И.А. Левицкий, проф., д-р техн. наук Л.Ф. Папко, доц., канд. техн. наук М.В. Дяденко, ст. преп., канд. техн. наук (БГТУ, г. Минск)

СТЕКЛОКРИСТАЛЛИЧЕСКИЕ ЦЕМЕНТЫ ДЛЯ ОПТОЭЛЕКТРОННЫХ УСТРОЙСТВ

При получении оптоэлектронных устройств используются стектокристаллические цементы для вакуумплотного соединения воловопно-оптических элементов с металлическими оправами. В настоящее премя возникла потребность в разработке и выпуске стеклокристаллических цементов данного назначения ввиду их отсутствия на рышке стран СНГ.

Для создания вакуумплотных спаев в электронной технике ширикое применение находят стеклокристаллические цементы и легкопланкие стекла. Преимуществом стеклокристаллических цементов перел легкоплавкими стеклами является их более высокая механическая прочность и термостойкость, а также возможность спаивания деталей посьма различными показателями температурного коэффициента пшейного расширения (ТКЛР) при меньших напряжениях в спае.

Стеклокристаллический цемент должен обеспечивать согласование по ТКЛР со стеклом световедущей жилы оптического волокна, который составляет $(77\pm1)\cdot10^{-7}$ K⁻¹. Температура деформации теклоцемента должна составлять не менее 470 °C, электрическая прочность — не менее 20,0 кВ/мм. Вакуумплотная стеклокристалническая структура цемента должна формироваться в условиях обжити при температуре 450 ±10 °C.

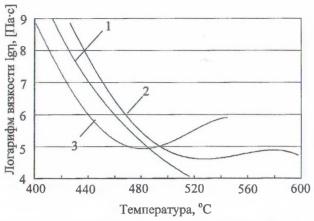
Известны общие принципы получения легкоплавких стекол, согласно которым низкие температуры плавления характерны для композиций, включающих легкополяризуемые ионы, такие как Pb^{2+} , Bi^{3+} , Pb^{3+} , Zn^{2+} [1, 2].

Наибольшее практическое применение получили свинецсодержащие и висмутсодержащие стекла. Последние могут выступать в качестве альтернативного варианта свинецсодержащим стеклам лишь в случае проведения их температурной обработки при относительно высоких температурах, составляющих не ниже 550 °C, в то время как минимальная температура спаивания свинецсодержащих стеклоцементов составляет 380 °C. Кроме этого, соединения висмута характеризуются высокой стоимостью, что повышает затраты на материалы пля синтеза стеклоцементов.

В ряду свинецсодержащих стеклоцементов наиболее перспективными являются материалы на основе системы $ZnO-PbO-B_2O_3$. В указанной системе получены стеклоцементы при температуре обжига 410–550 °C с показателями ТКЛР, составляющими (50–115)· 10^{-7} K⁻¹ [3]. Однако сведения о составах стеклокристаллических цементов, отвечающих комплексу требований к материалам для плотных спаев волоконно-оптических элементов с металлическими оправами, отсутствуют.

В связи с этим для решения поставленной задачи в системе ZnO–PbO–B₂O₃ выбраны составы стекол, включающие, мас. %: 50–85 PbO; 5–40 ZnO; 10–45 B₂O₃. Синтез стекол проведен в электрической печи периодического действия при температуре 1000 ± 10 °C.

Выявлено, что определяющее влияние на фазовые превращения при градиентной термообработке стекол оказывает соотношение $ZnO/(PbO+B_2O_3)$. Так, развитие кристаллизационных процессов характерно для стекол с указанным соотношением, составляющим свыше 0,20, с выделением в качестве кристаллической фазы соединение $3ZnO\cdot B_2O_3$.


Показатели ТКЛР опытных стекол изменяются в пределах от $60,5\cdot10^{-7}$ до $118,4\cdot10^{-7}$ K⁻¹. Определяющее влияние на ТКЛР оказывает содержание оксида свинца.

Показатели ТКЛР, наиболее близкие к заданному $(77\cdot10^{-7}~{\rm K}^{-1})$, имеют стекла с содержанием оксида свинца 65–70 мас. %. Однако при выборе составов стекол для получения стеклокристаллических цементов важное значение имеют реологические свойства стекол. Так, вязкость стеклоцемента должна составлять 10^4 – $10^5~{\rm Ha}\cdot{\rm c}$ при температуре спаивания, составляющей 450 °C.

