этой температуры — наличием тонкозернистого мусковита и каолинита. Отличительной особенностью поведения фарфорового камня при термической обработке является его расширение в области температур 680—905 °С и монотонный характер потерь влаги в интервале температур от 80 до 905 °С.

Анализ результатов проведенного исследования позволил высказать мнение, что фарфоровые камни Кыргызстана могут быть отнесены к мусковит-кварцевому биминеральному типу — виду сырья, еще не получившему промышленного применения. Благоприятный минеральный состав и низкое содержание

хромогенных примесей дают возможность рассматривать исследованные фарфоровые камни как нетрадиционный вид минерального сырья для производства фарфора. Сырье представлено такими ценными составляющими, как кварц, мусковит и некоторые другие минералы, образующие тонкозернистые гомогенные агрегаты.

СПИСОК ЛИТЕРАТУРЫ

1. Финько В. И., Магидович В. И. Фарфоровые камни Гусевского месторождения Приморского края // Геология руд. месторождений. — 1962. — № 3. — С. 115—124.

- 2. **Магидович В. И.** Полевошпатовое сырье, его генетические типы и принципы оценки.— М.: Наука, 1964.— 144 с.
- 3. Финько В. И., Вачаев Б. И., Коренбаум В. С. Сергеевское месторождение фарфорового камня кварц-полевошпатового типа в Приморском крае // Каолины, минералогия и генезис.— М.: Наука, 1988.— С. 110—122.
- 4. Збарский М. И., Шмелев А. Г. Терсклисайское месторождение пирофиллита // Геология, петрология эндогенных месторождений Средней Азии. М.: Недра, 1972. С. 25–28.
- 5. Никулина Л. Н., Тараева Т. И. Петрографические особенности китайского фарфорового камня // Стекло и керамика. 1959. № 8. С. 40–44.

УДК 666.295.4

и. А. ЛЕВИЦКИЙ, Л. Ф. ПАПКО

Белорусский технологический институт

Нефриттованные глазури с использованием гальванических шламов

Для изготовления художественной керамики повсеместно используются фриттованные прозрачные и цветные глазури. Следует отметить, что в производстве целого ряда изделий декоративного назначения цветочных горшков, кашпо, ваз, панно, печных и архитектурных изразцов - они могут быть заменены более дешевыми нефриттованными глазурями. Применение таких глазурей позволяет снизить трудовые и энергетические затраты.

Наличие большинства стеклообразующих и красящих оксидов в составе гальванических шламов предопределяет возможность их использования в комплексе с другими материалами для приготовления легкоплавких глазурей различного назначения [1].

Синтез глазурей проводили для керамики как на основе легкоплавких неспекающихся карбонатных глин, так и с добавками к этим глинам для снижения водопроницаемости нефелин-сиенитового концентрата и боя стекла. ТКЛР керамических масс в интервале температур 20—400 °С составил (58...72)× ×10-7 °С-1.

Для приготовления глазурей использовали борат кальция, нефелин-сиенитовый концентрат, гальванический шлам с добавкой огнеупорной глины. Содержание компонентов в исследуемой системе находилось в следующих пределах (%; здесь и далее массовое содержание): 25-40 бората кальция, 15-35 нефелин-сиенитового концентрата, 15-45 гальванического шлама, 10-15 огнеупорной глины.

Таблица 1

	Массовое содержание, %								
Материал	SiO ₂	Al ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	B ₂ O ₃	Fe ₂ O ₃	
Борат кальция Нефелиновый	1,44	0,14	36,54	0,46	0,70	0,50	44,75	-	
концентрат Гальванический	44,79	24,08	1,40	1,44	9,30	9,07	-	4,20	
шлам	10,78	2,73	27,85	2,12	2,18	0,88	_	12,90	
Огнеупорная глина ВГО-2	52,70	32,20	1,10	0,50	0,60	2,10	-	1,30	

Продолжение табл. 1

M		Массовое содержание, %							
Материал	Cr ₂ O ₂	TiO ₂	NiO	CuO	ZnO	FeO	SO ₃	п. п. п.	
Борат кальция Нефелиновый	-	-	-	-	-	-	-	15,47	
концентрат Гальванический	-	4,80	-	-	-	-	-	0,92	
шлам Огнеупорная глина	1,08	0,21	0,46	7,09	1,42	0,33	1,75	28,22	
ВГО-2	-	0,20	-	-	-	-	-	9,30	

