sum ← Bv,m(i, k) + Bm,u(k, j) 
if Bv,u(i, j) > sum then 

Bv,u(i, j) ← sum 
return B 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

Algorithm 2 (BCUS) computes all blocks in Al-
gorithm 1. APSPUS can be efficiently parallelized 
because all blocks of types C1 and C2 (and all blocks 
of type P3) can be executed in parallel. 

Computation of shortest paths between vertices 
of one cluster through shortest paths of another clus-
ter. In the case of matrix B[2 × 2], APSPUS computes 
two diagonal and two non-diagonal blocks (Fig. 1) in 
the following way (⊗ is the MIN-PLUS matrix mul-
tiplication operation): 

B11[S1×S1] ← B11[S1×S1] ⊗ B11[S1×S1]; (1) 
B21[S2×S1] ← B21[S2×S1] ⊗ B11[S1×S1]; (2) 
B12[S1×S2] ← B11[S1×S1] ⊗ B12[S1×S2];  (3) 
B22[S2×S2] ← B21[S2×S1] ⊗ B12[S1×S2];  (4) 
B22[S2×S2] ← B22[S2×S2] ⊗ B22[S2×S2];  (5) 
B12[S1×S2] ← B12[S1×S2] ⊗ B22[S2×S2];  (6) 
B21[S2×S1] ← B22[S2×S2] ⊗ B21[S2×S1];  (7) 
B11[S1×S1] ← B12[S1×S2] ⊗ B21[S2×S1].  (8) 

 

Fig. 1. Matrix B[2 × 2] in algorithm APSPUS 
 
Equation (1) computes diagonal block B11 

through itself. Equations (2)–(5) compute block B22 
through block B11 and through itself. Equations (6)–(8) 
compute block B11 through block B22 and through 
itself. Each of the two intermediate blocks B21 and 
B12 is computed twice. For large sparse graphs,  
APSPUS requires huge memory space and proces-
sor time. 

We propose a new exact method of computing 
B22 through B11 and computing B11 through B22. Un-
like APSPUS, the method allows to consider the fea-
tures of sparse graphs with clustered vertices. It re-
duces the memory footprint and reduces the number 
of MIN-PLUS operations performed on blocks.  

Let two clusters C1 and C2 partition the vertex set 
V of graph G into two subsets V1 and V2 of unequal 
sizes S1 and S2, respectively (Fig. 2). The clusters 
are represented by blocks B11 and B22 which first de-
scribe the weighted edges within the clusters, and 
then describe the lengths of shortest paths between 
vertices from set V1 (block B11) and between verti-
ces from set V2 (block B22). 

The sparse blocks W12 and W21 describe weighted 
bridge edges connecting vertices from V1 to vertices 
from V2 and vice versa, respectively. Blocks B11 and 
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B22 are placed in memory as distance matrices (DiM) 
using row-major memory layout, and blocks W12 and 
W21 are placed in memory as adjacent lists (AjL).  

 

 

Fig. 2. Matrix B[2 × 2] in the new algorithm 
 for calculating shortest paths in clusters represented 

by diagonal blocks 
 
Our method of computing block B22 through 

block B11 and computing block B11 through block 
B22 is to perform the following five operations: 

 
B11 ← Diagonal (B11);  
B22 ← BlockTBlock (B22, W21, B11, W12); 
B22 ← Diagonal (B22); 
B11 ← BlockTBlock (B11, W12, B22, W21);  
B11 ← Diagonal (B11).  
 
The Diagonal(Bii) operation computes the short-

est paths between all pairs of vertices of the set Vi 
corresponding to the block Bii. The shortest paths 
can pass through both edges inside Bii and edges 
outside Bii. The operation can be implemented using 
BCUS or preferably using the faster GEA algorithm 
proposed in [8, 10]. 

