2025 г.

ЯНВАРЬ-ФЕВРАЛЬ

TOM 98, № 1

УДК 536.24:66.045

 Γ . С. Маршалова 1,2 , А. Б. Сухоцкий l , Д. В. Островская l , Е. С. Данильчик l

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ВНЕШНЕГО ЗАГРЯЗНЕНИЯ НА ТЕПЛООТДАЧУ ОДНОРЯДНОГО ТЕПЛООБМЕННОГО ПУЧКА ИЗ КРУГЛОРЕБРИСТЫХ ТРУБ В УСЛОВИЯХ ИНТЕНСИФИЦИРОВАННОЙ СВОБОДНОЙ КОНВЕКЦИИ

Представлены экспериментальные исследования и обобщение данных теплоотдачи однорядного пучка биметаллических труб со спиральными накатными алюминиевыми ребрами и кольцевым равномерным межреберным загрязнением в режиме свободной конвекции к вертикальным потокам воздуха, создаваемым вытяжной шахтой высотой H=0.52-2.24 м с регулируемым проходным сечением $f_{OTB}=0.0087-0.1185$ м 2 . Пучок выполнен из шести труб с коэффициентом оребрения $\varphi=21.0$ и межтрубным шагом $S_1=64$ мм. По данным измерений вычисляли средние приведенные коэффициенты теплоотдачи пучка, которые составили величины от 1.26 до 5.84 Вт/($m^2 \cdot {}^{o}C$) при числах Релея $(20-163) \cdot 10^3$.

Обнаружено что загрязнение может приводить к существенному снижению теплоотдачи (до 41%). Оптимальная площадь выходного отверстия вытяжной шахты увеличивается с ростом высоты вытяжной шахты, но уменьшается при загрязнении пучка.

Ключевые слова: аппарат воздушного охлаждения, загрязнение, интенсифицированная свободная конвекция, вытяжная шахта.

Введение. Высокие темпы развития газовых, химических и нефтехимических производств требуют сокращения потребления воды, расходуемой для отвода избыточного тепла технологических процессов. Эта задача может быть решена внедрением в производство теплообменных аппаратов воздушного охлаждения (ABO).

Основным элементом аппаратов воздушного охлаждения являются теплообменные секции, состоящие из закрепленных в трубных решетках и собранных в пучки оребренных труб. Трубы обычно расположены в энергоэффективной равносторонней шахматной компоновке. Вследствие низкого коэффициента теплоотдачи воздуха внешняя поверхность труб выполняется оребренной, что увеличивает площадь теплопередающей поверхности и повышает энергетическую эффективность аппарата.

АВО в основном функционируют в режиме вынужденной конвекции, вследствие чего для работы вентиляторов расходуется значительное количество электроэнергии. При понижении температуры охлаждающего воздуха до некоторого значения вентиляторы могут быть частично или полностью отключены с обеспечением нормативной тепловой мощности [1]. Также для усиления естественной тяги воздуха (свободной конвекции) над теплообменным пучком оребренных труб, согласно работе [2], возможна установка конструктивного устройства в виде вытяжной шахты. При этом интенсивность свободно-конвективного теплообмена со стороны оребрения увеличивается в 5–8 раз [3].

Функционально работа вытяжной шахты в качестве побудителя движения воздуха через теплообменные секции качественно подобна работе вентилятора (вентиляторов). Принципиальное отличие состоит в том, что при этом процессе не требуется подвода энергии извне в явном виде, а интенсификация теплообмена осуществляется в пучках секций пассивным способом, конечным результатом которого является соответствующая величина энергосбережения [4].

Одной из главных проблем, возникающих при эксплуатации ABO, является возникновение на оребренных поверхностях нагрева загрязнений, вследствие чего происходит снижение коэффициента теплопередачи, что ведет к уменьшению теплового потока и увеличению затрат на прокачку воздуха.

