Vol. 4, № 3

К ТЕОРИИ ПЛАВЛЕНИЯ

A. A. Pomm

На основе предложенной ранее статистической схемы изучения конденсированных систем, использующей последовательность частичных двухиндексных функций распределения, устанавливается критерий плавления. Вычислены температуры плавления для молекулярных кристаллов кубической системы.

Известные в литературе попытки построить статистическую теорию кристаллизации (плавления), несмотря на привлекательность содержащихся в них идей, все еще далеки от своего завершения. В настоящей работе показана возможность использовать новую статистическую схему изучения конденсированных систем $[^{1-3}]$ применительно к теории плавления.

Суть метода состоит в следующем. В отличие от частичных функций распределения, выражающих полные вероятности конфигураций отдельных групп молекул [4], вводится последовательность частичных функций распределения, учитывающих условные вероятности: определенная конфигурация произвольной группы молекул в одной ячейке объема системы сопровождается определенным набором конфигураций в других ячейках. Преимущества такой статистической схемы проявляются при изучении конденсированных систем.

Весь объем V (здесь рассматривается гомогенная однокомпонентная система) разделяется на N равных ячеек (N—число молекул системы). Для описания отдельных состояний системы вводится последовательность функций распределения

$$F_{sk}(q^1, \ldots q^s) \ s = 0, 1, \ldots n; \ n \ll N; \ k = 1, 2, \ldots n; \ s \ll k.$$

Выражение $F_{sk}(q^1,\ldots q^s)dq^1,\ldots dq^s$ определяет вероятность того, что положения произвольной группы s молекул лежат соответственно в бесконечно малых объемах $dq^1,\ldots dq^s$ около точек $q^1,\ldots q^s$, находящихся в одной из ячеек, при условии, что остальные N-s молекул распределены таким образом, что в любой другой ячейке можно встретить не больше k частиц.

Найдем определяющее уравнение для одинарной функции распределения F_{11} .

 \mathcal{A} ифференцируя выражение для функции распределения Γ иббса 1

$$D_N = Q_N^{-1} \exp\left\{-\frac{U_N}{\theta}\right\}; \quad Q_N = \int_V \dots \int_V \exp\left\{-\frac{U_N}{\theta}\right\} dq_1, \dots dq_N,$$

где $U_N = \sum_{1 \le i < j \le N} \Phi(|q_i - q_j|)$ — потенциальная энергия системы, $\Phi(r)$ — потенциальная энергия взаимодействия пары молекул, 0 = kT, T— температура, k— универсальная постоянная Больцмана, можно записать соотношение

$$\frac{\partial D_N}{\partial q_1^\alpha} + \frac{1}{\theta} \frac{\partial U_N}{\partial q_1^\alpha} D_N = 0, \quad \alpha = 1, 2, 3. \tag{1}$$

 q^1,\ldots,q^s — координаты произвольных молекул; q_1,\ldots,q_s — координаты фиксированных молекул.

¹ Финика твердого тела, т. 4, в. 3

Проинтегрируем уравнение (1) по переменным $q_2, \ldots q_N$ так, чтобы в каждой ячейке нельзя было одновременно встретить две или больше молекул. В соответствии с данным выше определением

$$F_{11}(q^{1}) = N! \int_{v_{2}} dq_{2} \int_{v_{3}} dq_{3} \dots \int_{v_{N}} D_{N}(q_{1}, \dots, q_{N}) dq_{N},$$

$$v_{2} + v_{3} + \dots + v_{N} = V - v_{1}.$$
(2)

Интегрирование первого члена уравнения (1) дает

$$\int_{r_2} dq_2 \int_{r_2} dq_3 \dots \int_{r_N} \frac{\partial D_N}{\partial q_1^{\alpha}} dq_N = \frac{\partial}{\partial q_1^{\alpha}} \int_{r_2} dq_2 \dots \int_{r_N} D_N dq_N = \\
= \frac{1}{N!} \frac{\partial F_{11}(q^1)}{\partial q^{1\alpha}}.$$
(3)

