
96 Òðóäû ÁÃÒÓ, 2024, ñåðèÿ 3, № 2, ñ. 96–103

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 2 2024

УДК 004.4−004.9
А. А. Prihozhy1, O. N. Karasik2

1Belarus National Technical University
2ISsoft Solutions (part of Coherent Solutions)

FAST SEARCH FOR SHORTEST PATHS IN LARGE SPARSE GRAPHS
DIVIDED INTO CONNECTED DENSE CLUSTERS

The aim of the paper is to solve the problem of finding shortest paths between all pairs of vertices in
simple directed weighted large sparse graphs. It is assumed that the graphs with positive and negative
real weights of edges are decomposed into unequally sized weakly connected clusters. Since the problem
has numerous practical applications in various domains, and the graphs may be too large, our goal is to
speed up the problem solving on modern heterogeneous multiprocessor systems and multi-core proces-
sors. The paper extends the capabilities of existing blocked algorithms by utilizing blocks of unequal
sizes. The extension supports natural graph modeling of real-world networks and allows the use of large
sparse graphs divided into dense weakly connected clusters in the shortest path problems. Our approach
is to compute shortest paths for all-pairs of cluster vertices represented by the cost adjacency matrix in
advance, and afterward compute the shortest paths between vertices of different clusters through inter-
connect (bridge) edges in real time on demand. The approach is based on developing a new fast operation
that accurately computes the shortest paths between vertices of one cluster that pass through the vertices
of another neighboring cluster and through the edges connecting the clusters. Applying this operation to
pairs of clusters allowed us to develop an approximate parallelizable algorithm, efficient regarding the
CPU time and memory space consumed, that computes the shortest paths between the vertices within
clusters and then between clusters. The algorithm can introduce inaccuracies in shortest paths when the
weights of edges connecting clusters are small. It finds accurate solutions when the weights of these edges
are larger than the weights of edges within clusters, e. g., in the case of road networks.

Keywords: sparse graph, cluster, shortest paths problem, blocked algorithm, unequally sized blocks,
space and time efficiency.

For citation: Prihozhy А. А., Karasik O. N. Fast search for shortest paths in large sparse graphs
divided into connected dense clusters. Proceedings of BSTU, issue 3, Physics and Mathematics. Infor-
matics, 2024, no. 2 (284), pp. 96–103.

DOI: 10.52065/2520-6141-2024-284-13.

А. А. Прихожий1, О. Н. Карасик2
1Белорусский национальный технический университет

2 Иностранное производственное унитарное предприятие «Иссофт Солюшенз»
БЫСТРЫЙ ПОИСК КРАТЧАЙШИХ ПУТЕЙ

В БОЛЬШИХ РАЗРЕЖЕННЫХ ГРАФАХ, РАЗДЕЛЕННЫХ
НА СВЯЗНЫЕ ПЛОТНЫЕ КЛАСТЕРЫ

Целью статьи является решение задачи поиска кратчайших путей между всеми парами вер-
шин в простых ориентированных взвешенных больших разреженных графах. Предполагается, что
графы с положительными и отрицательными действительными весами ребер декомпозированы
на слабосвязанные кластеры разного размера. Поскольку задача имеет множество практических
приложений в различных областях, а графы могут быть слишком большими, наша цель − уско-
рить решение задачи на современных гетерогенных многопроцессорных системах и многоядер-
ных процессорах. В статье расширяются возможности существующих блочных алгоритмов за
счет использования блоков неравных размеров. Расширение поддерживает естественное и адек-
ватное графовое моделирование реальных сетей и позволяет использовать большие разреженные
графы, разделенные на плотные слабосвязанные кластеры, при решении задач о кратчайших пу-
тях. Наш подход заключается в том, чтобы заранее вычислять кратчайшие пути для всех пар вер-
шин кластеров, представленных матрицей стоимости-смежности, а затем по запросу определять
кратчайшие пути между вершинами разных кластеров в реальном времени. Подход основан на
разработке новой быстрой операции, которая точно вычисляет кратчайшие пути между верши-
нами одного кластера, проходящие через вершины другого соседнего кластера и через ребра, со-
единяющие кластеры. Применение этой операции к парам кластеров позволило нам разработать
приближенный распараллеливаемый алгоритм, эффективный по потребляемым процессорному

A. A. Prihozhy, O. N. Karasik 97

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 2 2024

времени и объему памяти, вычисляющий кратчайшие пути внутри кластеров, а затем между кла-
стерами. Алгоритм может вносить неточности в кратчайшие пути, когда веса ребер, соединяющих
кластеры, малы. Он находит точные решения, когда веса этих ребер больше, чем веса ребер
внутри кластеров, например, в случае дорожных сетей.