The new operation BlockTBlock(Bjj, Wji, Bii, Wij) 
computes the shortest paths between the vertices of 
block Bjj passing through the edges of block Wji, 
then through the vertices and edges of block Bii and 
finally through the edges of block Wij. Since the 
edges of blocks Wji and Wij are not numerous in 
sparse graphs, the BlockTBlock operation is fast. If 
Wji or Wij are empty, the BlockTBlock operation is 
not performed at all. Moreover, the shortest paths of 
these blocks do not need to be stored in memory, 
only the edge descriptions need to be stored. This is 
a great advantage of our method, which is exact and 
gives accurate solutions. 

Expanding the three operations ⊗ from (2)–(4) 
and using Algorithm 2, we derive Equation (9) 
which evaluates for each pair (i, j) of vertices of B22 
the length of shortest path that passes through B11. 
If the length is less than B22(i, j), the value of B22(i, j) 
is updated. Algorithm 3 is developed using (9).  
It is the first version of the BCUS compliant imple-
mentation of the BlockTBlock operation.  

B22(i,j) = 
= min (B22(i,j), 

min (min(B21(i,k), 
min (B21(i,k1) + B11(k1,k))) + 

+ min (B12(k,j), 
min (B11(k,k2) + B12(k2,j))))). 

 

(9) 

 

If the graph is sparse and the set of vertices is 
partitioned into clusters, Algorithm 3 executes re-
dundant operations since it uses all vertices of sets 
V1 and V2 (although only bridge vertices can be used) 
and utilizes all elements of blocks W12 and W21 (alt-
hough only bridge edges with non-infinite weights 
can be used). Moreover, the loop along k can also be 
considered redundant in the algorithm since the 
shortest paths in block B11 can be found by the Di-
agonal (B11) function. 

 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 3: Calculation of diagonal block B22 through dense 
block B11 and sparse blocks W12, W21 (BlockTBlock, version 1) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Input: Subsets V1 and V2 of vertex set V 
Input: Blocks B11, B22 and W12, W21 
Output: Recalculated block B22 

for i ∈ V2 do 
for j ∈ V2 and j ≠ i do 

dij ← ∞ 
for k ∈ V1 do  

dik ← ∞ 
for k1 ∈ V1 do 

s1 ← W21(i, k1) + B11(k1, k) 
if dik > s1 then dik ← s1 

if dik > W21(i, k) then dik ← W21(i, k) 
dkj ← ∞ 
for k2 ∈ V1 do 

s2 ← B11(k, k2) + W12(k2, j) 
if dkj > s2 then dkj ← s2 

if dkj > W12(k, j) then dkj ← W12(k, j) 
dikj ← dik + dkj 
if dij > dikj then dij ← dikj 

if B22(i, j) > dij then B22(i, j) ← dij  
return B22 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
 

Let V21 ⊆ V2 be a subset of the set V2 of vertices 
that are bridges between clusters C2 and C1. Let E21 
be a subset E21 = {(i, j) | i ∈ V21 and j ∈ V1} of the 
set E of edges connecting clusters C2 and C1. These 
are called bridge edges. Similarly, let V12 ⊆ V1 be 
the subset of bridge vertices between clusters C1 and 
C2, and E12 = {(i, j) | i ∈ V12 and j ∈ V2} be the sub-
set of bridge edges connecting clusters C1 and C2. 
We assume that the blocks B11, B22 are represented 
as DiM, and the sets V21, E12, V12 and E21 are repre-
sented as AjL. Algorithm 4 describes a modified fast 
version 2 of the BlockTBlock operation, from which 
all redundant computations of Algorithm 3 have 
been removed. 

k∈V1 

k1∈V1 

k2∈V1 
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 4: Calculation of diagonal block B22 through diago-
nal block B11 and interconnect edges (BlockTBlock, version 2) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Input: Blocks B11, B22, W12 and W21 
Input: Subsets V1 and V2 of vertex set V 
Input: Subsets V12 ⊆ V1 and V21 ⊆ V2 of bridge vertices 
Input: Subsets E12 ⊆ E and V21 ⊆ E of bridge edges 
Output: Recalculated block B22 
for i ∈ V21 do 

for (i, k1) ∈ E21 and k1 ∈ V1 do 
for k2 ∈ V12 do 

for (k2, j) ∈ E12 and j ∈ V2 do 
w ← W21(i, k1) + B11(k1, k2) + W12(k2, j) 
if B22(i, j) > w then 