Проинтегрируем второй член уравнения (1)

$$\int_{\sigma_2} \dots \int_{\sigma_N} \frac{\partial U_N}{\partial q_1^{\alpha}} D_N dq_2 \dots dq_N = \sum_{j=2}^N \int_{\sigma_2} dq_2 \dots \int_{\sigma_N} \frac{\partial \Phi\left(|q_1 - q_j|\right)}{\partial q_1^{\alpha}} D_N dq_N. \tag{4}$$

Учтем, что

$$\int_{r_2} dq_3 \dots \int_{r_N} D_N dq_N = \frac{1}{N!} F_{11}^{(1)}(q^1, q^2),$$

$$q_1 = q^1, \quad q_2 = q^2.$$

Здесь $F_{11}^{(1)}(q^1, q^2) dq^1 dq^2$ означает вероятность того, что произвольные две молекулы находятся около координат q^1 и q^2 , находящихся в двух различных ячейках 1 и 2, а остальные молекулы распределены так, что в любой ячейке можно встретить не больше одной молекулы. Сумма (4) равна

$$\frac{1}{N!} \left\{ \int_{r_2}^{\frac{\partial \Phi (|q_1-q_2|)}{\partial q_1^{\alpha}}} F_{11}^{(1)}(q^1, q^2) dq_2 + \int_{r_3}^{\frac{\partial \Phi (|q_1-q_3|)}{\partial q_1^{\alpha}}} \times \right. \\ \left. \times F_{11}^{(1)}(q^1, q^3) dq_3 + \ldots \right\} = \frac{1}{N!} \int_{V-r_0}^{\frac{\partial \Phi (|q_1-q_2|)}{\partial q^{1\alpha}}} F_{11}^{(1)}(q^1, q^2) dq^2.$$

Окончательно в результате интегрирования (1) получаем

$$\frac{\partial F_{11}(q)}{\partial q^{\alpha}} + \frac{1}{\theta} \int_{V-v_1} \frac{\partial^{(1)}(|q-q'|)}{\partial q^{\alpha}} F_{11}^{(1)}(q, q') dq' = 0.$$
 (5)

Аналогичным образом с помощью более громоздких преобразований, исходя из конфигурационной части общего гиббсовского распределения для всей системы, можно получить интегро-дифференциальные уравнения, которым подчиняются другие функции распределения. В частности определяющие уравнения для функций F_{12} и F_{22} будут

$$\frac{\partial F_{12}(q^{1})}{\partial q^{1^{2}}} + \frac{1}{\theta} \int_{V-r_{1}} \frac{\partial \Phi(|q^{1}-q^{2}|)}{\partial q^{1^{2}}} F_{12}^{(1)}(q^{1}, q^{2}) dq^{2} + \frac{1}{\theta} \int_{V-r_{1}} \int_{\Gamma-r_{1}} \frac{\partial \Phi(|q^{1}-q^{2}|)}{\partial q^{1^{2}}} F_{22}^{(1)}(q^{1}, q^{2}, q^{3}) dq^{2} dq^{3} = 0, \qquad (6)$$

$$\frac{\partial F_{22}(q^{1}, q^{2})}{\partial q^{1^{2}}} + \frac{1}{\theta} \frac{\partial \Phi(|q^{1}-q^{2}|)}{\partial q^{1^{2}}} F_{22}(q^{1}, q^{2}) + \frac{1}{\theta} \frac{\partial \Phi(|q^{1}-q^{2}|)}{\partial$$

$$+\frac{1}{\theta}\int_{V-v_1}^{\frac{\partial\Phi}{\partial q^{1^{\alpha}}}} F_{12}^{(2)}(q^1, q^2, q^3) dq^3 + \frac{1}{\theta}\int_{V-v_1}^{\int} \int_{V-v_1}^{\frac{\partial\Phi}{\partial q^{1^{\alpha}}}} \frac{\partial\Phi(|q^1-q^3|)}{\partial q^{1^{\alpha}}} F_{22}^{(2)}(q^1, \dots, q^4) dq^3 dq^4 = 0.$$
 (7)

