AATOPUTMUSALNA U TPOTPAMMUPOBAHMUE
ALGORITHMIC AND PROGRAMMING

...

YK 004.272.2
0. N. Karasik'!, A. A. Prihozhy?
'[Ssoft Solutions (part of Coherent Solutions)
?Belarusian National Technical University

THREAD-SAFE BITSET WITH FAST EXTRACT MIN OPERATION

Even in today’s ever-changing world where every modern PC, game console, mobile device, or TV
is equipped with GBs of RAM and CPUs have multiple cores, fast, thread-safe, space-efficient data struc-
tures remain an active field of research. Bitsets (binary array of individually accessible bits) have many
applications in various industry domains like operating systems, database design, searching and allocating
resources. The existing implementations of bitsets are mainly focused on compression and encoding of
bits to reduce memory footprint, disk storage consumption and speed up bulk bitwise operations (primarily
in cases of search and database design), or on low- and non-concurrent scenarios for tracking and allocating
resources, or on the usage of bitset as a set of unique integers to insert, remove and test their presence.
This paper proposes the implementation of fast, thread-safe bitset designed for high-concurrent scenarios
like reservation and tracking of resources. High performance is achieved using an additional index array
and a novel non-blocking synchronization mechanism. Experiments carried out on a server equipped with
two Intel Xeon E5-2620 v4 processors have shown the speedup of 2 — 6 times compared to implementation
which uses standard blocking synchronization mechanisms like mutexes and locks.

Keywords: bitset, concurrent data structure, find first set bit, extract min.

For citation: Karasik O. N., Prihozhy A. A. Thread-safe bitset with fast extract min operation. Pro-
ceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2025, no. 1 (290), pp. 62—69.
DOI: 10.52065/2520-6141-2025-290-10.

0. H. Kapacuk!, A. A. Ilpuxo:xnii’
'MHOCTpaHHOE MPOU3BOICTBEHHOE YHUTapHOe peanpustie «Mccodt Commommensy
’BenopyccKuii HAMOHATBHBIH TEXHUIECKUH YHUBEPCUTET

INOTOKO-BE3OITACHAS PEAJIU3ALINA BUTOBOI'O MHOKECTBA
C BbBICTPOU OIIEPALIMEU U3BJIEYEHUA MUHUMAJIBHOI'O YJIIEHA

IToToko-0e30macHbIe KOMITAKTHBIE CTPYKTYPBI AAHHBIX OCTAIOTCSI AaKTUBHOM OOJIACTBIO HMCCIICIOBAHMI
JTaXKe CEroJIHsI, Korqa KaXKIbIii coBpeMeHHBIH [1K, nrpoBas KOHCOIb, MOOMIIEHOE YCTPOWCTBO HIJIH TEJICBU30P
OCHaIlleHbl rUradaiiTaMy OTepaTUBHON MaMATH ¥ MHOTOSIIEPHBIMH TIpoOIieccopaMu. butoBbie MHOXKECTBa
(XBOMYHBIN MacCHB MHAMBHIYATbHO-JOCTYITHBIX OMTOB) NMEIOT IPUMEHEHNE B PA3INIHBIX OTPACIIAX,
TaKMX KaK ONEPallMOHHBIC CHCTEMBI, IIPOSKTHPOBaHNE 0a3 JaHHBIX, IIONCK U PaclpeelICHHE PECyPCOB.
CymecTByrolmue peatn3ayy ONTOBBIX MHOKECTB COCPEIOTOYEHBI B OCHOBHOM Ha CYKATHH 1 KOIHPOBAHNH
OWUTOB U COKpAIICHUS MOTPEOIIEMON MaMATH U TUCKOBOTO NPOCTPAHCTBA, a TAK)XKE HA YCKOPEHUH
MHO>KECTBEHHBIX OMTOBBIX OIepanuii (B 4aCTHOCTH, B 00JIACTSIX TIOMCKA M IIPOCKTUPOBAHS 0a3 TaHHBIX),
WINM Ha CHEHAPHIX C HU3KO- W HEMapauIeIbHBIM OTCIIC)KHBAHUEM U BBIACICHUEM PECYPCOB, WIH Ha
HCIIOJIb30BAHNH OMUTOBBIX MHOXECTB B KauecTBE HAOOpa YHUKAIBHBIX IEIIBIX YUCEN C IETbI0 BCTABKH,
yIaJIeHHs] ¥ TIPOBEPKU MX HAIWYMS. B NaHHOW cTaThe mpezsyaraeTcsi MOTOKO-0e30IacHas peaan3alis
OUTOBOTO MHOKECTBA, NPEeHA3HAUECHHAS TS HICTIONB30BAHHS B CLIEHAPHSIX C yHaCTHEM OIPOMHOTIO KOJIIECTBa
TIOTOKOB, BBITIOIHSIONINX BHYIIUTEIFHOE KOIMYECTBO MAPAIUIEIBHBIX ONEPAINi, TAKMX KaK PE3ePBUPOBAHIE
1 OTCJIS)KUBAHUE PeCypcoB. BeIcoKast MPOM3BOANTENHLHOCTD JOCTUTACTCS 3a CUET UCIOIb30BAHNUS IOTIOI-
HUTEIBHOTO MacCHBa MHIEKCOB M HOBOI'O MEXaHM3Ma HEOIOKMPYIOMIEH CHHXPOHM3ALMHI. DKCIIEPHIMEHTHI,
TIPOBEICHHBIE Ha CepBEpe, OCHAIIIEHHOM ByMs mporeccopami Intel Xeon E5-2620 v4, mokazanu yckopeHne
B 2—6 pa3 1o CPaBHEHUIO C peal3alreil, HCIOIb3yIomei OJIOKHPOBKY ITOTOKOB.