Ключевые слова: разреженный граф, кластер, задача о кратчайших путях, блочный алго-
ритм, блоки неравных размеров, пространственная и временная эффективность.

Для цитирования: Прихожий А. А., Карасик О. Н. Быстрый поиск кратчайших путей в боль-
ших разреженных графах, разделенных на связные плотные кластеры // Труды БГТУ. Сер. 3. Фи-
зико-математические науки и информатика. 2024. № 2 (284). С. 96–103 (На англ.).

DOI: 10.52065/2520-6141-2024-284-13.

Introduction. In this paper we consider the prob-
lem of finding shortest paths between all pairs of ver-
tices in simple directed weighted large sparse graphs
whose edges have positive and negative real weights,
and which are decomposed into unequally sized clus-
ters. Since the problem has numerous practical appli-
cations in various domains, our goal is to speed up
the solution of the problem on the available resources
of modern heterogeneous multi-processor systems
and symmetric multicore processors.

Two main families of algorithms for solving the
all-pairs shortest paths problem (APSP) are known:
1) those based on the Dijkstra-type SSSP-algorithm
with a single-source (-sink) [1]; 2) those based on
the Floyd-Warshall APSP algorithm [2]. Any algo-
rithm from the first family must be applied to each
source (sink) vertex. Each algorithm of the second
family returns a complete solution to the problem.

The first family includes Dijkstra’s algorithm
assuming that the weights of the edges are positive,
the Bellman-Ford and Johnson’s algorithms assum-
ing that the weights are positive and negative, and
others [1, 3, 4]. The second family includes the
Floyd-Warshall (FW) algorithm [2], the blocked
Floyd-Warshall (BFW) algorithm proposed by Ven-
kataraman, Park, Katz et al. [5–7], the graph exten-
sion-based algorithm GEA and the heterogeneous
blocked APSP algorithm HBAPSP proposed by Pri-
hozhy and Karasik in [8–11]. It is shown in [10–18]
that blocked algorithms provide the following ad-
vantages: 1) suitability for parallelization; 2) local-
ity of data references and efficient handling of CPU
caches; 3) solving the graph scaling problem; 4) re-
duced power consumption; 5) use of GPUs; 6) use
of dataflow networks of actors; 7) ability to handle
unequally-sized blocks.

The blocked algorithms of the Floyd-Warshall
family have computational complexity of O(N3) and
space complexity of O(N 2), where N is the number
of vertices in graph. As N increases, the algorithms
begin to consume huge amounts of CPU time and
memory space. For example, if N = 31,623, then
N 3 = 31,623,446,801,367 and N 2 = 1,000,014,129.
A 4 GHz processor or core requires about
k1 ⋅ 7906 sec = k1 ⋅ 2.196 hours of CPU time and
about k2 ⋅ 1 GB of RAM where k1 and k2 are

factors. In many application domains the size of
real graphs is much larger.

To solve the graph scaling problem, we develop
an approach that decomposes a large sparse graph
into dense parts (clusters) and sparse parts (inter-
connections of clusters). The former can be pro-
cessed in the style of Floyd-Warshall family algo-
rithms, and the latter can be processed in the style
of Dijkstra family algorithms. When the size of the
clusters is approximately the same, the spatial com-
plexity of the dense parts can be reduced by the
number, M of clusters. Thus, the algorithms we de-
veloped in this paper have a spatial complexity of
<clusters_size> + <interconnections_size> that is
<all_graph_size> / M + <interconnections_size> in
the case where the clusters are of equal size. For
sparse graphs, the <interconnections_size> is not
large because it is only associated with bridge edges.
Moreover, the CPU-time needed to execute FW on
all clusters is M 2 times less than the CPU-time to ex-
ecute FW on entire graph.

The main contribution of the paper is the devel-
opment of a fast heterogeneous blocked approxi-
mate APSP algorithm for finding shortest paths in
unequally sized clusters of large sparse directed
graphs, as well as for finding shortest paths between
vertices of different clusters in real time. The algo-
rithm extends the heterogeneity of previously devel-
oped blocked algorithms with respect to both com-
putation and allocation in memory of various types
of blocks. It can give accurate solutions in such do-
mains as road and other real-world networks.

