20-30 мкм. Содержание остаточного кварца составляет 8-9%. Реакционная кайма оплавления кварца составляет 2-3 мкм. Поры в фарфоре хорошо оформлены, в основном закрытые, размером до 10-12 мкм.

Таким образом, применение отходов первого и второго обжигов в фарфоровых массах наряду с экономией сырья и снижением себестоимости приготовления массы позволяет широко использовать скоростной режим обжига фарфоровых изделий, высвободить производственные площади, предназначенные для хранения этих отходов, и улучшить эксплуатационные и эстетические свойства готовых изделий.

ЛИТЕРАТУРА

- 1. Eminow A.M. Zur Wirkung von mikrokristalliner Cellulose auf die Eigenschaften feinkeramischer Massen.// Cfi Ber.DKG.1992. №.1/2. S.21-23.
- 2. Eminow A.M., Maslennikova G.N., Nabiew H.M. Einfluss von Scherben auf das Mahlverhalten von Porzellanmassen. //Keramische Zeitschrift. 1998. Bd.50., №.11. S.936-938.
- 3.Eminow A.M., Maslennikova G.N., Nabiew H.M. Der Einfluss von rückgeführten Glüh und Glattscherben auf die Porzellanbildung. //Keramische Zeitschrift. 1999. Bd.51.№ 3. S.188-189.
- 4.Bozadgiev L., Georgieva E. Porcelain bodies based on bisquet —and glost-fired porcelain waste.// Interceram. 1992.Vol.41.№ 3.-P.478-480.

УДК 666.613:666.738

Ю.А. Климош, И.А. Левицкий (БГТУ, г. Минск)

ИСПОЛЬЗОВАНИЕ РАЗЛИЧНЫХ ВИДОВ СТЕКЛОБОЯ ПРИ ИЗГОТОВЛЕНИИ ПЛОТНОСПЕКШИХСЯ ИЗДЕЛИЙ

Необходимость совершенствования составов керамических масс и внедрение новых энергоемких технологий обусловливает поиск дешевых источников сырья, позволяющих получать материалы с высокими показателями свойств при меньших затратах. К такому сырью несомненно относятся отходы промышленности, рациональное использование которых позволит не только заме-

пить традиционное сырье, но и интенсифицировать технологические процессы, сократить энергоемкость производства.

На основании проведенных ранее исследований нами получены плотноспекшиеся изделия хозяйственного назначения с использованием в качестве флюсующего компонента стеклофритты (специально синтезированное бороалюмосиликатное стекло). Однако данный материал характеризуется высокой стоимостью, вызванной в основном большими топливно-энергетическими затратами для его производства. В связи с этим основными задачами настоящего исследования является изучение возможности использования отдельных видов стеклобоя взамен стеклофритты в производстве плотноспекшихся изделий хозяйственного назначения. В данной работе исследовались бой листового стекла, тарный стеклобой, кинескопное стекло, грубые отходы производства стекловолокна. Химический состав этих материалов приведен в таблице.

Таблица - Химический состав используемого стеклобоя

Паименова-	Оксиды и их содержания, %												
ние компонента	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	SO ₃	BaO	B ₂ O ₃	F	РЬО	ппп
Бой листово- го стекла	71,62	2,0	0,08	6,7	4,1	14,6	0,5	0,4					_
Стеклобой тарный	71,7	3,0	0,5	7,0	3,0	14,5		0,3		_	_	_	
Бой кинескопов	64,94	7,46	0,08	1,1	0,50	7,12	7,0	_	10,36		0,79	0,23	0,44
Отходы стекловолок- на	53,0	14,65	0,46	18,6	3,5	0,3		-	9,5		_	_	

На термограммах исследуемых видов стеклобоя отмечается наличие эндотермического эффекта в области температур 500–740 °С (в зависимости от вида стекол), что свидетельствует о поглощении тепла, вызванного изменением термопластического состояния системы, т. е. процессом размягчения стекла. Для боя кинескопов минимум эндотермического эффекта отмечается при 530°С, для тарного стеклобоя — 545°С, для боя листового стекла — 570°С, для отходов стекловолокна — 740°С.

Других значительных эффектов на термограммах стекол не отмечено, за исключением экзотермического эффекта с максиму-

мом при $900\,^{\circ}\mathrm{C}$ на термограмме отходов стекловолокна, который, по-видимому, обусловлен процессами кристаллизации анортита.

