отличие от Big Data, Smart Data более контекстуализированы и откалиброваны под конкретные потребности.

4. Умные данные более полезны для машинного обучения, так как если машины получают отфильтрованную информацию, они могут выявлять закономерности и выполнять конкретные задачи самостоятельно более эффективно и результативно.

Таким образом, переход с Big Data на Smart Data для предприятий и компаний необходим в случае, если задачей является не просто накопление и медленная обработка огромных неконтекстуализированных данных, а также выявление закономерностей, тенденций и аномалий, так как умные данные меньше по объёму и при этом являются отфильтрованными, очищенными и более структурированными.

ЛИТЕРАТУРА

- 1. [Электронный ресурс]. Электронные данные. Режим доступа: https://netconomy.net/blog/big-data-smart-data/– «Big Data vs. Smart Data»;
- [2]. [Электронный ресурс]. Электронные данные. Режим доступа: https://www.esa-automation.com/en/difference-between-big-data-and-smart-data/– «Difference Between Big Data and Smart Data».

УДК 655.52-529

В.П. Кобринец, доц., канд. техн. наук (БГТУ, г. Минск) Д.С. Карпович, канд. техн. наук (БГТУ, г. Минск)

РАЗРАБОТКА АЛГОРИТМА ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ПРОЦЕССОМ ПЕРЕРАБОТКИ НЕФТИ В КОЛОННЕ К-102

Для повышения эффективности основная задача управления процессом в колонне К-102 связанна с увеличением выхода светлых нефтепродуктов. Это также вызвано повышенными требованиями к стабилизации качества получаемых в колонне фракций, изменениями количества, качества и температуры сырья, подаваемого в колонну, а также необходимостью оперативного решения задач по управлению колонной при изменении плановых заданий на номенклатуру получаемых в колонне К-102 топлив и величин отбора фракций.

Для решения указанных задач, а также в соответствии с технологической целью процесса в колонне K-102 разработан алгоритм оптимизации статических режимов и программа решения задачи оптимизации на ЭВМ.

Математическая постановка задачи оптимизации формулируется следующим образом:

$$X(F,f) = X_{3a\pi}$$

 $W_i = W_{i,3a\pi} (i = 1, 2, 3)$
 $T_i \le T_i(X, U) \le T_i (i = 1, 2, 3)$
 $U_i \le U_j \le U_j (j = 1, 2, ... 10)$ (1)

где W_1 , W_2 , W_3 — расходы фракций соответственно 140°–180°, 180°–230°С, 230°–360°С; T_1 , T_2 , T_3 — температуры выкипания 98% соответственно фракций 140°–180°, 180°–230°С и 50% фракции 230–360°С;

 U_j (F_n , F_0 , S_1 , S_2 , S_3 , t_1 , t_2 , t_3 , t_4)— вектор управляющих параметров, где F — расход пара; F_0 — расход острого орошения; S_1 — расход верхнего циркуляционного орошения; S_2 — расход 1-го ЦО; S_3 — расход 2-го ЦО; P — давление в колонне; t_1 — температура верха колонны; t_2 — температура 1-го ЦО в колонну; t_3 — температура 2-го ЦО в колонну; t_4 — температура низа колонны.

 $X(F, t_f)$ — вектор входных параметров (F — расход отбензиненной нефти, t_f — температура нефти).

В данном варианте задача оптимизации статических режимов работы колонны K-102 сводится при заданном значении вектора X(F,f) к определению заданных значений расходов всех фракций W_1 , W_2 , W_3 при выполнении заданных ограничений на качественные показатели: температуры выкипания 98% фракций T_1 = 140–180 °C, и T_2 = 180–230 °C, и 50%(96%) фракции при 230 – 300 °C. Кроме того, накладываются позиционные ограничения на все управляющие воздействия $U_j(j=1,2,...,10)$. Решение задачи оптимизации в данном случае получается в виде зависимости:

$$U_{onm} = \bar{U}(X, W_1, W_2, W_3) \tag{2}$$

С учетом многофакторности и многосвязности технологических параметров процесса ректификации нефти в колонне K-102 для управления им в данных условиях целесообразно применить статистическую математическую модель [2]. Для получения данной модели использованы данные о технологических параметрах процесса, взятые из режимных листов нормальной эксплуатации колонны в количестве 124 опробований с интервалом 2 ч. в условиях ЛК-6У № 2 Мозырского НПЗ. При этом интервал времени между измерениями входных (в том числе и управляющих) и выходных параметров принят с учетом времени запаздывания.

Корреляционный анализ показал, что параметры процесса многокомпонентной ректификации находятся в сложной нелинейной зависимости друг от друга, то целесообразно принять нелинейную форму регрессионной зависимости между данными параметрами. Ввиду значительного количества входных (X_i) и управляющих параметров (U_j) целесообразно применить параболическую зависимость 2-го порядка [2].