Main part. The paper has the following struc-
ture: 1) introduction of all-pairs shortest paths algo-
rithm on built unequal-size block matrices; 2) for-
mulation of requirements for solving the shortest
path problem on large sparse graphs partitioned into
clusters; 3) development of an operation and algo-
rithm for computing shortest paths between vertices
of one cluster passing through vertices of other clus-
ter and edges connecting the clusters; 4) develop-
ment of fast algorithm calculating all-pairs shortest
paths between vertices within clusters; 5) develop-
ment of a fast algorithm computing shortest paths
between vertices of different clusters in real time.

98 Fast search for shortest paths in large sparse graphs divided into connected dense clusters

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 2 2024

Blocked APSP algorithm working with blocks of
unequal sizes. Let G = (V, E) be a simple directed
graph with real edge-weights consisting of a set V
of vertices numbered from 1 to N and a set E of
edges. Let W be a cost adjacency matrix for G. Let dij
be a length of shortest path from vertex i to vertex j,
and let D be a matrix of path distances for all pairs
of vertices. The task of the APSP algorithm is to
compute matrix D through matrix W.

In our recent work [11], we proposed to decom-
pose a graph G into subgraphs (clusters) and to de-
compose the adjacency matrix into a matrix B of
blocks of sizes defined by vector S = (S1…SM). All
diagonal blocks Bii[Si × Si], i = 1…M are square, and
all non-diagonal blocks Bij[Si × Sj] are rectangular.
We extended BFW to the all-pairs shortest path algo-
rithm APSPUS (Algorithm 1) to handle unequally
sized blocks. Its time complexity is N 3 (M 3 in terms
of the number of blocks) and its spatial complexity
is N 2 (M 2) because each block has the layout of tghe
shortest path distance matrix (DiM).

−−−
Algorithm 1: Extension of BFW to account for the use of une-
qually sized blocks (APSPUS)
−−−
Input: A number N of graph vertices
Input: A cost adjacency matrix W[N × N]
Input: A number M of blocks
Input: A vector S = (S1…SM) of sizes of vertex subsets
Output: A blocked matrix B[M × M] of path distances

B[M × M] ← W[N × N]
for m ← 1 to M do

BCUS(S, B, m, m, m) // D0
for v ← 1 to M do

if v ≠ m then
BCUS(S, B, v, m, m) // C1
BCUS(S, B, m, m, v) // C2

for v ← 1 to M do
if v ≠ m then

for u ← 1 to M do
if u ≠ m then

BCUS(S, B, v, m, u) // P3
return B

−−−

−−−
Algorithm 2: Calculation of unequally sized blocks (BCUS)
−−−
Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: Indices v, m, u of vertex subsets
Output: Recalculated block Bv,u of matrix B

for k ← 1 to Sm do
for i ← 1 to Sv do

for j ← 1 to Su do
sum ← Bv,m(i, k) + Bm,u(k, j)
if Bv,u(i, j) > sum then

Bv,u(i, j) ← sum
return B

−−−

Algorithm 2 (BCUS) computes all blocks in Al-
gorithm 1. APSPUS can be efficiently parallelized
because all blocks of types C1 and C2 (and all blocks
of type P3) can be executed in parallel.

Computation of shortest paths between vertices
of one cluster through shortest paths of another clus-
ter. In the case of matrix B[2 × 2], APSPUS computes
two diagonal and two non-diagonal blocks (Fig. 1) in
the following way (⊗ is the MIN-PLUS matrix mul-
tiplication operation):

B11[S1×S1] ← B11[S1×S1] ⊗ B11[S1×S1]; (1)
B21[S2×S1] ← B21[S2×S1] ⊗ B11[S1×S1]; (2)
B12[S1×S2] ← B11[S1×S1] ⊗ B12[S1×S2]; (3)
B22[S2×S2] ← B21[S2×S1] ⊗ B12[S1×S2]; (4)
B22[S2×S2] ← B22[S2×S2] ⊗ B22[S2×S2]; (5)
B12[S1×S2] ← B12[S1×S2] ⊗ B22[S2×S2]; (6)
B21[S2×S1] ← B22[S2×S2] ⊗ B21[S2×S1]; (7)
B11[S1×S1] ← B12[S1×S2] ⊗ B21[S2×S1]. (8)

Fig. 1. Matrix B[2 × 2] in algorithm APSPUS

Equation (1) computes diagonal block B11

through itself. Equations (2)–(5) compute block B22
through block B11 and through itself. Equations (6)–(8)
compute block B11 through block B22 and through
itself. Each of the two intermediate blocks B21 and
B12 is computed twice. For large sparse graphs,
APSPUS requires huge memory space and proces-
sor time.