Результаты определения температур начала размягчения, появления жидкой фазы и начала растекания методом градиентной кристаллизации исследуемых видов стеклобоя показал, что у изученных типов стекол расплав образуется в интервале температур 740–1000 °С. Причем, у тарного стеклобоя и боя листового стекла температурный интервал расплавленного состояния более широкий. Температура начала размягчения у всех видов стекол практически одинакова и составляет 560–580 °С. Низкие температуры начала размягчения и растекания предполагают целесообразность их использования в составе комплексного плавня в комбинации с горными породами.

Составы опытных масс проектировали с учетом данных, полученных при синтезе тонкокаменных керамических материалов, где в качестве плавня использовалась стеклофритта. Количество глинистых компонентов и шамота оставалось постоянным – 70 и 10% соответственно (здесь и далее по тексту содержание приведено в масовых процентах), варьировалось содержание нефелин-сиенита (0–10%) и стеклобоя (5–20%), вводимого вместо стеклофритты. Исследовался также ряд составов масс, где использовалась комбинация трех плавней — нефелин-сиенит, стеклобой и стеклофритта, вводимые в соотношении 2:1:1.

Приготовление масс осуществлялось по традиционной шликерной технологии с последующим обжигом опытных образцов в интервале температур $950-1050^{\circ}$ C с выдержкой при максимальной температуре в течение 60 мин.

Экспериментальные исследования показали, что спекание до водопоглощения 5 % достигается только при температурах обжига 1050 °C, а показатели физико-химических свойств обусловлены не видом используемого в массах стеклобоя, а его количеством и температурой обжига. Так, увеличение содержания тарного стеклобоя и боя листового стекла от 5 до 20 % несколько улучшает показатели физико-химических свойств образцов, обожженных в интервале температур 950–1000°С. Однако у образцов, полученных из масс, содержащих 20 % тарного стеклобоя и боя листового стекла без введения нефелин-сиенита, обожженных при температуре 1050°С, наблюдаются следы деформации и вспучивания. Это обусловлено высоким количеством стекловид-

пой фазы и сужением интервала спекания образцов, что объясняется отсутствием нефелин-сиенита в составе керамических масс.

Сравнительный анализ показателей свойств опытных образцов, полученных из масс с использованием различных видов стеклобоя, со свойствами материалов, синтезированных с применением стеклофритты, показал неравноценность полной замены в составах масс стеклофритты на стеклобой. Даже 5 % стеклофритты в сочетании с нефелин-сиенитом оказывают более интенсивнос влияние на спекание образцов, чем 10 % стеклобоя в комбинации с нефелин-сиенитом или 20 % стеклобоя, введенного индивидуально. По-видимому, характер разного флюсующего действия фритты и стеклобоя обусловлен различной вязкостью, поверхностным натяжением и смачивающей способностью образующейся в процессе термообработки стекловидной фазы.

Экспериментально подтверждена возможность частичной замены стеклофритты на стеклобой изученных видов, что позволило получить изделия с высокими показателями физико-химических свойств: водопоглощение составляло 0,5–0,6 %, кажущаяся плотность — 2360–2385 кг/м³, открытая пористость — 1,19–1,42 %, общая усадка — 9,0–9,1 %, ТКЛР — (64,8-65,1) 10^{-7} K⁻¹

По данным рентгенофазового анализа при обжиге керамических масс опытных составов качественный фазовый состав представлен кварцем, анортитом, эгирином и гематитом. Следует отметить, что при замене в составах масс одного вида стеклобоя на другой интенсивность дифракционных максимумов кристаллизующихся фаз меняется незначительно. Увеличение содержания стеклобоя от 5 до 20 % качественно фазовый состав не меняет. Наблюдается некоторое снижение дифракционных максимумов, принадлежащих α-кварцу.

Таким образом, в результате проведенных исследований экспериментально установлена возможность использования изученных видов стеклобоя в керамических массах низкотемпературного обжига. С целью снижения материальных затрат возможна частичная замена дорогостоящей стеклофритты на стеклобой при сохранении высоких эксплуатационных характеристик материалов. Одновременно может быть решена проблема утилизации и рециклинга отходов стекольной промышленности.