KurwueBble cjioBa: OUTOBOC MHOXECTBO, IMOTOKO-0€30MacTHbIC CTPYKTYPBI JaHHBIX, ITIOUCK IIEPBOTO
BBICTAaBJICHHOT' O 6I/ITa, U3BJICYCHUEC MUHUMAJIBHOT'O YJICHA.

Tpyabi BITY Cepuss3 Ne 1 2025

O. N. Karasik, A. A. Prihozhy

63

s mmrupoBanms: Kapacuk O. H., [lpuxoxuii A. A. [Toroko-0e3omacHas peanusanusi OUTOBOro
MHOJKECTBA C OBICTPOI orepanueit n3pneueHust MuHIMaIbHOTO wieHa // Tpynst BI'TY. Cep. 3, ®usuko-
MaTeMaTnieckre Hayku u uHpopmatuka. 2025. Ne 1 (290). C. 62—69 (Ha anri.).

DOI: 10.52065/2520-6141-2025-290-10.

Introduction. Conceptually, bitset (aka bitmap)
is a binary array, where every bit can be set or reset
independently. Every bit in the array corresponds to
an integer (bit index), thus forming a set of unique
integers. Because of its space efficiency (a single
64-bit word can handle unique integers from 0 to 63)
and ability to perform fast bulk bitwise operations,
bitset has application in various areas like database
indices [1-2], web search [3], event matching [4],
graphs [5], sequence predictions [6], memory and regi-
stry allocators [7-9].

Common non-thread-safe implementations of bitset
include operations to set (include in set), reset (re-
move from set) and fest (check if in set) individual
bits; bulk operations between two or more bitsets to find
intersection (logical AND) and union (logical OR);
operation to find first (find first set bit or smallest
value in a set). In non-concurrent scenarios, operations
can be combined to form new operations, like reset
first (find first set bit and reset or remove smallest
value from the set) operation which is implemented
as a combination of find first and reset operations.

In thread-safe implementations the bitset inter-
face is either a more concise and includes set, reset
and fest operations (without find first operation).

In both implementations, the set, reset and test
operations have constant execution time, while find
first operation in contrary, is usually implemented
as a lineal search.

In this research we propose a fast, thread-safe
bitset implementation that implements set and reset
operations in constant time and reset first operation
in non-lineal time.

Main part. Non-thread-safe bitset. In a scenario
of uncompressed and unencoded bitset (assuming the
size of the bitset is larger than a single word), a
bitset can be implemented as an array B of words W,

where individual bits are accessed by first locating
an array element and then locating a bit from the el-
ement.

The number of words N required to hold the
number of bits C can be calculated as:

N=[C/ W]

The array element index ip and bit position pg
within the element of the bit X can be calculated as
quotient and remainder:

ig=X/Wand pp=Xmod W.