We propose a new exact method of computing
B22 through B11 and computing B11 through B22. Un-
like APSPUS, the method allows to consider the fea-
tures of sparse graphs with clustered vertices. It re-
duces the memory footprint and reduces the number
of MIN-PLUS operations performed on blocks.

Let two clusters C1 and C2 partition the vertex set
V of graph G into two subsets V1 and V2 of unequal
sizes S1 and S2, respectively (Fig. 2). The clusters
are represented by blocks B11 and B22 which first de-
scribe the weighted edges within the clusters, and
then describe the lengths of shortest paths between
vertices from set V1 (block B11) and between verti-
ces from set V2 (block B22).

The sparse blocks W12 and W21 describe weighted
bridge edges connecting vertices from V1 to vertices
from V2 and vice versa, respectively. Blocks B11 and

A. A. Prihozhy, O. N. Karasik 99

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 2 2024

B22 are placed in memory as distance matrices (DiM)
using row-major memory layout, and blocks W12 and
W21 are placed in memory as adjacent lists (AjL).

Fig. 2. Matrix B[2 × 2] in the new algorithm
 for calculating shortest paths in clusters represented

by diagonal blocks

Our method of computing block B22 through

block B11 and computing block B11 through block
B22 is to perform the following five operations:

B11 ← Diagonal (B11);
B22 ← BlockTBlock (B22, W21, B11, W12);
B22 ← Diagonal (B22);
B11 ← BlockTBlock (B11, W12, B22, W21);
B11 ← Diagonal (B11).

The Diagonal(Bii) operation computes the short-

est paths between all pairs of vertices of the set Vi
corresponding to the block Bii. The shortest paths
can pass through both edges inside Bii and edges
outside Bii. The operation can be implemented using
BCUS or preferably using the faster GEA algorithm
proposed in [8, 10].

The new operation BlockTBlock(Bjj, Wji, Bii, Wij)
computes the shortest paths between the vertices of
block Bjj passing through the edges of block Wji,
then through the vertices and edges of block Bii and
finally through the edges of block Wij. Since the
edges of blocks Wji and Wij are not numerous in
sparse graphs, the BlockTBlock operation is fast. If
Wji or Wij are empty, the BlockTBlock operation is
not performed at all. Moreover, the shortest paths of
these blocks do not need to be stored in memory,
only the edge descriptions need to be stored. This is
a great advantage of our method, which is exact and
gives accurate solutions.

Expanding the three operations ⊗ from (2)–(4)
and using Algorithm 2, we derive Equation (9)
which evaluates for each pair (i, j) of vertices of B22
the length of shortest path that passes through B11.
If the length is less than B22(i, j), the value of B22(i, j)
is updated. Algorithm 3 is developed using (9).
It is the first version of the BCUS compliant imple-
mentation of the BlockTBlock operation.

B22(i,j) =
= min (B22(i,j),

min (min(B21(i,k),
min (B21(i,k1) + B11(k1,k))) +

+ min (B12(k,j),
min (B11(k,k2) + B12(k2,j))))).

(9)

If the graph is sparse and the set of vertices is
partitioned into clusters, Algorithm 3 executes re-
dundant operations since it uses all vertices of sets
V1 and V2 (although only bridge vertices can be used)
and utilizes all elements of blocks W12 and W21 (alt-
hough only bridge edges with non-infinite weights
can be used). Moreover, the loop along k can also be
considered redundant in the algorithm since the
shortest paths in block B11 can be found by the Di-
agonal (B11) function.

−−−
Algorithm 3: Calculation of diagonal block B22 through dense
block B11 and sparse blocks W12, W21 (BlockTBlock, version 1)
−−−
Input: Subsets V1 and V2 of vertex set V
Input: Blocks B11, B22 and W12, W21
Output: Recalculated block B22

for i ∈ V2 do
for j ∈ V2 and j ≠ i do

dij ← ∞
for k ∈ V1 do

dik ← ∞
for k1 ∈ V1 do

s1 ← W21(i, k1) + B11(k1, k)
if dik > s1 then dik ← s1

if dik > W21(i, k) then dik ← W21(i, k)
dkj ← ∞
for k2 ∈ V1 do

s2 ← B11(k, k2) + W12(k2, j)
if dkj > s2 then dkj ← s2

if dkj > W12(k, j) then dkj ← W12(k, j)
dikj ← dik + dkj
if dij > dikj then dij ← dikj