B22(i, j) ← w 
return B22 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

 
Approximate algorithm for finding APSPs in 

clusters of large sparse graphs (ACSG). Let the 
number of clusters satisfies M > 2. In this case we 
use the BlockTBlock algorithm by repeatedly com-
puting diagonal blocks (clusters) through each other 
and through peripheral blocks. As a result, the short-
est paths between pairs of vertices of each cluster 
are computed. Algorithm 5 performs two traversals 
through the clusters: forward and backward.  

The Diagonal*(S, B, P, d) function is executed 
2 ⋅ M – 1 times and is realized using the Diagonal (Bdd) 
operation. The BlockTBlock*(S, B, p, d) function is 
executed M ⋅ (M – 1) times and is realized using the 
BlockTBlock (Bdd, Wdp, Bpp, Wpd) operation. Thus, Al-
gorithm 5 is very fast and and occupies little memory 
space (up to M times less than APSPUS). At the same 
time, it is approximate because it does not consider 
all paths passing through all clusters in any order. 

 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 5: Computing all-pairs shortest paths in clusters of 
sparse graphs (ACSG) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Input: A vector S of sizes of vertex subsets 
Input: A blocked matrix B[M×M]  
Output: Recalculated matrix B[M×M] 

for d ← 1 to M do 
Diagonal*(S, B, d) 
if d < M then 

for p← d + 1 to M do 
BlockTBlock*(S, B, p, d) 

for d ← M down to 1 do 
if d < M then 

Diagonal*(S, B, d) 
if d > 1 then 

for p← d – 1 down to 1 do 
BlockTBlock*(S, B, p, d) 

return B 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
 

Fig. 3 shows the forward traversal and compu-
tation of clusters C1 to C3. Cluster C1 is recomputed 
through itself, clusters C2 and C3 are recomputed 
through C1 in parallel, cluster C2 is recomputed 

through itself, and cluster C3 is recomputed through 
C2 and itself. Fig. 4 depicts the reverse traversal and 
computation of clusters from C3 to C1.  

 

 
Fig. 3. Forward calculation of clusters from C1 to C3  

 

 
Fig. 4. Backward recalculation of clusters C3 to C1 
 

Real-time computation of shortest paths between 
vertices of different clusters. An adaptation of the Dijks-
tra family algorithm provides accurate calculation of 
shortest paths between vertices of different clusters 
considering the shortest paths within clusters already 
accurately computed. The algorithm can be accelerated 
because the shortest paths between vertices within clus-
ters have already been computed. The fast approximate 
Algorithm 6 can give good solutions if the graph satis-
fies the following constraints: 1) the clusters are con-
nected to each other; 2) the weights of edges connecting 
clusters are greater than the weights of interior edges. 
For directly unconnected clusters it is not applicable. 

 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 6: Calculation of shortest paths between vertices 
of two clusters in real time (ABCSG) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Input: Blocks B11, B22, W12 
Input: Subsets V1 and V2 of vertex set V 
Input: Subset V12 ⊆ V1 of bridge vertices 
Input: Subset E12 ⊆ E of bridge edges 
Output: Block B12 
for i ∈ V1 and j ∈ V2 do   B12(i, j) ← ∞ 
for i ∈ V1 do 