Knowing iz and pz we can implement set and
reset operations using bitwise logic (logical and, or,
not and shifts). However, to implement the find first
set bit operations we need a function to find a posi-
tion of least significant bit in a word, hereinafter we
denote this function as bitscan (modern CPUs im-
plemented this function as bfs opcode). Fig. 1 pre-
sents a possible pseudocode of these functions.

Thread-safe bitset. Thread-safe versions of set
and reset operations can be implemented using in-
terlocked or atomic logical operations, supported by
most of the modern CPUs. The test and find first
function do not require changes because they don’t
modify the bitset and consistency of memory reads
is guaranteed by cache coherency protocols.

The reset first operation, however, no longer can
be implemented as a combination of find first and
reset operations because the bit index returned from
find first operation might be reset by a concurrent
actor before the execution of reset operation. Therefore,
it leaves two possible options for implementation:

1. Separate reset first operation which will iterate
over array B and try to reset bits.

2. Separate find next operation which will ac-
cept B element index to start search from.

We yield to the first option (Fig. 2).

set(
B: array, X:
) -> bool
local i =X/ W, p=X%W, V=B[i];
B[i] = B[i] | (1 << p);
return V & (1 << p) ==
end

int, W: int

reset(
B: array, X:
) -> bool
local i =X/ W, p=X%W, V=B[i];
B[i] = B[i] & (~(1 << p));
return V & (1 << p) != 0;
end

int, W: 1int

b

find_first(B: array, N:
for (local i = @; i < N; ++i)
local p = bitscan(B[i])
if p >= @ then return i * W + p end
end
return -1;
end

int, W: int) -> integer

Fig. 1. Pseudocode of implementations of set (@), reset (b) and find first (c) operations

Tpyasl BITY Cepuss3 Ne 1 2025

64

Thread-safe bitset with fast extract min operation

atomic_set(

B: array, X: int, W: 1int

) -> bool
local i =X / W, p =X % W;
local V = atomic or(B[i], 1 << p);

return V & (1 << p) == 0;

end

atomic_reset(

B: array, X: int, W: 1int

) -> bool
local i =X / W, p=X%MWNW,;
local V = atomic_and(B[i], ~(1 << p));

return V & (1 << p) != 0;
end

a

b

atomic_reset_first(B: array, N:
for (local i = 0@; i < N; ++i)
local p = bitscan(B[i]), X =1 * W + p;
end
return -1;
end

int, W: int) -> int

if atomic reset(B, X, W) then return B; end

c

Fig. 2. Pseudocode of implementations of concurrent set (@), reset (b)
and reset first (c) operations using interlocked or atomic operations

Non-thread-safe bitset with index. In non-
concurrent scenarios the lookup speed of find first
operation can be significantly improved by intro-
ducing an additional binary array / (index array)
such that every bit of every element of the array
represents a state of the corresponding element of
array B (bit’s index of / corresponds to element
index of B) in a way that if the bit in / is set, then
at least one bit is set in the corresponding element
B and vice versa. The number of words M re-
quired to index the number of bits C can be cal-
culated as:

M=[c/w?]

Total number of words required to hold both /
and B arrays is a sum of M and N.

The [array element index #; and bit position p;
within the element of the bit X can be calculated as:

ir=X/W?and p;=(X/ W) mod W.

The array / need to be constantly synchronised
with the state of the array B. This synchronisation is
done by set and reset operations (Fig. 3).

Inclusion of an index array improves the lookup
speed at the cost of:

1. Slow set and reset operations. Operations must
verify and update / when necessary.

2. More memory to store arrays / and B.

3. No obvious way to implement concurrent ver-
sions of set and reset operations without a mutex. The ato-
mic operations work on a single memory location while
set and reset operations need to update both arrays.

index_set(
I: array, B: array, X:
) -> bool
local iB = X / W, pB =
if V == 0 then
local iI = X / (W * W), pI =

int, W: int
X %W, V=B[i];

(X / W) % W;

index_reset(
I: array, B:
) -> bool
local iB =X / W, pB = X % W, V = B[i];
if V & ~(1 << pB) == 0 then
local iI = X / (W * W), pI =

array, X: int, W: int

(X / W) % W;