if B22(i, j) > dij then B22(i, j) ← dij
return B22

−−−

Let V21 ⊆ V2 be a subset of the set V2 of vertices
that are bridges between clusters C2 and C1. Let E21
be a subset E21 = {(i, j) | i ∈ V21 and j ∈ V1} of the
set E of edges connecting clusters C2 and C1. These
are called bridge edges. Similarly, let V12 ⊆ V1 be
the subset of bridge vertices between clusters C1 and
C2, and E12 = {(i, j) | i ∈ V12 and j ∈ V2} be the sub-
set of bridge edges connecting clusters C1 and C2.
We assume that the blocks B11, B22 are represented
as DiM, and the sets V21, E12, V12 and E21 are repre-
sented as AjL. Algorithm 4 describes a modified fast
version 2 of the BlockTBlock operation, from which
all redundant computations of Algorithm 3 have
been removed.

k∈V1

k1∈V1

k2∈V1

100 Fast search for shortest paths in large sparse graphs divided into connected dense clusters

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 2 2024

−−−
Algorithm 4: Calculation of diagonal block B22 through diago-
nal block B11 and interconnect edges (BlockTBlock, version 2)
−−−
Input: Blocks B11, B22, W12 and W21
Input: Subsets V1 and V2 of vertex set V
Input: Subsets V12 ⊆ V1 and V21 ⊆ V2 of bridge vertices
Input: Subsets E12 ⊆ E and V21 ⊆ E of bridge edges
Output: Recalculated block B22
for i ∈ V21 do

for (i, k1) ∈ E21 and k1 ∈ V1 do
for k2 ∈ V12 do

for (k2, j) ∈ E12 and j ∈ V2 do
w ← W21(i, k1) + B11(k1, k2) + W12(k2, j)
if B22(i, j) > w then

B22(i, j) ← w
return B22
−−−

Approximate algorithm for finding APSPs in

clusters of large sparse graphs (ACSG). Let the
number of clusters satisfies M > 2. In this case we
use the BlockTBlock algorithm by repeatedly com-
puting diagonal blocks (clusters) through each other
and through peripheral blocks. As a result, the short-
est paths between pairs of vertices of each cluster
are computed. Algorithm 5 performs two traversals
through the clusters: forward and backward.

The Diagonal*(S, B, P, d) function is executed
2 ⋅ M – 1 times and is realized using the Diagonal (Bdd)
operation. The BlockTBlock*(S, B, p, d) function is
executed M ⋅ (M – 1) times and is realized using the
BlockTBlock (Bdd, Wdp, Bpp, Wpd) operation. Thus, Al-
gorithm 5 is very fast and and occupies little memory
space (up to M times less than APSPUS). At the same
time, it is approximate because it does not consider
all paths passing through all clusters in any order.

−−−
Algorithm 5: Computing all-pairs shortest paths in clusters of
sparse graphs (ACSG)
−−−
Input: A vector S of sizes of vertex subsets
Input: A blocked matrix B[M×M]
Output: Recalculated matrix B[M×M]

for d ← 1 to M do
Diagonal*(S, B, d)
if d < M then

for p← d + 1 to M do
BlockTBlock*(S, B, p, d)

for d ← M down to 1 do
if d < M then

Diagonal*(S, B, d)
if d > 1 then

for p← d – 1 down to 1 do
BlockTBlock*(S, B, p, d)

return B
−−−

Fig. 3 shows the forward traversal and compu-
tation of clusters C1 to C3. Cluster C1 is recomputed
through itself, clusters C2 and C3 are recomputed
through C1 in parallel, cluster C2 is recomputed

through itself, and cluster C3 is recomputed through
C2 and itself. Fig. 4 depicts the reverse traversal and
computation of clusters from C3 to C1.

Fig. 3. Forward calculation of clusters from C1 to C3

Fig. 4. Backward recalculation of clusters C3 to C1

Real-time computation of shortest paths between
vertices of different clusters. An adaptation of the Dijks-
tra family algorithm provides accurate calculation of
shortest paths between vertices of different clusters
considering the shortest paths within clusters already
accurately computed. The algorithm can be accelerated
because the shortest paths between vertices within clus-
ters have already been computed. The fast approximate
Algorithm 6 can give good solutions if the graph satis-
fies the following constraints: 1) the clusters are con-
nected to each other; 2) the weights of edges connecting
clusters are greater than the weights of interior edges.
For directly unconnected clusters it is not applicable.