¹Белорусский государственный технологический университет. 220006, г. Минск, ул. Свердлова, 13а; э-почта: alk2905@mail.ru; ²Институт тепло- и массообмена имени А. В. Лыкова НАН Беларуси. 220072, г. Минск, ул. П. Бровки, 15; э-почта: galiana.sidorik@gmail.com. Поступила 22.08.2024.

Возможны загрязнения в виде заноса сухой землей, песком, гравием, смесью сухих листьев и травы, иголками сосновых и хвойных деревьев, цветочной пыльцой [5, 6]. Но в большинстве случаев загрязнение представляет различное сочетание отдельных чистых компонентов.

Подходы к учету внешнего загрязнения оребренных труб и пучков из них в существующих расчетных методиках представлены только для вынужденной конвекции и являются принципиально противоположными.

Так, согласно работам [7, 8], влияние внешнего загрязнения на теплоотдачу оребренных труб можно не учитывать, поскольку коэффициент теплоотдачи от поверхности оребрения к охлаждаемому атмосферному воздуху низок. Следовательно, термическое сопротивление теплоотдачи с внешней стороны является определяющим в общем термическом сопротивлении теплопередачи. Также в методиках [9] ВНИИнефтемаш представлены расчетные формулы по теплопередаче, которые вообще не включают термическое сопротивление загрязнения оребрения.

Однако натурные экспериментальные исследования [5, 6] теплопередачи ABO, состоящих из пучков биметаллических труб с накатными алюминиевыми ребрами, указывают на то, что коэффициент теплопередачи загрязненных поверхностей оребрения при работе в режиме вынужденной конвекции, уменьшается на более чем 12%. В работе [5] установлено, что в промышленных условиях эксплуатации из-за загрязнения ABO с поперечными ребрами прямоугольного профиля с коэффициентом оребрения $\phi = 20-23$ тепловая эффективность различных аппаратов составляет 0.78–0.87 от номинальной, а коэффициент теплопередачи — 0.42–0.91 от номинального значения.

В работе [10] влияние загрязнений на поверхности теплообмена определено по экспериментально полученному снижению локальных значений величин тепловых потоков. При этом было отмечено, что стабильное загрязнение межреберного пространства пылью и другими механическими включениями, содержащимися в охлаждающем воздухе, сохраняется при высоком значении коэффициента оребренности поверхности теплового съема и при низкой периодичности ее очистки. В работе проводили эксперименты на аппаратах воздушного охлаждения природного газа при работе двух вентиляторов. Коэффициент оребрения поверхности теплового съема составлял $\phi = 23.3$. По результатам выполненной работы авторы установили, что степень загрязнения пучка оребренных труб увеличивается в межочистной период и в самое жаркое время года, с июня по август, становится максимальной. При этом эффективность охлаждения снижается в 1.5-2.0 и более раз.

Для систем охлаждения газа на компрессорных станциях при определении динамики развития загрязнений автором работы [6] был использован метод корреляционно-регрессионного анализа статистических данных. Из исследований Р. А. Беркутов установил, что в основном увеличение значений термического сопротивления загрязнений приходится на весенне-летний период. Это объясняется оттаиванием верхнего слоя грунта и заносом в оребренную поверхность песка, иголок сосновых и хвойных деревьев, прошлогодней листвы и травы, присутствием в воздухе пыли, золы, растительности (одуванчик, тополиный или камышовый пух) [11, 12].

Механизм образования слоя загрязнения на поверхностях охлаждения обусловлен появлением сил притяжения (прилипания), вызванных адгезией [13]. Эти силы зависят от природы тел, кривизны соприкасающихся поверхностей, но не зависят от массы и размеров соприкасающихся тел. Поэтому для крупных частиц они оказываются меньше сил аэродинамического воздействия и сил тяжести и не могут удержать такие частицы на поверхности. С уменьшением размеров частиц силы уменьшаются и могут оказаться меньше сил притяжения в точках контакта.