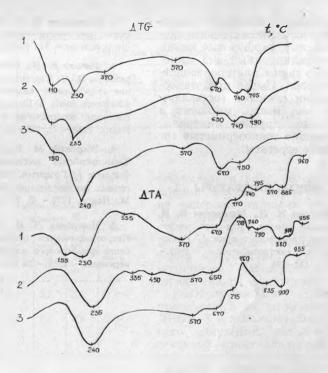


Рис. 1. Дифференциально-термический анализ глазури $I - \text{CK-20}; \ 2 - \text{CK-23}; \ 3 - \text{CK-27}$

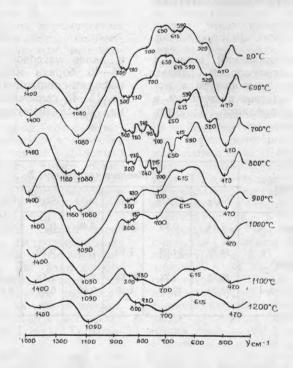


Рис. 2. Инфракрасные спектры глазури СК-23

Химический состав применяемых материалов приведен в табл. 1.

Сырые глазури готовили путем совместного мокрого помола всех компонентов в шаровой мельнице до остатка 0,05−0,3 % на сетке № 0056 К. Плотность глазурных суспензий 1470−1520 кг/м³. Суспензии наносили на поверхность обожженных кера-

мических изделий, водопоглощение которых составляло 19-21 %, методами окунания, полива и пульверизации. Покрытия высушивали на воздухе, а затем обжигали в щелевых электрических печах при температуре 920-1000 °C с выдержкой при максимальной температуре 1-1,5 ч. Подъем температуры до максимальной вели в течение 4 ч. Общая продолжительность обжига 8 ч.

Внешний вид, качество и цвет глазурных покрытий существенно различались в зависимости от химического состава глазурей. Были получены в основном блестящие цветные прозрачные и полупрозрачные покрытия с разной интенсивностью окраски, имелись покрытия с матовой фактурой, а также с эффектом сборки и скатывания.

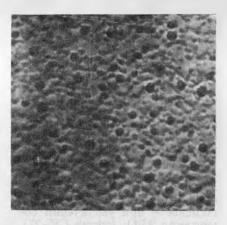
Интересующие нас составы блестящих глазурей находились в области, характеризующейся следующим соотношением оксидов: $CaO:(Na_2O+K_2O)-4.0-7.5$, $(Na_2O+K_2O):B_2O_3-0.3-0.5$.

Дифференциально - термический анализ глазурей оптимальных составов (рис. 1) показал, что в интервале температур 155-240 °С отмечаются эндоэффекты, связанные с удалением остаточной влаги и потерей массы (8,4-10,1%). При температуре 325-335 °C имеется эндоэффект, обусловленный удалением химически связанной влаги из бората кальция. Обезвоживание глинистого вещества, введенного огнеупорной глиной, происходит при температуре 570-660 °С и сопровождается потерей массы - 1,5-2,8 %. Экзоэффекты при температуре 740-760 °C соответствуют плавлению бората кальция. При последующем плавлении безводного бората кальция, образующего с компонентами шихты плавкие эвтектики, наблюдается эндоэффект при более низкой температуре (870-900 °C), чем отмечаемый у исходного бората кальция (950 °C). При температуре 955–960 °C наблюдается второй экзоэффект, обусловленный перестройкой кристаллической решетки остатка каолинита.

Для выявления структурных особенностей формируемого при термообработке глазурного слоя использовали метод инфракрасной спектроскопии. ИК-спектры поглощения в области 400-1500 см⁻¹ исходной и обожженной в интервале температур 600—1200 °С глазури состава СК-23 снимали на спектрометре UR-20 с использованием призм КВг и NaCl (рис. 2).

Наличие на ИК-спектре исходной шихты широкой полосы поглощения с максимумом в области 1080 см⁻¹, а также максимумов поглощения при 800, 780 и 470 см⁻¹ свидетельствует о присутствии полимеризованных кремнекислородных группировок со связями Si-O-Si. Полоса поглощения в области 1400 см⁻¹ отвечает колебанию атомов в

связях $B_{(3)}$ – О. Кроме того, на ИК-спектрах фиксируется наличие алюминия в двух его координационных состояниях: тетраэдрическом с максимумом поглощения в области 700 cm^{-1} и октаэдрическом (полоса поглощения в области 590 u $615-670 \text{ cm}^{-1}$) [2, 3]. Присутствие шестикоординированного алюминия обусловлено наличием каолинита в глинистой составляющей глазурной шихты, структуру которого образуют чередующиеся слои тетраэдров $[SiO_4]$ в группах $[Si_2O_8]_{\infty}$ и окта-


эдров [AlO₆].