−−−
Algorithm 6: Calculation of shortest paths between vertices
of two clusters in real time (ABCSG)
−−−
Input: Blocks B11, B22, W12
Input: Subsets V1 and V2 of vertex set V
Input: Subset V12 ⊆ V1 of bridge vertices
Input: Subset E12 ⊆ E of bridge edges
Output: Block B12
for i ∈ V1 and j ∈ V2 do B12(i, j) ← ∞
for i ∈ V1 do

for i1 ∈ V12 do
for (i1, j1) ∈ E12 and j1 ∈ V2 do

for j ∈ V2 do
w ← B11(i, i1) + W12(i1, j1) + B22(j1, j)
if B12(i, j) > w then

B12(i, j) ← w
return B12
−−−

A. A. Prihozhy, O. N. Karasik 101

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 2 2024

Results. The proposed algorithms were imple-
mented in C++ language using Visual Studio 2022
under OS Windows 10. Experimental results were
obtained on Intel Core i7-10700 CPU processor.
Fig. 5 shows the speedup of 22.8 to 28.4 times given
by the proposed all-pairs shortest paths approximate
ACSG and ABCSG algorithms compared to the ex-
act APSPUS algorithm on random graphs of 1,200,
2,400, 3,600 and 4,800 vertices. All graphs consist
of 10 clusters of different sizes and with different
numbers of edges. The price of this high speedup is
the small inaccuracies in the calculation of shortest
paths introduced by the approximate algorithms.

We evaluated the inaccuracies in shortest paths
within and between clusters of the graphs consisting
of 2,400 vertices and 139,444 edges with different
numbers of bridge edges and different bridge edge
weights. Fig. 6 shows the dependence of inaccuracies
(%) in shortest paths lengths within clusters on the
average bridge edge weights varying from 0 to 40
with an average edge weight of 54.55 within clusters.
In Fig. 6, solid, dashed, and dotted lines correspond
to 1,177, 5,761 and 11,478 bridge edges, respectively.
It can be observed that the inaccuracies are higher for
graphs with a larger number of bridge edges and with
smaller bridge edge weights. When the bridge edge
weight is greater than 40, ACSG becomes an accu-
rate algorithm. The inaccuracy is only 0.031% for
1,177 bridge edges with weight 10, is 0.012% for
5,761 edges with weight 20, and is 0.049% for
11,478 edges with weight 20. All weights are less than
the average weight of 54.55 for edge within clusters.

Fig. 7 shows the effect of bridge edge weights on
the inaccuracies (%) given by ABCSG when compu-
ting the lengths of shortest paths between clusters of
the sparse graphs with the same parameters. A graph
with 1,177 edges connecting clusters gave inaccura-
cies ranging from 23.7% down to 0% when the
bridge edge weight varied from 0 to 99 (0.014% for
a weight of 50). When the graph has 5,761 bridge
edges, the inaccuracies range from 163.6% down to
0% when the bridge edge weights range from 0 to
99 (0.018% for a weight of 50). When the graph has
11,478 bridge edges, the inaccuracies are from
100.9% down to 0% for a bridge edge weight of 0
to 40 (0.035% for a weight of 50).

Fig. 5. Speedup (times) of ACSG-ABCSG compared

to APSPUS vs. graph size

Fig. 6. Inaccuracies (%) in shortest paths lengths

within clusters ACSG has given for graphs
of12,400 vertices vs. bridge edge weight

Fig. 7. Inaccuracies (%) in shortest paths lengths
between clusters the ABCSG has given for graphs

of 2,400 vertices vs. bridge edge weight

Conclusion. In the paper, we have developed an
approach for solving the all-pairs shortest paths
problem on large sparse graphs partitioned into
dense weakly connected clusters. The key ad-
vantages of the approach are the reduction of the
memory footprint and the reduction of the CPU time
consumed. The approach is based on our recently
published blocked algorithms that operate on une-
qually sized blocks of the cost adjacency matrix. In
this paper, we proposed a very fast exact algorithm
that implements an operation of computing the
shortest paths between vertices of one cluster pass-
ing through vertices of a neighboring cluster, and
through edges connecting the clusters. This opera-
tion is the basis of a time- and memory-efficient ap-
proximate algorithm that computes the shortest
paths within all clusters of the graph. The shortest
paths between vertices of different clusters are com-
puted in real time. The algorithm is up to 28 times
faster than the blocked Floyd-Warshall family algo-
rithm. It can provide accurate solutions for roads
and other networks since inaccuracies in shortest
paths are negligible when the weights of bridge
edges are greater than the weights of interior edges
of clusters.