I[iI] = I[iI] & ~(1 << pI)
end
B[i] = B[i] & (~(1 << pB));

return V & (1 << pB) != 0;
end

b

I[iI] = I[iI] | (1 << pI)
end
B[iB] = B[iB] | (1 << pB);
return V & (1 << pB) == 0;
end
a
index_find_first(I: array, B: array, N: int, M:
for (local iI = @; iI < M; ++iI)

local pI = bitscan(I[iI])
if pI >= 0 then

return iB * W + pB;
end
end
return -1;
end

local iB = iI * W + pI, pB = bitscan(B[iB]);

int, W: int) -> int

c

Fig. 3. Pseudocode of implementations of indexed set (a), reset (b), and find first (c) operations

Tpyabi BITY Cepuss3 Ne 1 2025

O. N. Karasik, A. A. Prihozhy

65

Bitfield. The implementation of thread-safe bitset
with fast extract min operation (hereinafter “bitfield”)
is based on the non-thread-safe bitset with index,
demonstrated in previous section, with one notable
exception — index array / uses two bits instead of
one to represent a state of an element from a bit ar-
ray B.

Index implementation. The use of two bits to
represent the state has the following effects on the
index array [and related calculations:

1. The number of words M required to keep the
same number of bits is doubled.

2. The calculation of [array element i; and bit
position within the element p; must be adjusted to
smaller number of states per element.

Because index array element now represents states
of W + 2 bit array elements (capacity), the values of
M, i and py are calculated as following:

M=[c/w w/2)l,
=B/ (W-(W/2));
p1=((B/ W) mod (W/2))- 2.

The “(W/2)” part in all the equations corresponds
to the capacity of index array element and the “x2”
part in the p; bit position calculation is required to
align the position to 2 bit boundry to ensure states
don’t intesect.

Every state in the element can assume one of four
possible values: 00, 01, 10 and 11, where values 00, 10
corresponds to the “reset” state and values 01, 11 to
the “set” state (Table 1).

Table 1
All possible values of state within the index array
element and their meaning

State Meaning
00 The bit array element has no set bits
10 (“reset” state)
01 The bit array element has at least one set bit
11 (“set” state)

As in the non-thread-safe bitset with index imple-
mentation the states are updated by set and reset
operations.

Set and reset operations implementation. The pseu-
docode of set (bitfield set) and reset (bitfield reset)
operations is presented in Fig. 4. Below is a break-
down of both operations:

1. Both operations start with the calculation of
arrays indices and bits positions (lines 04—07).

2. Then they perform atomic modifications
(atomic_or in case of set and atomic_and in case of
reset) of B array element. If no bits were set or reset,
they stop execution and return false (lines 09—13).

3. Next, if the first bit was set (in case of set
operation) or last bit was reset (in case of reset ope-

ration) they modify the state of the / array’s element
by executing atomic_xor operation with 01 (on sef)
and 11 (on reset) values (lines 15-17). All combi-
nations of set and reset operations are presented in
(Table 2).

01: bitfield_set(
02: 1I: array, B: array, X:
03:) -> bool

int, W: int

04: 1local iB = X / W;

05: local pB = X % W;

06: local iI =X/ (W * (W / 2));
07: local pI = ((X / W) % (W / 2)) * 2
08:

09: 1local T = 1 << pB;

10: 1local V = atomic or(B[i], T);
11: if V & (~T) != 0 then

12: return false

13: end

14:

15: if V == 0 then

16: atomic xor(I[iI], 01 << pI)
17: end

18: return true;

19: end

a

01: bitfield_reset(
02: I: array, A: array, X:
03:) -> bool

int, W: int

04: local iB = X / W;

05: local pB = X % W;

06: local iI =X/ (W* (W / 2));

07: local pI = ((X / W) % (W / 2)) * 2
08:

09: local 1 << pB, R = ~T;

T
10: local V = atomic and(B[iB], R);
11: if V & T == 0 then

12: return false
13: end
14:
15: if V & R == @ then
16: atomic xor(I[iI], 11 << pI)
17: end
18: return true;
19: end
b

Fig. 4. Pseudocode of implementations
of bitfield set («) and reset (b) operations

Table 2
All combinations of state values
after the execution of set or reset operations