Отложения, образующиеся на внешних поверхностях теплообмена, имеют, как правило, низкую теплопроводность λ_3 , а следовательно, и высокое термическое сопротивление:

$$R_3 = \delta_3/\lambda_3 . {1}$$

Толщина и характеристики слоя загрязнения зависят от времени воздействия и концентрации загрязнителя, скорости потока, температуры и давления. В [14] приведены физические свойства некоторых материалов, которые являются загрязнителями внешних теплообменных поверхностей АВО.

Tom 98, № 1, 2025

Динамика развития внешнего загрязнения индивидуальна для каждого ABO и зависит от места расположения и планировки площадки, климатических особенностей и времени года [15]. Загрязнение поверхности теплообмена является результатом двух одновременно протекающих процессов — отложения и уноса частиц загрязнителя. Причем значение скорости отложения υ_0 не зависит от времени τ , а значение скорости уноса υ_y прямо пропорционально толщине отложений δ_3 . Соответственно, скорость роста толщины отложения определяется разностью скоростей этих процессов:

$$d\delta_3/d\tau \sim \upsilon_0 - \upsilon_v . \tag{2}$$

Тогда зависимость толщины отложений от времени имеет асимптотическую форму:

$$\delta_3 = \delta_{3 \max} (1 - \exp(-b\tau)), \qquad (3)$$

где $\delta_{3.max}$ — максимально возможная толщина загрязнения, м.

Следует отметить, что в ABO, как правило, наибольшему загрязнению подвергаются первые по потоку воздуха ряды пучка. Наибольшей толщины загрязнение достигает с лобовой стороны трубы. При этом характеристики загрязнения не однородны по толщине. Верхний слой более рыхлый и, соответственно, с меньшим значением коэффициента теплопроводности, а нижний слой — более плотный (кристаллизованный под действием температуры и давления).

К снижению коэффициента теплоотдачи на поверхности охлаждения с воздушной стороны приводят следующие причины: отложение слоя загрязнения, имеющего высокое термическое сопротивление; снижение скорости воздуха, а иногда даже прекращение его поступления в те или иные каналы из-за их полной закупорки; изменение характера течения потока по каналам поверхности охлаждения из-за местных (локальных) отложений загрязнителя [13]. Перечисленные причины чаще всего проявляются в совокупности, обусловливая интегральный отрицательный эффект.

Методика расчета коэффициента теплопередачи должна включать термическое сопротивление загрязнения оребрения, что удовлетворяется формулой АЛТИ (Архангельский лесотехнический институт) [11], $B_{\text{T}}/(\text{M}^2 \cdot \text{K})$:

$$k_{p} = \left[\frac{1}{\alpha_{1}} \frac{\varphi d_{0}}{d_{1}} + \frac{\varphi d_{0}}{2\lambda_{\text{cr}}} \ln \frac{d_{\text{H}}}{d_{1}} + R_{31} \frac{\varphi d_{0}}{d_{1}} + R_{\kappa} \frac{\varphi d_{0}}{d_{\text{H}}} + \frac{\varphi d_{0}}{2\lambda_{a}} \ln \frac{d_{0}}{d_{\text{H}}} + \frac{1}{\alpha} + R_{32} \right]^{-1}.$$
 (4)

В работе [16] экспериментально изучено влияние внешнего загрязнения биметаллической кругло-ребристой трубы на свободно-конвективный теплообмен. Опыты выполнены с оребренными трубами со следующими параметрами: $d_{\rm H}=25$ мм; s=2.5 мм; h=14.6 мм; $\Delta=0.5$ мм, $\phi=19.26$. По результатам выполненной работы сделан вывод, что при загрязнении оребренной поверхности только у основания ребер тепловая мощность теплообменной трубы уменьшается менее чем на 10%. Следовательно, при эксплуатации оребренных теплообменников в условиях естественной конвекции (например, конвекторов систем отопления) не обязательна их частая и тщательная очистка от загрязнений.

Разработаны также теоретические модели расчета коэффициента теплоотдачи оребренной биметаллической трубы с кольцевым равномерным загрязнением [17, 18] для разреженных круглых ребер, которые не подтверждены экспериментальными данными.