В данном варианте алгоритма оптимизации (3) расходы фракции W_1 , W_2 , W_3 являются управляющими параметрами. Поэтому для всех выходных параметров T_1 , T_2 , T_3 нелинейные уравнения регрессии в общем виде имеют следующее выражение

$$Y_{i} = b_{i0} + b_{i1}F + b_{i2}F_{0} + b_{i3}S_{1} + b_{i4}S_{2} + b_{i5}S_{3} + b_{i6}F_{P} + b_{i7}P + b_{i8}t_{1} + b_{i9}t_{2} + b_{i10}t_{3} + b_{i11}t_{n} + b_{i12}t_{f} + b_{i13}W_{1} + b_{i14}W_{2} + b_{i15}W_{3} + b_{i16}F^{2} + b_{i77}F_{0}^{2} + b_{i18}S_{1}^{2} + b_{i19}S_{2}^{2} + b_{i20}S_{3}^{2} + b_{i21}F_{P}^{2} + b_{i22}P^{2} + b_{i23}t_{1}^{2} + b_{i24}t_{2}^{2} + b_{i25}t_{3}^{2} + b_{i26}t_{n}^{2} + b_{i27}t_{f}^{2} + b_{i28}W_{1}^{2} + b_{i29}W_{2}^{2} + b_{i30}W_{3}^{2}$$

$$(3)$$

С учетом принятой формы уравнений регрессии (2) с использованием статистических данных о технологических параметрах процесса для всех выходных параметров процесса (T_1 , T_2 , T_3) рассчитаны коэффициенты уравнений регрессии и оценена их адекватность.

При проведении расчетных исследований по данному варианту алгоритма оптимизации в качестве интервала ограничений по каждому выходному параметру (T_1 , T_2 , T_3 , W_1 , W_2 , W_3) и некоторым управляющим воздействиям (F_n , t_1 , t_2 , t_3 , t_4), как наиболее реальные для данного диапазона изменения расхода отбензиненной нефти, можно принять ограничения по i-тому параметру в диапазоне

$$M(x_i) - \sigma_{xi} \le x_i \le M(x_i) + \sigma_x, \tag{4}$$

где $M(x_i)$ — среднее значение параметра x_i , $\sigma_{\rm x}$ — среднее квадратическое отклонение x_i .

Величины $M(x_i)$ и σ_x для всех параметров процесса приведены в таблице 1. При определении интервала ограничений на такие управляющие воздействия как расходы всех орошений (F_0 , S_1 , S_2 , S_3), которые существенно влияют на результате расчетов, целесообразно принять следующее соотношение:

$$\hat{S}_i - \sigma_{Si} \le S_i \le \hat{S}_i + \sigma_{Si} (i = 0, 1, 2, 3)$$
(5)

где $\hat{\mathbf{S}}_i$ – рассчитанное по уравнению регрессии вида

$$S_i = a_{i0} + a_{i1}F (6)$$

значение соответствующего расхода i-го орошения при заданном расходе отбензиненной нефти F.

Таблица 1 – Коэффициенты a_{0i} , a_{i1} , рассчитанные для всех S_i

Обозна-					
чение коэффи- циента	F_0	S_1	S_2	S_3	$F_{ m p}$
a_{i0}	127.799654	-337.913723	229.739692	340.69676	-0.401577
a_{i1}	-0.070847	0.589658	0.144351	0.050514	0.010296

Решение задачи оптимизации по данному алгоритму при выбранных по вышеприведенной методике интервалов ограничений для всех параметров было приведено для некоторых режимов работы колонны.

Программа, составленная по данному оптимальному алгоритму (1) с применением метода нелинейного программирования [2] на языке С++ представляет собой средство для проведения расчетов оптимальных режимов работы колонны для всех рассмотренных режимов работы по видам сырья и номенклатуре получаемой продукции в указанных интервалах расхода и температуры отбензиненной нефти. Разработано редактируемое окно данной программы, в которое можно вносить значения необходимых технологических параметров процесса и получать результаты вычислений оптимальных режимов его работы (советов оператору). Результатом работы программы является расчет и отображение численных значений в соответствующем поле оптимальных значений всех управляющих параметров и соответствующих им величин расходов фракций и их качественных показателей. Эти данные являются рекомендацией оператору для управления процессом в колонне при соответствующем варианте работы при заданной нагрузке по сырью.

Рассчитанные по данной программе усредненные данные по выходным параметрам (W_1 , W_2 , W_3 , T_1 , T_2 , T_3) для некоторых фактических и расчетных оптимальных режимов приведены в таблице 2.

T	` aб	ЛІ	Щ	a	2

W_1		W_2		W_3	
Расч.	Факт.	Расч.	Факт.	Расч.	Факт.
30.935	30.935	155.6	155.6	205.9	205.9
\overline{T}_1		T_2		T ₃	
Расч.	Факт.	Расч.	Факт.	Расч.	Факт.
173.2095	172.4	241.3333	239.4	361.9744	363.8

Из данных таблицы 2 видно, что при заданных значениях W_1 , W_2 , W_3 расчетные показатели T_1 , T_2 , T_3 близки к соответствующим фактическим и соответствуют технологической норме.

При этом расчетный режим (советы оператора) позволяют для некоторых режимов существенно уменьшить расходы ЦО, что способствует улучшению динамических свойств процесса.

ЛИТЕРАТУРА

- 1. Бояринов А.И., Кафаров В.В. Методы оптимизации в химии и химической технологии.— М.; Химия, 1980 г.
- 2. Кузьміцкі І.Ф. Мадэляванне аб'ектаў і сістэм аўтаматызацыі. І.Ф. Кузьміцкі, В.П. Кобрынец, Д.С. Карповіч, Мн.:БДТУ, 2011, –251с.