Выражение $F_{sk}^{(p)}(q^1,\ldots q^{s+p})\,dq^1,\ldots dq^{s+p}$ (в частности $F_{12}^{(1)}(q^1,q^2) imes dq^1dq^2,\, F_{22}^{(2)}(q^1,\ldots q^4)\,dq^1\ldots dq^4$ и т. д.) означает вероятность того, что в произвольном молекулярном объеме v_i , за исключением избранного v_1 , в котором около координат $q^1,\ldots q^p$ находится p произвольных частиц, будет s молекул около координат $q^{p+1},\ldots q^{p+s},$ а распределение остальных частиц учитывается так же, как функцией $F_{sk}(q^{p+1},\ldots q^{p+s}).$

В соответствии с определением

$$F_{11}(q') = \int_{r_i} F_{11}^{(1)}(q, q') dq, \qquad (8)$$

и аналогично

$$F_{12}(q') \simeq \int_{t_4} F_{12}^{(1)}(q, q') dq,$$
 (9)

$$F_{22}(q^3, q^4) \simeq \int_{v_i v_i} F_{22}^{(2)}(q^1, \ldots, q^4) dq' dq^2.$$
 (10)

Функции $F_{11},\ F_{12}$ и F_{22} можно записать в виде

$$F_{11}(q') = vF_{11}^{(1)}(q_{\text{cp.}}, q').$$
 (11)

Здесь $q_{
m cp.}$ — точка в молекулярном объеме v_1

$$F_{22}(q^3, q^4) = v^2 F_{22}^{(2)}(q_{\text{cp.}}^1, q_{\text{cp.}}^2, q^3, q^4).$$
 (12)

Известным обобщением последних выражений будет представление входящих в основные уравнения функции $F_{sk}^{(p)}$ через функции F_{sk} . Например, для функции $F_{11}^{(1)}$ запишем

$$F_{11}^{(1)}(q, q') = \frac{1}{q} \varphi(q, q') F_{11}(q'). \tag{13}$$

Для функции $\varphi(q, q')$ следует, что

$$\frac{1}{v}\int\varphi(q, q')\,dq'=1. \tag{14}$$

Подставим (13) в уравнение (5) и проинтегрируем по q^{α}

$$F_{11}(q) + \frac{1}{\theta_{\vartheta}} \int_{V-r_{0}} \left[\Phi\left(q, q'\right) \varphi\left(q, q'\right) - \int \Phi\left(q, q'\right) \frac{\partial \varphi\left(q, q'\right)}{\partial q^{\alpha}} dq^{\alpha} \right] \times F_{11}(q') dq' = C.$$
(15)

Произведя затем фурье-преобразование уравнения (15), получим выражение

 $\overline{F_{11}(k)} = \frac{C_0(k)}{1 + \frac{1}{\theta_D} \Phi(k)}, \tag{16}$

где $\overline{F_{11}(k)}$ — фурье-трансформанта функции $F_{11}(q)$,

$$\overline{\Phi(k)} = \int_{V-s_1} \left[\Phi \varphi - \int \Phi \frac{\partial \varphi}{\partial q^{\alpha}} dq^{\alpha} \right] e^{ik(q-g')} dq,
\varphi = \varphi(|q-g'|).$$
(17)

Переход к оригиналу дает

$$F_{11}(q) = \frac{C}{1 + \frac{1}{\theta_{\mathcal{V}}} \overline{\Phi(0)}}$$
 (18)

Как было показано в работах [1], введенные функции распределения позволяют вычислить конфигурационный интеграл. Для конденсированных систем основной вклад в конфигурационный интеграл вносят состояния, которым соответствует функция распределения F_{11} . Поэтому, даже не прибегая к вычислению интеграла состояний, но пользуясь полученным выражением (18), можно в первом основном приближении установить критерий фазового перехода. Последнему отвечает условие

$$1 + \frac{1}{\theta v} \overline{\Phi(0)} = 0. \tag{19}$$

Положим молекулярный объем v_1 в виде сферы радиуса R, а $q=q_0$ $(q_0^\alpha-$ координаты центра сферы). Для критического состояния вещества [3]

$$(r) = \begin{cases} 0 & r < r_0 = \frac{\sigma}{6/3} & (r = |q_0 - q'|). \\ 1 & r > r_0 \end{cases}$$
 (20)

В окрестности критической точки $r_0 \simeq R$. Условие (20') должно сохраняться для любого агрегатного состояния, так как оно выражает факт непроницаемости частиц. При удалении от критической точки в сторону более низких температур условие (20") нарушается. В кристаллическом состоянии $R < r_0$.