Таким образом, существующие исследования влияния загрязнения на теплоотдачу оребренных трубных пучков ABO имеют противоречивый характер и проводились преимущественно для режима вынужденной конвекции.

Экспериментальное исследование. Целью работы является экспериментальное исследование и обобщение данных теплоотдачи однорядного пучка оребренных труб с кольцевым равномерным межреберным загрязнением в режиме свободной конвекции, интенсифицированной вытяжной шахтой.

Исследования проводились на стандартных промышленных биметаллических оребренных трубах со спиральными накатными алюминиевыми ребрами следующих параметров: наружный диаметр d = 56.8 мм; диаметр трубы по основанию оребрения $d_0 = 26.4$ мм; высота ребра h = 15.2 мм; шаг ребра s = 2.43 мм;

средняя толщина ребра $\Delta=0.55$ мм; длина оребренной части трубы $\lambda=300$ мм, коэффициент оребрения трубы $\phi=21.0$. Материал ребристой оболочки — алюминиевый сплав АД1М, материал несущей трубы — углеродистая сталь. Внешнее загрязнение межреберного пространства биметаллических ребристых труб создавалось путем равномерного плотного кольцевого наматывания льняного шнура средней теплопроводностью $\lambda_3=0.039$ Вт/(м · K). В результате был образован межреберный слой загрязнения средней толщиной $\delta_3=2.9$ мм с неравномерностью ± 0.4 мм (рис. 1, a). Межтрубный поперечный шаг труб в пучке составлял $S_1=64$ мм, количество труб в пучке — n=6 штук.

Схема экспериментальной установки для исследования теплообмена однорядного пучка оребренных труб в режиме свободной конвекции, интенсифицированной с помощью вытяжной шахты (рис. $1, \delta$), представлена в работе [19]. В ходе экспериментальных исследований над однорядным пучком труб устанавливалась вытяжная шахта с высотой H = 0.52; 1.04; 172 и 2.24 м и различными крышками с площадью отверстия $f_{\text{отв}} = 0.0087$; 0.0201; 0.033; 0.05; 0.069; 0.087 и 0.1185 м².

Экспериментальное исследование проводилось методом полного теплового моделирования. Подвод теплового потока к оребренным поверхностям обеспечивался за счет установки внутри оребренных труб трубчатых электронагревателей (ТЭНов). В ходе опытов электрическая мощность, подводимая к оребренным трубам, изменялась в пределах W = 10–260 Вт, средняя температура стенки у основания ребер составляла $t_{\rm cr} = 25$ – $120^{\rm o}$ C, а температура окружающего воздуха в камере $t_0 = 19$ – $23^{\rm o}$ C.

Результаты экспериментальных исследований теплоотдачи в различных тепловых режимах обрабатывались и представлялись в виде зависимостей числа Нуссельта от чисел Релея:

$$Nu = \frac{\alpha_{\kappa} d_0}{\lambda} , \qquad (5)$$

Ra =
$$\frac{g\beta d_0^3(t_{cr} - t_0)}{va}$$
. (6)

Теплофизические свойства воздуха были рассчитаны по температуре окружающего воздуха в камере τ_0 .

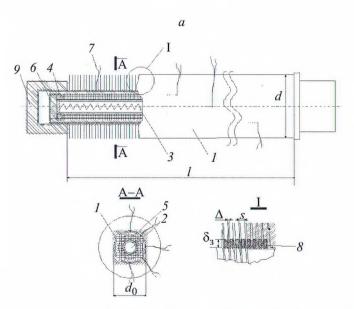


Рис. 1. Общий вид калориметрической трубы (a) и экспериментального стенда с однорядным пучком (б): I — биметаллическая ребристая труба; 2 — трубчатый электронагреватель (ТЭН); 3 — спираль ТЭНа; 4 — центровочное кольцо; 5 — кварцевый песок; 6 — высокотемпературная силиконовая замазка; 7 — хромель-алюмелевые термопары; 8 — льняной шнур; 9 — фторопластовая втулка