22

24

26

28

30

1200 2400 3600 4800

102 Fast search for shortest paths in large sparse graphs divided into connected dense clusters

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 2 2024

References
1. Dijkstra E. W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959,

vol. 1, no. 1, pp. 269–271.
2. Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5 (6), p. 345.
3. Glabowski M., Musznicki B., Nowak P. and Zwierzykowski P. Review and Performance Analysis of

Shortest Path Problem Solving Algorithms. International Journal on Advances in Software, 2014, vol. 7,
no. 1&2, pp. 20–30.

4. Madkour A., Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. A Survey of Shortest-Path
Algorithms. ArXiv: 1705.02044v1 [cs. DS], 4 May 2017. 26 p.

5. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Jour-
nal of Experimental Algorithmics (JEA), 2003, vol. 8, pp. 857–874.

6. Park J. S., Penner M., and Prasanna V. K. Optimizing graph algorithms for improved cache perfor-
mance. IEEE Trans. on Parallel and Distributed Systems, 2004, no. 15 (9), pp. 769–782.

7. Katz G. J., Kider J. T. All-pairs shortest-paths for large graphs on the GPU. GH’08: Proceedings of
the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, ACM, 2008, pp. 47–55.

8. Prihozhy A. A., Karasik O. N. Heterogeneous blocked all-pairs shortest paths algorithm. Sistemnyy Analiz i
prikladnaya informatika [System analysis and applied information science], 2017, no. 3, pp. 68–75. (In Russian).

9. Prihozhy А. А., Karasik O. N. Advanced heterogeneous block-parallel all-pairs shortest path algorithm.
Trudy BGTU Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2023, no. 1 (266), pp. 77–83.

10. Prihozhy А. A., Karasik O. N. Inference of shortest path algorithms with spatial and temporal locality
for big data processing. Big Data and Advanced Analytics: proceedings of VIII International conference.
Minsk, Bestprint Publ., 2022, pp. 56–66.

11. Prihozhy A., Karasik O. New blocked all-pairs shortest paths algorithms operating on blocks of une-
qual sizes. System analysis and applied information science, 2023, no. 4, pp. 4–13.

12. Djidjev H., Thulasidasan S., Chapuis G., Andonov R. and Lavenier D. Efficient multi-GPU compu-
tation of all-pairs shortest paths. IEEE 28th International Parallel and Distributed Processing Symposium.
IEEE, 2014, pp. 360–369.

13. Yang S. Liu X., Wang Y., He X., Tan G. Fast All-Pairs Shortest Paths Algorithm in Large Sparse
Graph. ICS’23 Proceedings of 37th International conference on Supercomputing, 2023, pp. 277–288.

14. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms. System analysis and applied information science, 2021, no. 3, pp. 40–50.

15. Karasik O. N., Prihozhy A. A. Tuning block-parallel all-pairs shortest path algorithm for efficient
multi-core implementation. System analysis and applied information science, 2022, no. 3, pp. 57–65.

16. Prihozhy A. A., Karasik O. N. Influence of shortest path algorithms on energy consumption of multi-
core processors. System analysis and applied information science, 2023, no. 2, pp. 4–12.

17. Prihozhy A. A. Generation of shortest path search dataflow networks of actors for parallel multicore
implementation. Informatics, 2023, vol. 20, no. 2, pp. 65−84.

18. Prihozhy A., Merdjani R., Iskandar F. Automatic Parallelization of Net Algorithms. Proceedings of
the International Conference on Parallel Computing in Electrical Engineering (PARELEC’00). Quebec,
Canada, 2000, pp. 24–28.

Список литературы
1. Dijkstra E. W. A note on two problems in connexion with graphs // Numerische Mathematik. 1959.

Vol. 1, no. 1. P. 269–271.
2. Floyd R.W. Algorithm 97: Shortest path // Communications of the ACM. 1962. No. 5 (6). P. 345.
3. Glabowski M., Musznicki B., Nowak P. and Zwierzykowski P. Review and Performance Analysis of

Shortest Path Problem Solving Algorithms // International Journal on Advances in Software. 2014. Vol. 7,
no. 1&2. P. 20–30.

