К СТАТИСТИЧЕСКОЙ ТЕОРИИ КОНДЕНСИРОВАННЫХ СИСТЕМ

JI. A. Pomm

В работах [1, 2] была сформулирована новая статистическая схема изучения конденсированных систем. В основе ее используется последовательность частичных двухиндексных функций распределения. Последние учитывают условные распределения, когда определенная конфигурация произвольной группы молекул в одной ячейке объема системы сопровождается определенным набором конфигураций в других ячейках.

В настоящем сообщении на примере критической области однокомпонентного вещества показано, что с помощью предложенного метода можно получить конечные результаты для реальных систем.

метода можно получигь конечные результаты для реальных систем. Зесь объем V разделим на N равных ячеек. Указанные функции $F_{s\kappa}$ ($q',\dots q^s$) таковы, что выражение $F_{s\kappa}$ $dq'\dots dq^s$ определяет вероятность того, что положения произвольной группы s молекул лежат соответственно в бесконечно малых объемах $dq',\dots dq^s$ около точек $q',\dots q^s$, находящихся в одной из ячеек, и при условии, что остальные N-s молекул распределены таким образом, что в любой другой ячейке можно всгрегигь не больше κ частиц.

Исходя из конфигурационной части общего гиббсовского распределения для всей системы, получены интегро-дифференциальные уравнения, которым подчиняются введенные выше функции. Для функции

 F_{11} уравнение имеет вид

$$\frac{\partial F_{11}(q)}{\partial q^{\alpha}} + \frac{1}{\Theta} \int_{V-v_1} \frac{\partial \Phi(|q-q'|)}{\partial q^{\alpha}} F_{11}^{(1)}(q,q') dq' = 0 \quad \alpha = 1, 2, 3.$$
 (1)

 $F_{11}^{con} dqdq'$ означает вероятность того, что произвольные две молекуны находятся около координат q и q', находящихся в двух различных ячейках 1 и 2, а остальные молекулы распределены так, что в любой ячейке можно встретить не больше одной молекулы.

В соответствии с определением

$$F_{11}(q') = \int_{v} F_{11}^{(1)}(q, q') dq$$
 (2)

нли

$$F_{11}(q') = v F_{11}^{(1)}(q_{cp}, q').$$
 (3)

Здесь $q_{\rm cp}$ —точка в молекулярном объеме v. Известным обобщением будет представление

$$F_{11}^{(1)}(q,q') = \frac{1}{v} \varphi(q,q') F_{11}(q'). \tag{4}$$

Для функции ф следует, что

$$\frac{1}{v} \int_{a} \varphi(q, q') dq' = 1. \tag{5}$$

Подставим (4) в уравнение (1) и проинтегрируем по q^{α} . Произведя затем фурье - преобразование, получим выражение

$$\overline{F_{11}}(\kappa) = \frac{c \delta(\kappa)}{1 + \frac{1}{\Theta \pi} \overline{\Psi(\kappa)}}, \tag{6}$$

где $\overline{F_{\text{11}}}\left(\kappa\right)$ — фурье-трансформанта функции $F_{\text{11}}\left(q\right)$

$$\overline{\Phi(\kappa)} = \int_{V-v_1} \Phi \varphi - \int \Phi \frac{\partial \varphi}{\partial q^a} dq^a \right] e^{i\kappa (q-q')} dq'; \ \varphi = \varphi(|q-q'|). \tag{7}$$

Переход к оригиналу дает

$$F_{11}(q) = \frac{c}{1 + \frac{1}{\Theta v} \overline{\Phi(0)}}.$$
 (8)

Для конденсированных систем основной вклад в конфигурационный интеграл вносяг состояния, которым соответствует функция распределения F_{11} . Поэтому даже не прибегая к вычислению интеграла, но пользуясь выражением (8), можно в первом основном приближении установить критерий фазового перехода:

$$1 + \frac{1}{\Theta v} \overline{\Psi(0)} = 0. \tag{9}$$

Положим объем v_1 в виде сферы радиуса r_0 , а $q=q_0$ (q_0^* — координаты центра сферы). Из сравнения (3), (4) и (5) следует, что при достаточно сольшом объеме v φ ($|q_0-q'|$) \to 1.