Том 98, № 1, 2025

Для апробации экспериментальной установки были проведены исследования модели пучка с загрязненными оребренными трубами в условиях свободной конвекции без вытяжной шахты. Как и ожидалось, согласно работе [16], в условиях свободной конвекции межреберное загрязнение практически не влияет на теплоотдачу круглоребристых труб с высоким коэффициентом оребрения и однорядных пучков из них. Зависимость числа Нуссельта от числа Релея загрязненного пучка практически совпала в пределах достоверности эксперимента с зависимостью чистого пучка и аппроксимировалась функцией $Nu_0 = 0.0072 \, \mathrm{Ra}^{0.44}$.

Анализ влияния загрязнения на теплоотдачу пучка и оптимальные параметры шахты. Для анализа влияния площади отверстия в крышке на теплоотдачу однорядного пучка без загрязнения и с внешним кольцевым межреберным загрязнением в режиме свободной конвекции, интенсифицированной при помощи вытяжной шахты, на рис. 2 представлены экспериментальные зависимости относительного числа Нуссельта Nu от числа Penex Ra для вытяжной шахты высотой H = 1.04 м.

Как видно из рис. 2, экспериментальные данные качественно (с погрешностью менее 5%) аппроксимируются степенной зависимостью:

$$Nu = A Ra^{0.5}, (7)$$

где коэффициент пропорциональности A зависит от параметров оребренной трубы и вытяжной шахты. Значения аппроксимационного коэффициента A уравнения (7) для различных высот H вытяжной шахты представлены в табл. 1.

Анализ данных на рис. 2 и табл. 1 позволяет сделать вывод, что имеется оптимальное отверстие крышки, при котором достигается максимальное значение числа Нуссельта. Согласно работе [19], снижение теплоотдачи для больших площадей отверстия крышки вытяжной шахты обусловлено наличием циркуляционных (гейзерных) течений воздуха в шахте.

На рис. 3 представлены зависимости числа Нуссельта от коэффициента сужения площади выходного отверстия вытяжной шахты $\chi_{\text{пп}} = f_{\text{отв}}/f_{\text{сж}}$ ($f_{\text{сж}} = nlS_1[1 - (d_0 + 2h\Delta/s)/S_1]$ — сжатое сечение пучка, м²) для чистого и загрязненного пучков с вытяжной шахтой при числе Релея $Ra = 10^5$.

Экспериментальные данные аппроксимированы зависимостью, предложенной в [20]:

$$Nu = Nu_0 \left(1 + \exp\left(-\frac{\chi_{III}}{\chi_{III}^{opt} - \chi_{III}^0}\right) \left(\frac{\chi_{III}}{\chi_{III}^0} - 1\right) \right). \tag{8}$$

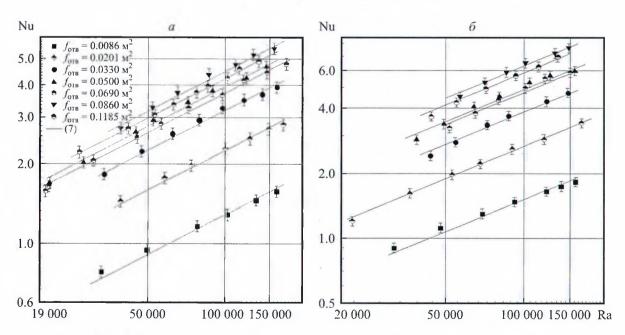


Рис. 2. Зависимости числа Нуссельта чистого (a) и с загрязнением (δ) пучков от числа Релея для вытяжной шахты высотой H=1.04 м

Таблица 1. Значения аппроксимационного коэффициента A уравнения (7) для различных высот H вытяжной шахты