State XOR Result
00 01 (set) 01 (set)
10 01 (set) 11 (set)
01 11 (reset) 10 (reset)
11 11 (reset) 00 (reset)

It is obvious from the pseudocode that modifi-
cations of arrays B and [are separated in time. The rea-
sons both arrays stay in sync are:

Tpyasl BITY Cepuss3 Ne 1 2025

66

Thread-safe bitset with fast extract min operation

1. The B array is atomically modified first.

2. The modified bit is indeed set or reset (if not,
the return).

3. The modified bit is the first set bit (in case of
set operation) or the last reset bit (in case of reset
operation).

4. The [array is modified only if all the above
points are true. This excludes possibility of two threads
modifying the / array with two same operations
without having the third around them (for instance,
there is no way to have set, set or reset, reset modifi-
cations without having the third reset or set operation).

5. The I array is atomically modified by bitwise
XOR operation, with special values 01 (in case of set)
and 11 (in case of reset) such that the reset state always
becomes the set and vice-versa (Table 2).

6. The XOR operation is commutative and as-
sociative. Therefore, because of #4, no matter how
many modifications (and in what order) are done to the
I array, eventually the result will depend on the order
of modifications done to the B array.

Table 3 includes a set of examples of concurrent
set operations interrupted by concurrent reset opera-
tions, and Fig. 5 illustrates cases 1, 2 and 3 from it.

Experimental environment. All experiments were
run on a rack server equipped with two Intel Xeon
E5-2620v4 CPU (8 cores, 16 hardware threads) and
32 GB of RAM. All cores have private L1 and L2
cache of 32 KB and 256 KB respectively. All CPUs
have 20 MB L3 shared cache.

All experiments were implemented using C++
language. The source code was compiled by GNU
GCC compiler v14.1.0 with O3 optimization level.

Experimental benchmark. Benchmark emulates
a highly concurrent scenario of resource allocation / re-
lease. The code instantiates 31 “noise” threads and
1 “allocator” thread and assigns them to individual
hardware threads. Every “noise thread” works in

a tight loop and on every iteration sets or resets
a random bit (emulating concurrent allocation and
release of the resources). The “allocator” thread on
every iteration executes reset first operation (repli-
cating continuous resource allocation procedure).
The benchmark software measures how long it takes
to perform a single reset first operation.

Experimental results. In the experiments, we
compare the “bitfield” with the “bitset with mutex”
(hereinafter “Impl. #1°) and “indexed bitset with mul-
tiple mutexes” (hereinafter “Impl. #2””) implementa-
tions.

The “Impl.#1” implementation uses a “std::bitset”
from C++ standard library to store the data and
“std::mutex” to protect it from concurrent access.
The lock is acquired every time “noise” threads sets
or resets the bit and when “allocator” threads attempt
to reset the bit. The search for a first set bit isn’t pro-
tected by lock.

The “Impl.#2” implementation uses an “std::array”
of 64 bit unsigned longs to store bits (B array), an
“std::array” of 64-bit unsigned longs to store index
({ array) and an “std::array” of “std::mutex” (one for
each index array element) to protect access to index
and bits. The “noise” thread acquires a lock to cor-
responding index right before executing set or reset
operation to ensure consistency between bit array
and index array. The “allocator” thread acquires
corresponding lock right before resetting the bit.
The search for first set bit isn’t protected by the lock.

We performed a set of experiments on different
number of bits for all three implementations. In each
implementation, the reset first operation was repeated
at least 1,000,000 times. The error % was less then
2.5% for all implementations and experiments except
the last one where error% reached 7% for “bitfield”
implementation. The results of the experiments are
presented in the Table 4.

Table 3
Example of multiple, concurrent “set” and “reset” operations setting
and resetting the bit in the same element of bit array B,
which results in the modification of index array 1.
The S, and S7 denote modification of B
and 7 array during “set” operation.
The Rs and R, represent the corresponding modifications done by “reset”
) Index state
Number Operation sequence Result
00 (reset) 10 (reset)
1 Sz =S =Rz =R, 00~01~11=10 10701 ~11=00 Reset
2 Sy >Rz =R, =S, 00~11701=10 10~ 11201=00 Reset
3 Ss =2 Rp =81 =Ry 00~01"~11=10 00701~11=10 Reset
4 Sz =R = Ss =R =S =S 007117201701 =11 10~ 11201 ~01=01 Set
5 Sz = Rp =Sz =S5 =S =R, 00~01701 11 =11 10701701 ~11=01 Set
6 S = Rp —Sg =S >R =S5 0o0~0L~M11701=11 10701~ 11=00 Set