Для определения вязкостных характеристик стекол в области температуры стеклования использовался дилатометрический метод. Температурные зависимости вязкости стекол в интервале значений 10^9 – 10^4 Па·с получены с помощью вискозиметра PPV-1000 фирмы Orton (США).

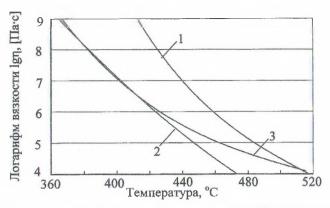
Зависимость температуры стеклования и дилатометрической температуры размягчения от состава исследованных стекол имеет сложный характер. По дилатометрическим кривым установлено, что температура стеклования опытных стекол изменяется в пределах от 305 до 490 °C. По способности снижать вязкость опытных стекол в интервале температур 300–500 °C компоненты располагаются в следующий ряд: $B_2O_3 \rightarrow ZnO \rightarrow PbO$.

На рисунке 1 представлены температурные зависимости вязкости стекол с постоянным содержанием B_2O_3 , составляющим 20 мас. %.

Содержание ZnO, мас. %: I - 5; 2 - 10; 3 - 15

Рисунок 1 – Влияние оксида ZnO на вязкость опытных стекол

Увеличение содержания оксида цинка, вводимого взамен оксида снинца, от 5 до 10 мас. % вызывает рост показателей вязкости. По мере перехода стекла из пластического в жидкое состояние градиент вязкости становится менее выраженным.


Особенностью температурной зависимости вязкости стекол является увеличение показателей вязкости образцов, содержащих 10 и 15 мас. % ZnO, в области значений $10^5 – 10^4~{\rm Ha}\cdot{\rm c}$, что обусловлено кристаллизацией опытных стекол при температурах свыше 480 °C.

Аналогичное влияние оксида цинка, а именно рост вязкости, обусловленный кристаллизацией в процессе термической обработки, характерен для образцов стекол с различным соотношением PbO и B_2O_3 при содержании оксида цинка более 10 мас. %.

Поскольку стекла системы $ZnO-PbO-B_2O_3$ не обеспечивают гребуемые реологические характеристики, проведена модификация составов стекол с содержанием оксида цинка 5–10 мас. % путем его частичной замены на оксиды группы RO (где RO-CaO и BaO).

Как следует из рисунка 2, введение оксидов кальция и бария обусловливает снижение вязкости практически во всем температурном интервале. Наиболее существенно влияние природы оксидамодификатора проявляется в области температур ниже температуры Литтлтона, соответствующей значению вязкости 10^{6,6} Па·с.

Значения вязкости ниже 10^5 Па·с при температуре 450 ± 10 °C достигаются при введении оксида кальция в количестве 4 мас. %.

1 – исходное стекло; 2, 3 — стекло, содержащее 4 мас. % CaO и BaO соответственно

Рисунок 2 — Влияние оксидов CaO и BaO на температурную зависимость вязкости опытных стекол

Стекла модифицированных составов характеризуются показателем ТКЛР свыше $90\cdot10^{-7}~{\rm K}^{-1}$. Для обеспечения заданного показателя ТКЛР, составляющего $77\cdot10^{-7}~{\rm K}^{-1}$, и повышения термомеханической прочности на основе стекла оптимального состава апробированы композиции стекло-кристаллический наполнитель. В качестве кристаллических наполнителей использовались циркон, оксид олова, кордиерит, волластонит и флюорит в количестве 20-30 мас. %. Требуемые показатели ТКЛР и растекаемости достигнуты при использовании в качестве кристаллического наполнителя циркона.

По результатам исследования композитных материалов определены оптимальные соотношения стекловидной и кристаллической фаз, при которых достигаются установленные параметры стеклокристаллических цементов.

ЛИТЕРАТУРА

- 1. Журавлев, А.К. Легкоплавкие стекла / А.К. Журавлев, Н.М. Павлушкин. М.: Стройиздат, 1970. 175 с.
- 2. Корякова, 3. Легкоплавкие стекла с определенным комплексом свойств / 3. Корякова, В. Битт // Компоненты и технологии. 2004. N = 5. C. 126 128.
- 3. Бобкова, Н.М. Легкоплавкие стекла на основе свинцовоборатных систем / Н.М. Бобкова // Стекло и керамика. 2009. № 6. С. 12—15.