Н, м	$f_{ m OTB},{ m m}^2$						
	0.0086	0.0201	0.033	0.05	0.069	0.086	0.1185
			Чистый	пучок			
0.52	0.0034	0.0061	0.00847	0.01073	0.01252	0.01218	0.00988
1.04	0.00479	0.00847	0.0122	0.01557	0.0186	0.02	0.01506
1.72	0.00526	0.01023	0.01566	0.02077	0.02523	0.02695	0.0267
2.24	0.00645	0.01219	0.01755	0.02261	0.0285	0.03091	0.03272
			Загрязненн	ый пучок			
0.52	0.0032	0.0053	0.0069	0.00814	0.00885	0.00802	0.00615
1.04	0.00406	0.00712	0.01008	0.01241	0.01334	0.01418	0.01175
1.72	0.00457	0.00839	0.01209	0.01591	0.01793	0.01872	0.01958
2.24	0.00529	0.00958	0.01333	0.01678	0.01988	0.02073	0.02254

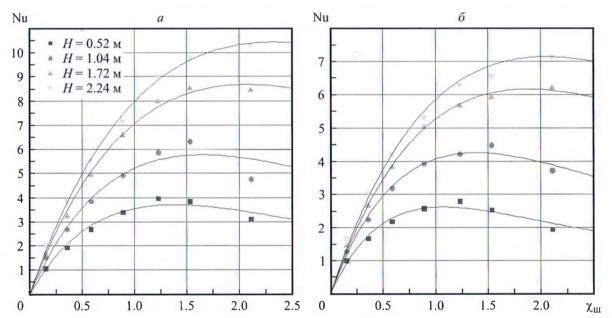


Рис. 3. Зависимости числа Нуссельта чистого (a) и с загрязнением (δ) пучков от коэффициента сужения площади выходного отверстия вытяжной шахты $\chi_{\rm III}$ при числе Релея ${\rm Ra}=10^5$

На рис. 4 представлены зависимости максимального числа Нуссельта $\mathrm{Nu_{max}}$ и оптимального коэффициента сужения площади выходного отверстия $\chi_{\mathrm{m}}^{\mathrm{opt}}$ от высоты вытяжной шахты H при числе Релея $\mathrm{Ra}=10^5$.

Как видно из рис. 4, a, максимальная теплоотдача загрязненного пучка существенно уменьшается по сравнению с чистым пучком с увеличением высоты вытяжной шахты H (снижение достигает 41% при высоте шахты H=2.24 м). Уменьшение теплоотдачи обусловлено как снижением площади теплообмена, так и увеличением аэродинамического сопротивления пучка.

Рисунок 4, δ показывает, что оптимальная площадь выходного отверстия вытяжной шахты увеличивается с ростом высоты вытяжной шахты, но уменьшается при загрязнении пучка.

Том 98, № 1, 2025

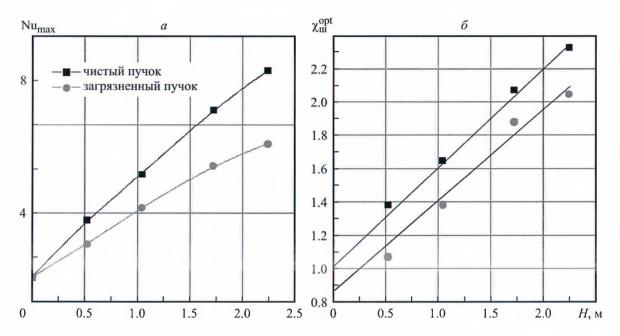


Рис. 4. Зависимости максимального числа Нуссельта (a) и оптимального коэффициента сужения площади выходного отверстия (δ) от высоты вытяжной шахты при числе Релея Ra = 10^5