Если такая возможность реализуется, то прежде всего в критической сбласти. Дальнейшая проверка подтверждает это предположение. Если в качестве функции $\Phi(r)$ ($r=|q_0-q'|$) взять потенциал Ленарда—Джонса, а $\varphi=1$, то критернем фазового перехода в окрестности критической точки будет условие:

$$1 + \frac{16\pi\varepsilon}{3\Theta v} \left(\frac{\sigma^{12}}{3r_0^9} - \frac{\sigma^6}{r_0^2} \right) = 0.$$
 (10)

В табл. 1 приведены результаты проверки формулы (10) при $T=T_{\rm кр}$. Как и следовало ожидать, расхождение возрастает с удалением от

Таблица 1

Вещество	Ar	Ne	Xe	O ₃	N ₂	Cl ₂	CH ₄	CO_2
r _t эксп. 100%	94	93,5	97,5	95	96	96	96,5	102

Примечание. Значения параметров потенциала $\frac{\epsilon}{\kappa}$ и σ взяты из монографии [3].

критической точки (табл. 2). Если бы уравнение (10) было справедливо в широком интервале температур, вообще говоря от 0 до $T_{\rm кр}$, то минимальное значение r_0 равнялось бы $\frac{\sigma}{\sqrt[6]{3}}$. Это значение остается

Т	a	б	л	И	Ħ	а	2

Вещество	Ar	Ar	Ne	CH₄	O ₂
$T_{KP}-T$	2,72	60,72	13,56	34,75	21,38
<u>говыч.</u> 100%	106	125	120	120	118,5

Таблица 3

Вещество	Не	Ne	Н 2	Ar	Кг	Xe	O ₂	Cl ₂	N ₂	СН	CO ₂
$\Delta = r_0 \text{ кр.} - \frac{\sigma}{\sqrt[6]{3}} \text{ (Å)}$	0,04	C,06	0,07	0,08	0,08	0,08	0,08	0,08	0,09	0,09	0,10

Таблица 4

Вещество	<i>Т</i> _{кр.} вычисл. по (11)	$T_{\mathrm{кр.}}$ эксп.	Вещество	Ткр. вычисл. по (11)	Ткр. эксп.
\mathbb{H}_2	37,3	33,28	O_2	146	152,76
He	9,28	5,25	Cl ₂	418	417,18
Ne	54,3	44.46	N_2	117	126,08
Ar	159,5	150,72	CO ₂	274	3 4,28
Kr	193	208,22	CH ₄	172	190,91
Xe	301	289,86	CO	133	134,18
	_	_	C ₂ H ₂	279	309,18
_		_	C ₂ H ₄	282	282,88
_		_	C ₂ H ₆	287	305,28

очень близким к значению r_0 в критическом состоянии (табл. 3). Принимая для Δ значение 0,08, получим следующее выражение для температуры критической точки

$$T_{\kappa p} \simeq \frac{29 \frac{\varepsilon}{\kappa} \sigma^6}{v(\sigma + 0,096)^3} \left[1 - \frac{1}{\left(1 + \frac{0.096}{\sigma}\right)^6} \right]. \tag{11}$$

ЛИТЕРАТУРА

[1] JI. A. POTT. $JK\Phi X$, 31, 1468, 1957; 32, 1425, 1958; 32, 2846, 1958. [2] JI. A. POTT. JIAH BCCP, 2, 58, 1958. [3] R. Reid, T. Sherwood. The Properties of Gases and Liquids, Mc Graw—Hill Book Company, 1958.

Белорусский технологический институт имени С. М. Кирова

Поступила в редакцию 8 марта 1962 г.