## Учреждение образования «Белорусский государственный технологический университет»

#### В. В. ПОПЛАВСКИЙ

# ОСНОВЫ ИЗМЕРЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН ПРАКТИКУМ

Допущено
Министерством образования Республики Беларусь
в качестве учебного пособия
для студентов специальности
«Физико-химические методы и приборы контроля
качества продукции» учреждений,
обеспечивающих получение высшего образования

УДК 621:53.08+535.33(076.5) ББК 30.10я73 П 57

Рецензенты:

кафедра физической электроники Белорусского государственного университета (заведующий кафедрой член-корреспондент НАН Беларуси, доктор физико-математических наук, профессор  $\Phi$ .  $\Phi$ . Komapos);

А. В. Гусинский, кандидат технических наук, доцент кафедры метрологии и стандартизации Белорусского государственного университета информатики и радиоэлектроники

Все права на данное издание защищены. Воспроизведение всей книги или ее части не может быть осуществлено без разрешения учреждения образования «Белорусский государственный технологический университет».

#### Поплавский, В. В.

П 57 Основы измерений физических величин. Практикум: учеб. пособие для студентов специальности «Физико-химические методы и приборы контроля качества продукции» / В. В. Поплавский. – Мн.: БГТУ, 2006. – 173 с.

#### ISBN 985-434-610-2

Практикум представляет собой дополнение к ранее изданному учебному пособию. Приведена программа учебной дисциплины. В виде конкретных примеров изложена методика построения физико-математических моделей и определения характеристик средств измерений, а также методика обработки экспериментальных данных, получаемых при измерении состава веществ современными спектроскопическими методами. Предложены оригинальные контрольные задания по основным разделам дисциплины, выполнение которых призвано обеспечить практическое закрепление и более глубокое понимание теоретического материала.

УДК 621:53.08+535.33(076.5) ББК 30.10я73

ISBN 985-434-610-2

- © УО «Белорусский государственный технологический университет», 2006
- © Поплавский В. В., 2006

#### ПРЕДИСЛОВИЕ

Настоящее учебное пособие подготовлено применительно к программе дисциплины «Физические основы измерений» для студентов специальности «Физико-химические методы и приборы контроля качества продукции», обучающихся как по дневной, так и по заочной форме, и представляет собой практикум, включающий задания по основным разделам дисциплины. Теоретический материал изложен в учебном пособии: Поплавский В.В. Основы измерений физических величин. — Мн.: БГТУ, 2005 [1].

При подготовке как пособия [1], так и практикума учитывалось, что целью изучения дисциплины является создание теоретической основы для освоения студентами методов измерений и принципов действия измерительной техники и что содержание дисциплины составляют принципы и наиболее общие методы измерений физических величин, применяемые в различных отраслях измерительной техники. Кроме того, подготовка специалистов в области применения аналитических методов и соответствующего оборудования для контроля качества продукции требует формирования знаний не только об общих закономерностях процесса измерений, но и о конкретных методах анализа состава веществ и их свойств.

В практикум включены программа учебной дисциплины, методика выполнения заданий и многовариантные контрольные задания, выполнение которых призвано обеспечить более глубокое понимание теоретического материала и приобретение навыков его практического При изложении методики построения применения. математических моделей и определения характеристик средств измерений использован подход, содержащийся в пособиях: Харт Х. Введение в измерительную технику. - М.: Мир, 1999 [2]; Филлипс Ч., Харбор Р. Системы управления с обратной связью. – М.: Лаборатория базовых знаний, 2001 [3]. Методика определения характеристик спектральных приборов и измерений состава веществ спектроскопическими методами представлена оригинальными примерами. Также оригинальными являются предлагаемые к выполнению контрольные задания. Большой набор заданий по всем разделам позволяет обеспечить их индивидуальное выполнение каждым студентом учебной группы. Перед выполнением заданий необходимо, руководствуясь программой дисциплины, изучить соответствующий материал по учебному пособию [1], а также проработать и усвоить методику выполнения заданий, изложенную в практикуме.

#### 1. ПРОГРАММА ДИСЦИПЛИНЫ

#### 1.1. Основы процесса измерений физических величин

#### 1.1.1. Предмет и базовые понятия дисциплины

Предмет дисциплины, цели и задачи ее изучения. Базовые понятия: измерение, физическая величина, значение физической величины, истинное, действительное и измеренное значения физической величины. Классификация физических величин. Основное уравнение измерений. Единица физической величины. Основные, дополнительные и производные единицы измерения физических величин. Размерность физической величины.