Заключение. Проведены экспериментальные исследования и обобщение данных теплоотдачи однорядного пучка оребренных труб с кольцевым равномерным межреберным загрязнением в режиме свободной конвекции, интенсифицированной вытяжной шахтой. Обнаружено что загрязнение может приводить к существенному снижению теплоотдачи (до 41%), которое увеличивается с ростом высоты вытяжной шахты. Оптимальная площадь выходного отверстия вытяжной шахты увеличивается с ростом высоты вытяжной шахты, но уменьшается при загрязнении пучка.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект Т23РНФМ-005), а также в рамках проекта Государственной программы научных исследований "Энергетические и ядерные процессы и технологии" подпрограммы "Энергетические процессы и технологии" (задание 2.37, ГБ21-104), а также при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках реализации программы Научного центра мирового уровня по направлению "Передовые цифровые технологии" Санкт-Петербургского государственного морского технического университета.

Обозначения

A — коэффициент пропорциональности; a — коэффициент температуропроводности воздуха, M^2/c ; b — константа, определяемая экспериментально, c^{-1} ; d — наружный диаметр оребрения трубы, мм; d_0 — диаметр оребрения по основанию, мм; d_H — наружный диаметр несущей трубы, м; d_1 — внутренний диаметр несущей трубы, м; f_{CW} — сжатое поперечное сечение пучка, M^2 ; f_{OTB} — площадь выходного сечения шахты (площади отверстия крышки), M^2 ; g — ускорение свободного падения, M^2 ; H — высота вытяжной шахты, м; h — высота ребер трубы, мм; K — коэффициент пропускной способности пучка; k_p — расчетный коэффициент теплопередачи, $BT/(M^2 \cdot K)$; l — длина оребренной части трубы, мм; Nu — конвективное число Нуссельта; n — количество труб в поперечном ряду пучка, шт; PT — число Прандтля; R_3 — термическое сопротивление загрязнения, $M^2 \cdot M^2 \cdot$

 Λ — средняя толщина ребра, мм; δ_3 — средняя толщина загрязнения, м; θ_t — относительный перепад температуры на пучке; θ — относительная разность плотностей; λ — коэффициент теплопроводности воздуха, $Bt/(M\cdot K)$; λ_3 — коэффициент теплопроводности материала несущей трубы, $Bt/(M\cdot K)$; λ_a — коэффициент теплопроводности оребренной оболочки, $Bt/(M\cdot K)$; ν — коэффициент кинематической вязкости воздуха, м /c; τ — период времени загрязнения трубы, с; υ_0 — скорость отложения загрязнения, м/с; υ_y — скорость уноса загрязнения, м/с; φ — коэффициент оребрения трубы; $\chi_{\rm III}=f_{\rm OTB}/f_{\rm CW}$ — коэффициент сужения площади выходного сечения шахты $f_{\rm OTB}$ (площади отверстия крышки) по отношению к сжатому сечению пучка $f_{\rm CW}$; $\chi_{\rm III}^{\rm opt}$ — оптимальный коэффициент сужения площади выходного отверстия вытяжной шахты, при котором значение числа Нуссельта Numax максимально; $\chi_{\rm III}^{\rm opt}$ — нулевой коэффициент сужения площади выходного отверстия площади выходного отверсти п