4. Madkour A., Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. A Survey of Shortest-Path
Algorithms. ArXiv: 1705.02044v1 [cs. DS]. 4 May 2017. 26 p.

5. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Jour-
nal of Experimental Algorithmics (JEA). 2003. Vol. 8. P. 857–874.

6. Park J. S., Penner M., Prasanna V. K. Optimizing graph algorithms for improved cache performance //
IEEE Trans. on Parallel and Distributed Systems. 2004. No. 15 (9). P. 769–782.

7. Katz G. J., Kider J. T. All-pairs shortest-paths for large graphs on the GPU // GH’08: Proceedings of
the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. 2008. P. 47–55.

8. Прихожий А. А., Карасик О. Н. Разнородный блочный алгоритм поиска кратчайших путей между
всеми парами вершин графа // Системный анализ и прикладная информатика. 2017. № 3. С. 68–75.

A. A. Prihozhy, O. N. Karasik 103

Òðóäû ÁÃÒÓ Ñåðèÿ 3 № 2 2024

9. Prihozhy А. А., Karasik O. N. Advanced heterogeneous block-parallel all-pairs shortest path algo-
rithm // Труды БГТУ. Сер. 3, Физико-математические науки и информатика. 2023. № 1 (266). С. 77–83.

10. Prihozhy A. A., Karasik O. N. Influence of shortest path algorithms on energy consumption of multi-
core processors // System analysis and applied information science. 2023. No. 2. P. 4–12.

11. Prihozhy A., Karasik O. New blocked all-pairs shortest paths algorithms operating on blocks of une-
qual sizes // System analysis and applied information science. 2023. No. 4. P. 4–13.

12. Djidjev H., Thulasidasan S., Chapuis G., Andonov R. and Lavenier D. Efficient multi-GPU compu-
tation of all-pairs shortest paths // IEEE 28th International Parallel and Distributed Processing Symposium.
IEEE, 2014. P. 360–369.

13. Yang S. Liu X., Wang Y. He X., Tan G. Fast All-Pairs Shortest Paths Algorithm in Large Sparse
Graph // ICS’23 Proceedings of 37th International conference on supercomputing. 2023. P. 277–288.

14. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms // System analysis and applied information science. 2021. No. 3. P. 40–50.

15. Karasik O. N., Prihozhy A. A. Tuning block-parallel all-pairs shortest path algorithm for efficient
multi-core implementation // System analysis and applied information science. 2022. No. 3. P. 57–65.

16. Prihozhy А. A., Karasik O. N. Inference of shortest path algorithms with spatial and temporal locality
for big data processing // Big Data and Advanced Analytics: proceedings of VIII International conference.
Minsk: Bestprint Publ., 2022. P. 56–66.

17. Prihozhy A. A. Generation of shortest path search dataflow networks of actors for parallel multicore
implementation // Informatics. 2023. Vol. 20, no. 2. P. 65−84.

18. Prihozhy A., Merdjani R., Iskandar F. Automatic Parallelization of Net Algorithms // Proceedings of
the International conference on parallel computing in electrical engineering (PARELEC’00). Quebec, Can-
ada, 2000. P. 24–28.

Information about the authors
Prihozhy Anatoly Alexievich − DSc (Engineering), Professor, Professor, the Department of Computer

and System Software. Belarusian National Technical University (65, Nezalezhnasti Ave., 220013, Minsk,
Republic of Belarus). E-mail: prihozhy@yahoo.com

Karasik Oleg Nikolayevich − PhD (Engineering), Lead Engineer, ISsoft Solutions (5, Chapaeva str.,
220034, Minsk, Republic of Belarus). E-mail: karasik.oleg.nikolaevich@gmail.com

Информация об авторах
Прихожий Анатолий Алексеевич − доктор технических наук, профессор, профессор кафедры

программного обеспечения информационных систем и технологий. Белорусский национальный тех-
нический университет (220013, г. Минск, пр. Независимости 65, Республика Беларусь). E-mail:
prihozhy@yahoo.com

Карасик Олег Николаевич − кандидат технических наук, ведущий инженер. Иностранное про-
изводственное унитарное предприятие «Иссофт Солюшенз». (220034, г. Минск, ул. Чапаева 5, Рес-
публика Беларусь). E-mail: karasik.oleg.nikolaevich@gmail.com

Received 15.03.2024