Tpyabi BITY Cepuss3 Ne 1 2025

O. N. Karasik, A. A. Prihozhy 67
Thread,
Initial state 8L S S|
(no set bits) '(XOR 01) (XOR01) (XOR 01)
00 o 00 17:10 0001 10
Index element state ; : : — — :
10 : 11 10 :01 00 10 11 :00
. L0 = ' ' ‘
Bit element bit — * 0
' . Rll Rl :
Se g Rs (XOR 11) j (XOR11) |
(OR01) . (AND ~1) ? 9 0 T
o R B R R EECTEeS FEFCTRRPPRS :

Thread2

Legend

@ and @ — are isolated continuations of
currently executing "set" operation

© and Q) - are variations of concurrent “reset”
operation

Fig. 5. An example of a situation when a set operation executed by Thread; is interrupted
by a concurrent reset operation by Thread,. The markers 0 and 1 present different chains of events:
0 — the set operation completed before the reset operation started;
la — the set operation modified index after the reset operation completed;
1b — the set operation modified index after the reset operation modified
the bit but before it modified the index. In all scenarios, the result is reset bit and reset index

The experimental results demonstrate that in a
highly concurrent scenarios (500 — 10,000) the “Bitfield”
surpasses both implementation in 2—6 times (compared
to “Impl.#2”). Because both “Bitfield” and “Impl.#2”
are based on the “indexed bitset” ideas, the difference
in the execution time is attributed to the concurrency
control implementation. It is also seen, that when
the number of bits reaches 50,000, the “noise” threads
start to fail to put pressure on the “allocator” thread
and both “Bitfield” and “Impl.#2” experience a sig-
nificant speedup.

Table 4
Execution time and comparison of experimental
implementations on different number of bits

S| Bitfield (ns) | Impl.#1 (ns) | Impl.#2 (ns)
500 | 133738 | 311335 | 2,996.29
1000 | 1.268.66 | 3.288.17 | 2.976.85
5000 | 45653 519532 | 2.93034
10000 | 419.76 5.026.04 | 2.634.46
50000 | 207.28 9.030.44 892.79
100000 | 341.48 11,149.87 | 703.26

Potential application. The proposed “bitfield”
implementation of a thread-safe bitset can be ap-
plied in different problems where multiple threads
compete for a shared pool of resources, for instance,
in scenario of static, shared memory pool (here,

threads temporary allocate blocks of memory from
the pool using reset first operation); or when multiple
threads calculate work items of uneven size like in
[10-15] (here, “bitfield” can represent all work items
to calculate and every thread, initially, will try to
calculate all work items which are multiple of the
thread’s index and when done, will use reset first
operation to “steal” work items from other threads).
These improvements can result in both speedup and
increased energy efficiency of the applications [16].

Future work. The current “bitfield” implementa-
tion works with individual bits. The future work can
be focused on implementation of additional methods
to set or reset multiple bits. This can enable scenarios
where a thread needs to allocate/reserve multiple re-
sources, without sacrificing speed of reset first opera-
tion. In addition, with more modifications, this new
implementation might be even extended to support
allocation/reservation of multiple consequent re-
sources.

Conclusion. In this paper, we introduced “bitfield”
a thread-safe implementation of bitset with fast and
lock free “extract min” operation, which can be used in
allocation, reservation or work distribution scenarios.
The experiments demonstrated that “bitfield” outper-
forms the “indexed bitset with multiple mutexes” im-
plementation in 2—6 times and outperforms “bitset
with lock” implementation in 2—60 times in resource
allocation/reservation scenarios.

Tpyasl BITY Cepuss3 Ne 1 2025

68 Thread-safe bitset with fast extract min operation

References

1. Chambi S., Lemire D., Kaser O., Godin R. Better bitmap performance with Roaring bitmaps. Software:
Practice and Experience, 2015, vol. 46, no. 5, pp. 709-719. DOI: 10.1002/spe.2325.