for i1 ∈ V12 do 
for (i1, j1) ∈ E12 and j1 ∈ V2 do 

for j ∈ V2 do 
w ← B11(i, i1) + W12(i1, j1) + B22(j1, j) 
if B12(i, j) > w then 

B12(i, j) ← w 
return B12 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
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Results. The proposed algorithms were imple-
mented in C++ language using Visual Studio 2022 
under OS Windows 10. Experimental results were 
obtained on Intel Core i7-10700 CPU processor. 
Fig. 5 shows the speedup of 22.8 to 28.4 times given 
by the proposed all-pairs shortest paths approximate 
ACSG and ABCSG algorithms compared to the ex-
act APSPUS algorithm on random graphs of 1,200, 
2,400, 3,600 and 4,800 vertices. All graphs consist 
of 10 clusters of different sizes and with different 
numbers of edges. The price of this high speedup is 
the small inaccuracies in the calculation of shortest 
paths introduced by the approximate algorithms. 

We evaluated the inaccuracies in shortest paths 
within and between clusters of the graphs consisting 
of 2,400 vertices and 139,444 edges with different 
numbers of bridge edges and different bridge edge 
weights. Fig. 6 shows the dependence of inaccuracies 
(%) in shortest paths lengths within clusters on the 
average bridge edge weights varying from 0 to 40 
with an average edge weight of 54.55 within clusters.  
In Fig. 6, solid, dashed, and dotted lines correspond 
to 1,177, 5,761 and 11,478 bridge edges, respectively.  
It can be observed that the inaccuracies are higher for 
graphs with a larger number of bridge edges and with 
smaller bridge edge weights. When the bridge edge 
weight is greater than 40, ACSG becomes an accu-
rate algorithm. The inaccuracy is only 0.031% for  
1,177 bridge edges with weight 10, is 0.012% for 
5,761 edges with weight 20, and is 0.049% for  
11,478 edges with weight 20. All weights are less than 
the average weight of 54.55 for edge within clusters. 

Fig. 7 shows the effect of bridge edge weights on 
the inaccuracies (%) given by ABCSG when compu-
ting the lengths of shortest paths between clusters of 
the sparse graphs with the same parameters. A graph 
with 1,177 edges connecting clusters gave inaccura-
cies ranging from 23.7% down to 0% when the 
bridge edge weight varied from 0 to 99 (0.014% for 
a weight of 50). When the graph has 5,761 bridge 
edges, the inaccuracies range from 163.6% down to 
0% when the bridge edge weights range from 0 to 
99 (0.018% for a weight of 50). When the graph has 
11,478 bridge edges, the inaccuracies are from 
100.9% down to 0% for a bridge edge weight of 0 
to 40 (0.035% for a weight of 50). 

 

 
Fig. 5. Speedup (times) of ACSG-ABCSG compared 

to APSPUS vs. graph size 

 
Fig. 6. Inaccuracies (%) in shortest paths lengths 

within clusters ACSG has given for graphs 
of12,400 vertices vs. bridge edge weight 

 

 
Fig. 7. Inaccuracies (%) in shortest paths lengths         
between clusters the ABCSG has given for graphs        

of 2,400 vertices vs. bridge edge weight 
 

Conclusion. In the paper, we have developed an 
approach for solving the all-pairs shortest paths 
problem on large sparse graphs partitioned into 
dense weakly connected clusters. The key ad-
vantages of the approach are the reduction of the 
memory footprint and the reduction of the CPU time 
consumed. The approach is based on our recently 
published blocked algorithms that operate on une-
qually sized blocks of the cost adjacency matrix. In 
this paper, we proposed a very fast exact algorithm 
that implements an operation of computing the 
shortest paths between vertices of one cluster pass-
ing through vertices of a neighboring cluster, and 
through edges connecting the clusters. This opera-
tion is the basis of a time- and memory-efficient ap-
proximate algorithm that computes the shortest 
paths within all clusters of the graph. The shortest 
paths between vertices of different clusters are com-
puted in real time. The algorithm is up to 28 times 
faster than the blocked Floyd-Warshall family algo-
rithm. It can provide accurate solutions for roads 
and other networks since inaccuracies in shortest 
paths are negligible when the weights of bridge 
edges are greater than the weights of interior edges 
of clusters. 
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