Изменение структуры глазурной шихты, прошедшей термообработку, отмечается в интервале температур 700-800 °C и проявляется на ИК-спектрах следующим образом: усиление интенсивности основных полос поглощения, образование ряда полос в области 700-800 см⁻¹. Это свидетельствует о более четкой дифференциации основных структурных группировок и снижении доли аморфной фазы. Появление у основного максимума поглощения при 1080 см-1 плеча в высокочастотной области (1180 cм⁻¹) говорит о каркасном строении высокополимеризованных группировок с почти ненарушенными Si-O-Si и может быть связано с выделением в результате твердофазовых реакций структурных групп, обогащенных кремнеземом. Усиление полосы поглощения при 1400 см-1, появление полос поглощения с максимумами при 715 и 740 см⁻¹, связанных с присутствием тригональных групп [ВО3], обусловлено перестройкой кристаллической решетки исходного аморфного бората кальция [3].

Характер спектров исследуемой глазури существенно изменяется при образовании стекловидной фазы (температура термообработки 900 °C и выше). Отсутствие максимумов поглощения, отвечающих шестикоординированному алюминию, свидетельствует об изменении его координационного состояния. Смещение основного максимума поглощения при 1080 см-1 в более высокочастотную область (1090 cm^{-1}) обусловлено, очевидно, повышением степени полимеризации кремнекислородных группировок за счет встраивания групп [AlO₄], находящихся [AlO₄]Na комплексах

[AlO₄]₂Ca.

Образование группировок каркасного типа возможно также вследствие вхождения в анионные комплексы групп [ВО₄]. На превращение части борокис-

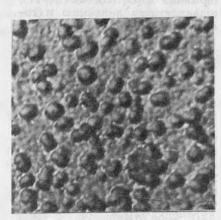


Рис. 3. Электронно-микроскопические снимки глазури СК-23, наплавленной при температурах (сверху вниз) 800, 900 и 1000 °C

лородных тригональных групп $[BO_3]$ в тетраэдрические группы $[BO_4]$ указывает снижение интенсивности полосы поглощения в области $1400~{\rm cm}^{-1}$, отсутствие характеристических максимумов поглощения при $715~{\rm u}$ $740~{\rm cm}^{-1}$. Поскольку катион ${\rm Ca}^{2+}$, преобладающий в составе глазури в ряду катионов групп ${\rm R}^+$ и ${\rm R}^{2+}$, имеет невысокую способность компенсировать заряды на группах $[{\rm BO}_4]$, полного перехода бора в четверную координацию не происходит.

Глазурные покрытия, обработанные при повышенной темпе-

Пашаа	Глазурь					
Показа- тель	CK-20	CK-23	CK-27			
Шихтовой						
состав						
глазу-						
ри, %:						
нефе-						
лин-						
сиени- товый						
конпен-						
трат	20	15	25			
борат	20	*0	20			
кальция	40	38	35			
гальва-						
нический						
шлам	30	35	25			
огнеупор-						
ная гли-						
на	10	12	15			
Характери-						
стика гла-						
зурных по-						
крытий:						
цвет	Черный	Черно	гзеленый			
ТКЛР, 10 ⁻⁷						
°C-1	75,2	72,8	71,7			
блеск, %	84	73	68			
микро-						
твер-						
дость,						
МПа	6279	6683	6479			
плав-						
кость						
глазу-						
ри, °С:						
нача-						
ло плав-						
ления	890	900	910			
образо-						
вание	010	020	030			
капли	910	920	930			
расте- кание	950	960	980			
Ranvie	300	300	300			

ратуре (1100 и 1200 °C), станоболее однородными вследствие менее выраженной дифференциации структурных групп, что проявляется в сглаженности спектра, снижении интенсивности основных полос поглощения. Размытость спектра в области 900-1100 cм⁻¹ свидетельствует об отсутствии четких границ между группировками каркасного типа (с повышенной долей ковалентных связей) и островного типа с большей донемостиковых связей Si-O...Ме, а также об образовании группировок со структурой, промежуточной между высоко-полимеризованными и изолированными комплексами.

Таким образом, в структуре глазурного покрытия имеются группировки с различной степенью полимеризации: от каркасных до островных. В присутствии значительного количества модифицирующих оксидов образование анионных группировок каркасного типа может быть связано с повышением степени полимеризации тетраэдров $[SiO_4]$ за счет встраивания $[AlO_4]$ и $[BO_4]$. Наряду с борокислородными тетраэдрическими группами $[BO_4]$ в структуре глазурей имеются тригональные группы $[BO_3]$.

Исследование синтезированных глазурей методом рентгенофазового анализа показало наличие небольшого количества кристаллических образований гематита α -Fe₂O₃, α -кварца и Cr₂O₃, дифракционные максимумы которых отличаются небольшой интенсивностью.