2. Corrales F., Chiu D., Sawin J. Variable length compression for bitmap indices: Database and Expert
Systems Applications: 22nd International Conference, 2011, vol. 2, pp. 381-395.

3. Goodwin B., Hopcroft M., Luu D., Clemmer A., Curmei M., Elnikety S., He Y. BitFunnel: Revisiting
Signatures for Search. SIGIR'l 7: Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2017, pp. 605-614. DOI: 10.1145/3077136.3080789.

4. Liang W., Shi W., Liao Z., Qian S., Zheng Z., Cao J., Xue G. BOP: A Bitset-based Optimization
Paradigm for Content-based Event Matching Algorithms (S). SEKE 2023: The 35th International Conference
on Software Engineering and Knowledge Engineering, 2023, pp. 487-492. DOI: 10.18293/SEKE2023-142.

5. VanCompermnolle M., Barford L., Harris F. Maximum Clique Solver Using Bitsets on GPUs. Information
Technology: New Generations, 2016, pp. 327-337.

6. Gueniche T., Fournier-Viger P., Tseng V. S. Compact Prediction Tree: A Lossless Model for Accurate
Sequence Prediction. Advanced Data Mining and Applications, 2013, pp. 177-188.

7. Mcllroy R., Dickman P., Sventek J. Efficient dynamic heap allocation of scratch-pad memory:
ISMM'08: Proceedings of the 7th international symposium on Memory management, 2008, pp. 31-40.

8. Terci G. S., Abdulhalik E., Bayrakci A. A., Boz B. BitEA: BitVertex Evolutionary Algorithm to
Enhance Performance for Register Allocation, /EEE Access, 2024. vol. 12, pp. 115497-115514. DOI:
10.1109/ACCESS.2024.34465.96.

9. Karasik O. N., Prihozhy A. A. Cooperative multi-thread scheduler for solving large-size tasks on
multi-core systems. Big Data and Advanced Analytics VI. Minsk, 2020, pp. 202-212.

10. Karasik O. N., Prihozhy A. A. Blocked algorithm of finding all-pairs shortest paths in graphs divided
into weakly connected clusters. System analysis and applied information science, 2024, no. 2, pp. 4-10.
DOI: 10.21122/2309-4923-2024-2-4-10.

11. Prihozhy A. A., Karasik O. N. New blocked all-pairs shortest paths algorithms operating on blocks
of unequal sizes. System analysis and applied information science, 2023, no. 4, pp. 4—13.

12. Prihozhy A. A., Karasik O. N. Advanced heterogeneous block-parallel all-pairs shortest path algorithm.
Trudy BSTU [Proceedings of BSTU], issue 3, Physics and Mathematics. Informatics, 2023, no. 1 (266),
pp- 77-83 (In Russian).

13. Prihozhy A. A. Generation of shortest path search dataflow networks of actors for parallel multicore
implementation. Informatics, 2023, vol. 20, no. 2, pp. 65-84.

14. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms. System analysis and applied information science, 2021, no. 3, pp. 40-50.

15. Karasik O. N., Prihozhy A. A. Tuning block-parallel all-pairs shortest path algorithm for efficient
multi-core implementation. System analysis and applied information science, 2022, no. 3, pp. 57-65.

16. Prihozhy A. A., Karasik O. N. Influence of shortest path algorithms on energy consumption of mul-
ticore processors. System analysis and applied information science, 2023, no. 2, pp. 4-12.

Cnucok JquTepaTypsl

1. Better bitmap performance with Roaring bitmaps / S. Chambi [et al.]. Software: Practice and Experience.
2015. Vol. 46, no. 5. P. 709-719. DOI: 10.1002/spe.2325.

2. Corrales F., Chiu D., Sawin J. Variable length compression for bitmap indices // Database and Expert
Systems Applications: 22nd International Conference. 2011. Vol. 2. P. 381-395.

3. BitFunnel: Revisiting Signatures for Search / B. Coodwin [et al.] // SIGIR'17: Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017.
P. 605-614. DOI: 10.1145/3077136.3080789.

4. BOP: A Bitset-based Optimization Paradigm for Content-based Event Matching Algorithms (S) /
W. Liang [et al.] // SEKE 2023: The 35th International Conference on Software Engineering and Knowledge
Engineering. 2023. P. 487-492. DOI: 10.18293/SEKE2023-142.

