Г.И. Морзак, Н.В. Сидорская, Н.Г. Малькевич, С.С. Мартынюк Белорусский национальный технический университет Минск, Беларусь

ПЯТЬ ПУТЕЙ ПРОМЫШЛЕННОЙ ДЕКАРБОНИЗАЦИИ

Аннотация. Для достижения глобальных и национальных целей по борьбе с изменением климата необходимо существенное сокращение выбросов углекислого газа в промышленности. Промышленность выбрасывает около четверти мировых выбросов парниковых газов. Декарбонизация промышленного сектора требует сочетания различных подходов.

G.I. Morzak, N.V. Sidorskaya, N.G. Malkevich, S.S. Martyniuk
Belarusian National Technical University
Minsk, Belarus

FIVE WAYS TO INDUSTRIAL DECARBONIZATION

Abstract. Achieving global and national climate change targets requires significant reductions in carbon emissions from industry. Industry accounts for about a quarter of global greenhouse gas emissions. Decarbonization of the industrial sector requires a combination of approaches.

Декарбонизация промышленности – это процесс снижения выбросов диоксида углерода и других парниковых газов, связанных с промышленным производством. Этот процесс стал актуальным в контексте изменения климата и необходимости целей достижения ПО снижению температуры на Декарбонизация промышленного сектора имеет решающее значение для достижения нулевых выбросов к 2050 году. После промышленной революции выбросы парниковых газов неуклонно росли и почти утроились за последние три десятилетия. Доля парниковых газов в промышленности (без учета выбросов OT промышленного использования электроэнергии) от общего объема выбросов составляет 24% мировых выбросов и 23% в США [1].

Промышленная декарбонизация — это сложная и многогранная задача, требующая комплексного подхода. Основные направления можно разделить на несколько категорий, каждая из которых включает в себя множество конкретных решений и технологий.

Основными путями промышленной декарбонизации являются:

1. Повышение энергоэффективности. Это фундаментальное направление, которое снижает потребление энергии на единицу

продукции. Методы включают оптимизацию производственных процессов, модернизацию оборудования (например, переход на высокоэффективные двигатели), использование систем автоматизации и управления энергией, а также внедрение тепловой изоляции. В Беларуси проводятся проекты по повышению энергоэффективности на предприятиях, включающие модернизацию оборудования, внедрение энергосберегающих технологий и оптимизацию производственных процессов. соответствии cГосударственной программой «Энергосбережение» 2021–2025 годы на за счет реализации энергоэффективных мероприятий экономия топливно-энергетических ресурсов в целом по республике в 2023 году составила 735,5 тыс. т у.т. [2].

- 2. Переход на низкоуглеродные источники энергии. Замена ископаемого топлива на возобновляемые источники энергии (солнечная, ветровая, геотермальная энергия) для обеспечения работы промышленных предприятий. Также включает в себя использование водорода, полученного с использованием возобновляемых источников энергии (зеленый водород). Перспективы этого направления зависят от развития инфраструктуры возобновляемых источников, стоимости и доступности водорода и значительных инвестиций. В Беларуси сектор возобновляемой энергетики развивается в основном за счет биоэнергетики. Прирост использования биомассы для получения электроэнергии с 2021 по 2023 годы составил 15,1млн кВт*ч или 20,4% [2].
- 3. Улавливание, использование и хранение углерода (Carbon capture, use and storage – CCUS). Технологии, позволяющие улавливать выбросов промышленных углерода ИЗ предприятий, использовать его в других процессах (например, для производства топлива или химикатов) или хранить его под землей. В Республике 17.09.08-001-2024 утверждены ЭкоНиП Беларусь окружающей среды и природопользование. Климат. Требования (правила) количественного определения выбросов парниковых газов», устанавливают требования (правила) количественного которые определения выбросов парниковых газов юридическими лицами и индивидуальными предпринимателями В целях обеспечения производственного учета выбросов парниковых газов из источников и их абсорбции поглотителями.
- 4. Изменение производственных процессов. Разработка и внедрение новых, более экологичных технологических процессов, которые по своей природе генерируют меньше выбросов диоксид углерода. Это направление может включать в себя применение новых

материалов, катализаторов и других химических процессов. Имеет высокий потенциал, но требует значительных научно-исследовательских работ и разработок. Успех зависит от инноваций и внедрения новых технологий.

5. Циркулярная экономика. Переход от линейной модели "производство-потребление-утилизация" к замкнутой модели, которая подразумевает повторное использование, переработку и рециркуляцию материалов. Это снижает потребность в новых ресурсах и, соответственно, выбросы диоксид углерода, связанные с их добычей и переработкой [3].

Путь к промышленной декарбонизации требует комплексных стратегий компаний и государственных мер по поддержке инноваций, инвестиций и внедрения.

Рис. 1 - Инструменты промышленной декарбонизации

Успешная декарбонизация промышленности зависит от нескольких факторов:

Политическая воля и регулирование. Необходимо разработать и внедрить строгие экологические стандарты и экономические стимулы (например, налоги на углерод, субсидии на зеленые технологии), которые будут способствовать ускорению процесса промышленной декарбонизации.

Технологические инновации. Дальнейшее развитие и снижение стоимости низкоуглеродных технологий являются ключевыми для достижения прогресса.

Финансовые инвестиции. Значительные инвестиции необходимы для модернизации существующих предприятий и внедрения новых технологий. Инвестиции в технологии декарбонизации сталкиваются с барьерами, связанными со сложностью промышленного сектора. Долговечность промышленного оборудования означает, что его замена требует процесса планирования, который может длиться несколько лет.

Социальное принятие. Изменения в производственных процессах

и потребления при реализации промышленной декарбонизации требуют широкой общественной поддержки.

В целом, перспективы промышленной декарбонизации положительные, но требуют комплексного и скоординированного подхода, включающего инновации, политическую поддержку и экономическую целесообразность.

Список использованных источников

- **3.** Rattle I., Gailani A., Taylor P. G. Decarbonisation strategies in industry: Going beyond clusters //Sustainability Science. -2024. T. 19. No. 1. C. 105-123.
- 4. Данные Департамента по энергоэффективности Государственного комитета по стандартизации Республики Беларусь.
- 5. Sovacool B. K., Geels F. W., Iskandarova M. Industrial clusters for deep decarbonization //Science. − 2022. − T. 378. − №. 6620. − C. 601-604.

УДК 574.42

Н.П. Неведров, И.В. Демехин, Д.О. Прокопова, Е.В. Восковская Курский государственный университет Курск, Россия

ПРОСТРАНСТВЕННАЯ ИЗМЕНЧИВОСТЬ ЦИКЛА УГЛЕРОДА В ПОЧВАХ КУРСКОГО РЕГИОНА

Аннотация. В статье представлены данные о пространственной изменчивости процессов эмиссии и депонирования углерода почвами лесных экосистем Курской области. Установлено, что в течение вегетационного сезона темно-серые типичные почвы эмитировали в атмосферу $11,1\,$ т/га углерода, черноземы выщелоченные $-7,9\,$ т/га, дерново-подзолы песчаные $-6,6\,$ т/га.

N.P. Nevedrov, I.V. Demehin, D.O. Prokopova, E.V. Voskovskaja Kursk State University Kursk, Russia

SPATIAL VARIABILITY OF THE CARBON CYCLE IN SOILS OF THE KURSK REGION

Abstract. The article presents data on the spatial variability of carbon emission