Если частица находится в центре ячейки v_1 (а выше это и было обусловлено), то соседняя частица не может быть обнаружена в любой точке ее ячейки v_i , т. е. сблизиться на минимальное расстояние R (учитываются лишь состояния системы, которым отвечает функция распределения F_{11}). Это значит, что вторая частица должна находиться в положении, близком к центру ячейки, что характерно для кристаллического состояния.

Так как $\varphi(r)$ уже не является постоянной, то в первом приближении рассмотрим для нее линейную зависимость, а именно

$$\varphi(r) = \begin{cases} 0 & r < r_0, \\ \frac{\beta(r - r_0)}{\alpha - r_0} & r_0 \leqslant r \leqslant 2R, \\ \text{const} & r > 2R \end{cases}$$
 (21)

(a - постоянная решетки).

В качестве потенциала $\Phi(r)$ используем потенциал Ленарда—Джонса (в дальнейшем поэтому рассматриваются лишь молекулярные кристаллы)

$$\Phi(r) = 4\varepsilon \left(\frac{\sigma^{12}}{r^{12}} - \frac{\sigma^{6}}{r^{6}}\right). \tag{22}$$

Подставляя (21) и (22) в уравнение (19) и выполняя интегрирование, согласно (17), при k=0, получим выражение для температуры плавления

$$T_{\text{max}} = \frac{z \frac{\varepsilon}{k} \sigma^4}{(1.2a - \sigma) v} \left[3.37 - \left(\frac{r_0}{R}\right)^2 \right], \tag{23}$$

Вычислив значения z по экспериментальным данным для температуры плавления отдельных молекулярных кристаллов кубической си-

стемы, убеждаемся, что они близки между собою (например, для Ar, Kr, N_2 z принимает соответственно значения 0.391, 0.335 и 0.368). Если в качестве z взять значение 0.37, то по формуле (23) получим значения температур плавления, согласующиеся с экспериментальными данными для всех рассмотренных кристаллов кубической структуры (см. таблицу).

Особый интерес представляет тот факт, что для образования кубической системы существенное значение имеет функция F_{11} (в этом случае $F_{11}\gg F_{22}$), функТемпературы плавления молекулярных кристаллов кубической структуры (Значения параметров в и с взяты из монографии [5])

					Т _{пл.,} вычис- денная по (23)	Т _{пл.} вкспери- ментальная
Ne					21.5	24.58
Ar	Ċ	Ĺ			79.4	83.88
Kr					128.3	116.08
Хe					162.6	161.38
N_2		Ĺ	Ī		63.6	63.3
$O_2^{\tilde{2}}$					47.9	54.78
CÕ	10				163.5	164.58
CO			Ċ	.	70.9	66.18

ции же F_{12} и F_{22} существенны для образования соответствующего класса кубической системы. Для некубической структуры уже в первом рассмотрении наряду с-функцией F_{11} следует учитывать и функции F_{12} и F_{22} .

Литература

- [1] Л. А. Ротт. ЖФХ, 31, 1468, 1957; 32, 1425, 1958; 32, 2846, 1958. [2] Л. А. Ротт. ДАН БССР, 2, 58, 1958. [3] Л. А. Ротт. Тезисы докладов на V совещании по жидкому состоянию вещества, Киев, 1961.
- [4] Н. Н. Боголюбов. Проблемы динамической теории в статистической физике,
- Гостехиздат, 1946. [5] R. Reid, T. Sherwood. The Properties of Gases and Liquids, Mc Graw-Hill Book Company, 1958.

Белорусский технологический институт им. С. М. Кирова Минск

Поступило в Редакцию 15 июля 1961 г.