Метод измерений. Принцип измерения. Классификация методов измерений. Методы непосредственного преобразования и методы сравнения при прямых измерениях. Разновидности методов сравнения: нулевой метод, дифференциальный метод, метод замещения. Компенсационный и мостовой методы измерений как разновидности нулевого метода.

Средства измерений. Общая характеристика средств измерений. Меры, измерительные приборы, измерительные системы. Аналоговые и цифровые измерительные приборы. Измерительные приборы прямого преобразования и сравнения. Интегрирующие и суммирующие измерительные приборы.

## 1.1.2. Измерение как процесс преобразования сигналов измерительной информации

Сигналы измерительной информации. Информативные параметры сигнала измерительной информации. Классификация сигналов.

Измерительные преобразователи. Измерительная цепь. Входная и выходная величины. Измерительное преобразование. Функция преобразования. Передаточная характеристика. Статический и динамический режимы измерения.

Статические характеристики измерительных преобразователей и средств измерений. Передаточный коэффициент. Чувствительность измерительного преобразователя. Порог чувствительности. Чувствительность измерительного прибора. Разрешающая способность средства измерений. Построение физико-математических моделей и расчет статических характеристик измерительных преобразователей.

Блок-схемы преобразования сигналов в средствах измерений. Основные элементы передачи и преобразования сигналов измерительной информации и их графические обозначения. Последовательность разработки и правила построения блок-схем сигналов. Построение физико-математических моделей и блок-схем сигналов измерительных

устройств. Преобразования блок-схем сигналов. Передаточные коэффициенты последовательных и параллельных соединений. Обратная связь. Положительная и отрицательная обратная связь. Передаточные коэффициенты соединений с обратной связью.

Расчет статических характеристик средств измерений на основе блок-схем сигналов. Понятия пути и контура блок-схемы сигналов. Контуры первого, второго и более высоких порядков. Значения путей и контуров. Алгоритм расчета передаточного коэффициента средства измерений на основе анализа блок-схемы сигналов.

Динамические измерения физических величин. Динамические характеристики средств измерений. Классификация динамических характеристик. Полные и частные динамические характеристики. Частные динамические характеристики измерительных преобразователей: порядок задержки, время задержки, время установления, время успокоения, постоянная времени и др. Полные временные динамические характеристики измерительных преобразователей и средств измерений. Переходная и импульсная переходная динамические характеристики измерительного преобразователя с задержкой сигнала первого порядка. Переходная динамическая характеристика измерительного преобразователя с задержкой сигнала второго порядка. Определение временных динамических характеристик с использованием детерминированных непериодических тестовых сигналов. Частотные динамические характеристики измерительных преобразователей и средств измерений. Определение частотных динамических характеристик с использованием периодических тестовых сигналов. Амплитудночастотная и фазово-частотная полные динамические характеристики измерительных преобразователей. Передаточная функция, комплексный коэффициент передачи, интервал рабочих частот, собственная (резонансная) частота, добротность измерительных преобразователей. Соотношение между временными и частотными динамическими характеристиками. Расчет динамических характеристик средств измерений на основе блок-схем сигналов. Особенности расчета динамических характеристик измерительных преобразователей на основе электрических цепей. Передаточные функции последовательных и параллельных измерительных систем, систем с обратной связью. Зависимость между верхней граничной частотой изменения измеряемой величины и временем установления средства измерений.

#### 1.1.3. Измерительные системы и их основные элементы

Измерительная система. Измерительные системы последовательного действия, параллельной и последовательно-параллельной структуры. Информационно-измерительные и компьютерно-измерительные

системы. Обобщенная функциональная схема измерительной системы. Преобразование видов энергии в измерительных системах.

Первичные и вторичные измерительные преобразователи. Генераторные и параметрические преобразователи. Эффективность преобразования входной мощности в выходную. Зависимость характеристик измерительного прибора от чувствительностей и эффективностей преобразования отдельных измерительных звеньев. Входной и выходной импеданс преобразователя. Согласование измерительных преобразователей электрических сигналов. Согласование последовательных измерительных звеньев по импедансу при наличии генераторных преобразователей с целью достижения максимальной эффективности преобразования. Зависимость эффективности преобразования генераторных измерительных преобразователей от значения и характера сопротивления нагрузки. Согласование последовательных измерительных звеньев по импедансу при наличии параметрических преобразователей.

Усилители сигналов измерительной информации. Принцип действия электронных усилителей электрических сигналов на основе вакуумного триода и транзистора. Усилители сигналов с отрицательной обратной связью, их основные характеристики. Операционные усилители. Эквивалентная схема и основные характеристики операционного усилителя. Применение операционных усилителей для аналогового преобразования сигналов измерительной информации. Инвертирующий и неинвертирующий операционные усилители. Сумматор, интегратор и дифференциатор на основе операционных усилителей. Преобразователь «ток — напряжение» и измерительный усилитель тока на основе операционных усилителей.

## 1.2. Основы измерений состава веществ. Физические основы измерений с применением излучений

Состав вещества как физическая величина, измеряемая количественно. Классификация состава веществ и методов анализа состава. Функциональная схема измерения состава вещества с применением излучений. Электромагнитное, корпускулярное и акустическое излучения. Измерения с применением электромагнитного и корпускулярного излучений. Необходимость вакуумных условий при реализации измерений с применением корпускулярного излучения. Степени вакуума.

#### 1.2.1. Принципы преобразований электромагнитного излучения

Природа и основные характеристики электромагнитного излучения. Шкала электромагнитных волн.

Получение и формирование потоков электромагнитного излучения. Источники сверхвысокочастотного (СВЧ) электромагнитного излучения. Принцип действия лампового генератора. Генераторные лампы. Особенности работы генераторных ламп СВЧ-диапазона. Конструкция и принцип действия металлокерамического генераторного триода. Магнетронные генераторы СВЧ-излучения. Схема и принцип действия многорезонаторного магнетронного генератора. Принцип действия объемного резонатора. Принцип действия лампы обратной волны магнетронного типа. Условие синхронизма электронов и волн. Замедляющая система. Задание частоты, отбор, вывод и передача генерируемого СВЧ-излучения. Волноводы. Механизм распространения СВЧ-излучения в волноводе. Основные характеристики волноводов.

Электромагнитное излучение оптического диапазона. Источники излучения. Газоразрядные источники света. Излучающие полупроводниковые приборы. Оптические квантовые генераторы (лазеры). Принцип действия лазеров. Инверсия населенностей. Вынужденное излучение электромагнитной энергии. Полупроводниковые инжекционные лазеры. Основные характеристики источников света и потоков оптического электромагнитного излучения. Энергетические и световые фотометрические величины. Монохроматизация излучения оптического диапазона. Формирование потоков оптического излучения. Световоды. Принцип действия волоконного световода. Волоконнооптические линии.

Источники рентгеновского излучения. Принцип действия рентгеновской трубки. Монохроматизация рентгеновского излучения. Источники у-излучения.

Регистрация и спектрометрия электромагнитного излучения. Приемно-усилительные системы СВЧ-излучения. Принцип действия лампы бегущей волны. Приемники оптического излучения тепловые, фотоэлектрические, электронно-оптические, фотохимические. Принципы действия фотоэлектронного умножителя и фотодиода. Основные характеристики приемников оптического излучения. Спектрометрия оптического излучения. Принципы действия спектральных приборов: дисперсионных призм и дифракционных решеток. Угловая дисперсия и разрешающая способность спектральных приборов. Регистрация рентгеновского и у-излучений. Детекторы излучений. Спектрометрия рентгеновского излучения путем дифракции на кристаллеанализаторе. Измерение энергии у-излучения с применением черенковских счетчиков полного поглощения и счетчиков, действие которых основано на переходном излучении, с использованием полупроводниковых детекторов.

#### 1.2.2. Принципы преобразований корпускулярного излучения

Природа и основные характеристики корпускулярного излучения. Характеристики корпускулярного излучения как потока частиц: эмиттанс, первеанс. Акцептанс.

Получение корпускулярного излучения. Способы введения заряженных частиц в вакуум. Электронная эмиссия. Электронная пушка. Ионизация молекул газов. Газовые разряды. Ионные источники. Формирование потоков и монохроматизация корпускулярного излучения. Движение заряженных частиц в электрическом и магнитном полях. Электронная и ионная оптика. Фокусировка корпускулярного излучения. Электростатические и магнитные линзы.

Регистрация и спектрометрия корпускулярного излучения. Цилиндр Фарадея. Детекторы и счетчики корпускулярного излучения. Спектральный анализ корпускулярного излучения. Массспектрометры. