— 3allyCK MHHOBAIIMOHHBIX MPOEKTOB, HAIPaBJICHHBIX HA CO3J[aHUE
YCTOMYHUBBIX MPOJYKTOB U YCIYT (pa3pabOoTKa YMHBIX CUCTEM yIPABJICHHUS

pecypcamnu).

Cnucok ucnoJib30BaHHBIX HCTOYHUKOB

1 ATLANT [OnexkTpoHHbIl pecypc]. — DNEKTPOHHBIE JaHHBIC. —
Pexxum nmoctyma: https://atlant.by/?ysclid=m26rviw4km648662974 (nata
obpamenus: 18.10.2024).

2 UN.org [DnekTpoHHBIN pecypc]. — DIeKTpOHHbIE AaHHbIE. — Pexum
JOCTYTIA: https://www.un.org/sustainabledevelopment/ru/ (marta
obpamenus: 18.10.2024).

3 SDGS.by [DneKkTpoHHBIN pecypc]. — DNEKTPOHHBIE JaHHBIE. — Pesxum
noctymna: https://sdgs.by/?ysclid=m2glhnttvb349134744 (nara oOpareHus:
18.10.2024).

VJIK 004.89
A.V. Sidorenko, I.A. Samoilova, Ye.A. Spirina,

Buketov Karaganda University
Karaganda, Kazakhstan

CHATBOT DEVELOPMENT TECHNOLOGY USING PYTHON

Abstract. The Discord chatbot developed in Python is an innovative and
multifunctional tool that can significantly improve server management and make the
interaction of participants more interesting and exciting.

A.B. Cugopenko, U.A. CamoiisioBa, E.A. Cimpuna
Kaparannunckuit yuusepcurer uM. E.A . bykerosa,
Kaparanna, Kazaxcran

TEXHOJIOI'UA PASBPABOTKHN YAT-BOTA C
NCITOJIB3OBAHUEM PYTHON

Annomauun. Paspabomannwviti na Python uam-6om ons Discord sensemcs
UHHOBAYUOHHBIM U MHO2OQDYHKYUOHATLHLIM UHCMPYMEHMOM, KOMOP®lll CHOCOOEH
SBHAUUMENbHO YIVYWUMb — VAPAGIEHUEe CepeepoM U COenamv 83auMOOeticmaue
V4aACMHUKO8 boJiee UHMEePEeCHbIM U Y81eKAMEeNbHbIM.

With the development of digital technologies and social networks,
there is an increasing need for innovative solutions for communication and
interaction in the online environment. One of the most promising areas in

- 290 -

this area is the development of chatbots (virtual interlocutors) that can
automatically process user requests and provide information or perform
certain actions. One of the popular platforms for creating and using such
interlocutors, chatbots, is Discord - a multi-user online platform for
communication, community organization and voice communication (Figure

&) piscorad

Fig. 1. Discord platform logo

The technology of developing a chatbot for Discord is a complex and
multifaceted task that requires the integration of various technologies and
algorithms [1]. The choice of development tools fell on Python, as it is a
powerful and versatile programming language that is widely used in various
areas of software development, including the development of bots for online
platforms. This programming language has become one of the most popular
and in-demand programming languages due to its simplicity, flexibility and
rich ecosystem of libraries and frameworks. Using Python to develop a
virtual interlocutor allows you to reduce the time and cost of development,
as well as ensure high performance and reliability of the created solution [2].

The technology of creating a chatbot for Discord includes several key
stages, each of which is important for creating a fully functional and reliable
bot. This thesis covers the entire development process, from
conceptualization to testing and implementation. Each of the development
stages is presented in detail below.

The first step is to set the task and define the requirements for the bot.
At this stage, it is important to determine what functions the bot should
perform, as well as what problems it should solve. This step includes
analyzing user needs and researching existing solutions to identify gaps and
determine the unique features of the virtual interlocutor being developed.

The second stage involves selecting the appropriate technologies and
tools to implement the tasks. The Python programming language and the
discord.py library were chosen to develop the bot, as they provide convenient
and powerful tools for interacting with the Discord API. Additionally, the
following libraries and tools were selected: json: for working with data in
JSON format; NLTK or a similar library: for natural language processing;
asyncio: for working with asynchronous code.

-291 -

Designing the bot architecture. At this stage, the bot architecture is
developed, which includes a modular structure that allows you to easily add
and change functionality. The architecture includes the following
components: main module: responsible for connecting to Discord and
processing events; greeting module: responsible for greeting new users;
moderation module includes commands for moderators; anti-crash module:
monitors the stability of the bot and prevents its crashes; entertainment
module: includes mini-games and quizzes; RPG module: implements the
RPG system.

After the architecture is designed, the implementation of the bot's main
functions begins. This stage includes writing code for each module. An
example of the implementation of greeting new users is shown in Figure 2.

@bot.event

oin(member) :

channel = discord.utils.get(member.guild.text_channels,

if channel:

await channel.send(f'[Jo6po nowanoBaTb Ha CepBej {member.mention}!"')
Fig. 2. Greeting new users

Figure 3 shows a fragment implementing moderation.

£ cExt26Uq (4, [JOUP30BILEUP {WEWPEL " WEULTOU} QPIU KNKHAL® [JDNANHY: {L6920U},)
JTL WEWPSEL " KTCK(=L6920U)

064 KICK(CE£X' WewpsL: gTacoLq-|eWpeL' x' Leg20U=|

@cowmsuqge - yga~"beLwT22T0UR(=|LN6)

GpofL - coumwsuqg ()

Fig. 3. Moderation

The anti-crash system is necessary so that the built-in mechanisms for
protection against attacks and failures ensure stable operation of the server
and prevent its shutdown due to possible overloads or malicious actions

(Fig.4).

-292 -

import signal

def handle_crash(signum, frame):

print("boT T CUT ", signum)

signal.signal(signal.SIGTERM, handle_crash)

signal.signal(signal.SIGINT, handle_crash)

Fig. 4. Implementation of the anti-crash system

After all the functions are implemented, the bot is tested and
debugged. At this stage, it is important to check that all modules work
correctly and interact with each other without conflicts. Testing is carried out
both on a local server and on a real Discord server to ensure that all functions
work correctly.

Discord server. This stage includes setting up access rights, inviting
the bot to the server, and providing the necessary access to channels and
roles. Server administrators and moderators are also trained to use bot
commands.

Support and update. An important step in the process of developing a
virtual chatbot. Once the bot is implemented, it is important to ensure its
support and regular updates. This includes monitoring the bot's operation,
fixing errors, adding new features, and adapting to changes in the Discord
API. Regular updates help keep the bot relevant and stable.

Key results and conclusions obtained during the writing of the work:

1. Developing a chatbot for Discord using Python requires a
comprehensive approach and consideration of various aspects, from the
choice of technologies and tools to evaluating the effectiveness and usability
of the bot.

2. Discord is a powerful platform for communication and interaction,
providing users with ample opportunities for creating and managing
communities.

3. Using the Python programming language and the Discord.py library
allows you to create powerful and effective virtual interlocutors for Discord
with minimal investment of time and resources.

4. Developing natural language processing algorithms is a key aspect
of developing virtual interlocutors, allowing bots to understand and analyze

-293 -

user text messages.

5. Evaluating the effectiveness and usability of the bot is an important
stage of development and allows you to create a product that meets user
needs and achieves its goals.

Thus, the developed chatbot for Discord, created using Python, is an
innovative and multifunctional tool that can significantly improve server
management and make the interaction of participants more interesting and
exciting.

References

1. Discord API Documentation. URL:
https://discord.com/developers/docs/intro.
2. Python Documentation. URL: https://docs.python.org/3/.

YK 629.056.8

Y. CeiiutHenecos, I'. MejebaeBa, I'. AtaeBa, I'. PeqxenoBa
NuctutyT TenekoMMyHHUKALMT U
WNndopmaruku TypkmeHncTana

TEXHOJIOT'MU CITYTHUKOBOM CBSI3U JJIA TJTIOBAJIBHOT'O
IHHOKPLITUSA UHTEPHETA

Annomayus. C passumuem mexHoNo2Ull U y@eauueHuem NompeoHocmu 8
BbICOKOCKOPOCIHOM QOCHmYNe 6 UHMEpPHem, CHYMHUKOBAS C653b CMAHOBUMCs 6ce 0olee
akmyanvHoll. Jlannas cmamovs paccmampueaem Kilouegble MeXHON02UU CHYMHUKOBOU C8A3U,
HanpaenenHvle Ha obecnedenue 2l00ANbLHO20 NOKPLIMUL UHMEPHemd, d mMaKkice Ux
npeumywecmea u HedoCmamxu. AHaIu3upyomes cyuwecmayouue nPpoeKmsl U CUCEMbL, MaKue
xax Starlink, OneWeb u Project Kuiper, a maxace 6yoyujue nepcnexmugul U 6bi308bl, CMosuue
nepeo ompacivio.

Knrouesvle cnosa: TenekoMMyHUKAYUOHHbIE CUCMEMbL, WUPOKONOIOCHbIE —Cem,
0ecnpoBoOHast c6:3b, UHpPACMPYKMYpPa C6:3u, MEXHOI02UU Nepeoayu OaHHbIX, UHmMeSpayus
cemeil loT (Unmepnem seweit), 5G mexnonocuu 6yoyujee meieKOMMYHUKAYUL, KOHEEP2eHYUsL
cemell.

Ch. Seyitnepesov, G. Melebayeva, G. Ataeva, G. Redjepova
Institute of Telecommunications and
Informatics of Turkmenistan

SATELLITE COMMUNICATION TECHNOLOGIES FOR
GLOBAL INTERNET COVERAGE

2294 -