5. VanCompernolle M., Barford L., Harris F. Maximum Clique Solver Using Bitsets on GPUs // Infor-
mation Technology: New Generations. 2016. P. 327-337.

6. Gueniche T., Fournier-Viger P., Tseng V. S. Compact Prediction Tree: A Lossless Model for Accurate
Sequence Prediction // Advanced Data Mining and Applications. 2013. P. 177-188.

7. Mcllroy R., Dickman P., Sventek J. Efficient dynamic heap allocation of scratch-pad memory //
ISMM'08: Proceedings of the 7th international symposium on Memory management. 2008. P. 31-40.

8. BitEA: BitVertex Evolutionary Algorithm to Enhance Performance for Register Allocation /
G. S. Terci [et al.] // IEEE Access. 2024. Vol. 12. P. 115497-115514. DOI: 10.1109/ACCESS.2024.3446596.

Tpyabi BITY Cepuss3 Ne 1 2025

O. N. Karasik, A. A. Prihozhy 69

9. Karasik O. N., Prihozhy A. A. Cooperative multi-thread scheduler for solving large-size tasks on
multi-core systems // Big Data and Advanced Analytics VI. Minsk, 2020. P. 202-212.

10. Karasik O. N., Prihozhy A. A. Blocked algorithm of finding all-pairs shortest paths in graphs divided
into weakly connected clusters / System analysis and applied information science. 2024. No. 2. P. 4-10.
DOI: 10.21122/2309-4923-2024-2-4-10.

11. Prihozhy A. A., Karasik O. N. New blocked all-pairs shortest paths algorithms operating on blocks
of unequal sizes / System analysis and applied information science. 2023. No. 4. P. 4-13.

12. Prihozhy A. A., Karasik O. N. Advanced heterogeneous block-parallel all-pairs shortest path algo-
rithm. Tpyast BI'TY. Cep. 3, ®usuko-maremaTrueckue Hayku u uHpopmatuka. 2023. Ne 1 (266). C. 77-83.

13. Prihozhy A. A. Generation of shortest path search dataflow networks of actors for parallel multicore
implementation // Informatics. 2023. Vol. 20, no. 2. P. 65-84.

14. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms // System analysis and applied information science. 2021. No. 3. P. 40-50.

15. Karasik O. N., Prihozhy A. A. Tuning block-parallel all-pairs shortest path algorithm for efficient
multi-core implementation // System analysis and applied information science. 2022. No. 3. P. 57-65.

16. Prihozhy A. A., Karasik O. N. Influence of shortest path algorithms on energy consumption of mul-
ticore processors // System analysis and applied information science. 2023. No. 2. P. 4-12.

Information about the authors

Karasik Oleg Nikolayevich — PhD (Engineering), Lead Engineer, ISsoft Solutions (5 Chapaeva str.,
220034, Minsk, Republic of Belarus). E-mail: karasik.oleg.nikolaevich@gmail.com

Prihozhy Anatoly Alexievich — DSc (Engineering), Professor, Professor, the Department of Computer and
System Software. Belarusian National Technical University (65 Nezavisimosti Ave., 220013, Minsk, Republic
of Belarus). E-mail: prihozhy@bntu.by

Nudopmanus o6 aBTopax

Kapacux Ouer HukosaeBu4 — KaHAUIAT TEXHUUECKUX HAYK, BEAyIIUi HHKeHep. IHocTpaHHOE ITpou3s-
BOACTBeHHOE yHHTapHOe npemnpustie «Mccopt Comomens» (yir. Yamaesa S5, 220034, r. Munck, PeciryOimika
bemapycs). E-mail: karasik.oleg.nikolaevich@gmail.com

Ipuxoxuii AHaTOMIT AjlekceeBHY — JIOKTOP TEXHHMUECKHUX HAyK, mpodeccop, mpodeccop kadeapsr
MIpoOrpaMMHOT0 obecriedeHns HHHOPMATMOHHBIX CUCTEM W TEXHOJOTHH. bemopycckuii HallMOHAIHHBIH
TexHuueckui yauBepcutetT (mp. Hesasucumoctu 65, 220013, r. Munck, Peciyonmka benmapycs). E-mail:
prihozhy@bntu.by

Received 15.11.2024