Литература

- 1. **Кунтыш В. Б., Самородов А. В.** Исследование влияния угла наклона круглоребристых труб на свободно-конпективный теплообмен шахматного пучка в неограниченном объеме воздуха. *Инженерно-физический журнал*. 2010. Т. 83, № 2. С. 338–344.
- 2. **Васильев Ю. Н., Марголин Г. А.** Системы охлаждения компрессорных и нефтеперекачивающих станций. Москва: Недра, 1977.
- 3. **Кунтыш В. Б., Самылов А. И.** Исследование теплоотдачи однорядных пучков оребренных труб при совместном действии свободной и вынужденной конвекции воздуха. *Известия высших учебных заведений. Сер. Энергетика.* 1999. № 4. С. 59–68.
- 4. **Маршалова Г. С., Сухоцкий А. Б., Кунтыш В. Б.** Повышение энергосбережения в аппаратах воздушного охлаждения интенсификацией внешнего теплообмена. *Химическое и нефтегазовое машиностроение*. 2020. № 2. С. 3–7.
- 5. Камалетдинов И. М. Энергосбережение при эксплуатации аппаратов воздушного охлаждения на магистральных газопроводах. Автореферат дис. ... канд. техн. наук. Уфа, 2002.
- 6. **Беркутов Р. А.** Повышение энергоэффективности систем охлаждения газа на компрессорных станциях. Автореферат дис. . . . канд. техн. наук: 25.00.19. Уфа: Институт проблем транспорта энергоресурсов, 2010.
- 7. Доманский И. В., Исаков В. П., Островский Г. М., Решанов А. С., Соколов В. Н. Машины и аппараты химических производств: примеры и задачи. Ленинград: Машиностроение, 1982.
 - 8. Bott T. R. Fouling of Heat Exchangers. Amsterdam: Elsevier Science, 1995.
- 9. **Методика теплового и аэродинамического расчета** аппарата воздушного охлаждения газа. Москва: ВНИИнефтемаш, 1982.
- 10. **Габдрахманов А., Гаррис Н.** Влияние эксплуатационного загрязнения на тепловые характеристики аппаратов воздушного охлаждения газа. *Нефтегазовое дело.* 2003. Т. 1. С. 1–6.
- 11. Кунтыш В. Б., Кузнецов Н. М. Тепловой и аэродинамический расчеты оребренных теплообменников воздушного охлаждения. Санкт-Петербург: Энергоатомиздат, 1992.
- 12. Володин В. И., Кунтыш В. Б., Петреева Н. Г., Бессонный А. Н., Бессонный Е. А. Влияние внешнего выгрязнения на эффективность теплообменных аппаратов воздушного охлаждения. *Тезисы докладов и сообщений XIV международного форума по тепло- и массообмену*. Минск, 10–13 сентября 2012. Минск, 2012. Т. 2. С. 40–42.
 - 13. Жукаускас А. А. Конвективный перенос в теплообменниках. Москва: Наука, 1982.
- 14. **Кунтыш В. Б., Сухоцкий А. Б., Филатов С. О., Жданович А. Ю.** Исследование теплопроводности внешних загрязнителей теплообменных секций аппаратов воздушного охлаждения. *Химическая техника*. 2013. № 11. С. 40–43.
 - 15. Бурков В. В., Индейкин А. И. Автотракторные радиаторы. Ленинград: Машиностроение, 1978.
- 16. **Сухоцкий А. Б., Данильчик Е. С., Карлович Т. Б., Фарафонтов В. Н.** Влияние внешнего загрязнения биметаллической круглоребристой трубы на свободно-конвективный теплообмен. *Труды БГТУ. Серия 1. Лесное хозяйство, природопользование и переработка возобновляемых ресурсов.* 2019. № 2. С. 266–271.
- 17. **Карлович Т. Б.** Теплопередача круглых ребристых труб при неравномерном эксплуатационном загрязнении межреберного пространства. *Инженерно-физический журна*л. 2018. Т. 91, № 5. С. 1278–1286.
- 18. **Дударев В. В., Филатов С. О., Карлович Т. Б.** Методика расчета и анализ коэффициента теплопередачи биметаллических ребристых труб аппаратов воздушного охлаждения с неравномерным внешним загрязнением. *Энерге- тшка. Известия высших учебных заведений и энергетических объединений СНГ*. 2017. Т. 60, № 3. С. 237–255.
- 19. Маршалова Г. С. Тепловой расчет и проектирование аппаратов воздушного охлаждения с вытяжной шахтой. Дис. ... канд. техн. наук: 01.04.14. Минск, 2019.
- 20. **Сухоцкий А. Б.,** Данильчик Е. С., Маршалова Г. С. Влияние межтрубного шага на конвективную теплоотдачу воздухоохлаждаемого пучка с вытяжной шахтой. *Вестник фонда фундаментальных исследований*. 2020. № 2. С. 160–169.

Tom 98, № 1, 2025