В результате изучения микроструктуры глазурей оптимальных составов методом электронной микроскопии установлено, что в интервале температур 900—1000 °С присутствует аморфная (стекловидная) фаза с признаками фазового разделения (рис. 3).

Для структуры глазури характерен капельно-ликвационный характер фазового разделения стекловидной фазы при наличии равномерно распределенных зерен кристаллических фаз (гематита, кварца, оксида хро-

ма). При увеличении температу-

ры термообработки более $1000~^{\circ}\mathrm{C}$ капли укрупняются до $0.5~\mathrm{мкм}.$

Ликвация в системе вызывается, очевидно, несовместимостью борокислородных тригональных групп с кремнекислородными тетраэдрами, что обусловлено выделением обогащенной боратной составляющей капельной фазы.

Наиболее ярко выражена ликвационная структура у состава СК-20, характеризующегося повышенным содержанием B_2O_3 , наименее — при увеличении содержания Al_2O_3 (состав СК-27), подавляющего ликвацию и гомогенизирующего расплав.

Изучение физико-химических свойств глазурей (ТКЛР, блеска, микротвердости, плавкости) показало их взаимосвязь со структурными особенностями покрытий. Полученные результаты приведены в табл. 2.

ТКЛР глазурей находится в пределах (71,7...75,2)·10⁻⁷ °С⁻¹, покрытия имеют черный и черно-зеленый цвета; сильный блеск, увеличивающийся с повышением содержания шламов; высокую микротвердость (6279—6683 МПа).

В результате качественного химического анализа глазурных покрытий не обнаружено тяжелых металлов в водных, соляно-кислых и аммиачных вытяжках [4], что свидетельствует о

прочной связанности тяжелых металлов в структуре глазурных покрытий.

Глазури оптимальных составов прошли заводскую апробацию на Радошковичском заводе художественной керамики.

Использование предлагаемых глазурей по сравнению с применяемыми позволяет снизить трудовые и энергетические затраты, необходимые на фриттование глазурей, исключить использование пигментов, утилизировать отходы производства.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дятлова Е. М., Левицкий И. А., Тижовка В. В. Комплексная оценка отходов гальванического производства как источника вторичного сырья для силикатных материалов // Стекло и керамика. 1992. № 4. С. 2—4.
- 2. Колесова В. А. Инфракрасные спектры поглощения силикатов, содержащих алюминий, и некоторых кристаллических алюминатов // Оптика и спектроскопия.— 1959.— Т. 6.—Вып. 1.— С. 38—44.
- 3. Плюснина И. И., Харитонов Ю. А. Кристаллохимические особенности и инфракрасные спектры поглощения боратов и боросиликатов // Журнал структурной химии. 1963. Т. 4. № 4. С. 555—568.
- 4. Левицкий И. А., Дятлова Е. М., Тижовка В. В. Использование гальванических шламов для получения цветных глазурей // Стекло и керамика.—1992.— № 8.— С. 2—4.

УДК 666.762.64:666.046.51

в. с. гвоздь

Сумской сельскохозяйственный институт

Особенности структуры и свойства периклазовой керамики, легированной оксидами редкоземельных элементов

Влияние различных добавок на спекание и структуру оксида магния широко изучалось при разработке технологии периклазовой керамики [1, 2]. Существенное воздействие на твердофазовое спекание оказывают те вещества, которые могут образовывать с периклазом твердые растворы с дефектами решетки и тем самым ускорять протекание диффузионных процессов. Отмечалось эффективное действие оксидов с большей, чем у оксида магния, валентностью

[3]. О взаимодействии оксида магния с CeO_2 и Nd_2O_3 имеются противоречивые сведения [4].

Фазовый состав обожженных образцов контролировали на установке ДРОН-1,5 в $\mathrm{Cu-K}_{\alpha}$ излучении (Ni-фильтр). Параметры решетки рассчитывали по профилям линий, полученных методом сканирования на дифрактометре, с точностью 0,0002 Å. Микроструктуру изучали в отраженном и проходящем свете (показатель прелом-

ления иммерсионной жидкости составлял 1,7 для MgO, 2,09 — для ${\rm Nd_2O_3},\ 2,35$ — для ${\rm CeO_2})$ с помощью микроскопов МИМ-8М и МБИ-6. Состав и технология изготовления образцов рассмотрены в работе [5].

При рентгенографическом исследовании незакаленных образцов периклазовой керамики не было обнаружено какого-либо химического взаимодействия между оксидами магния и CeO₂ и Nd₂O₃, на что указывает отсутствие дифракционных ли-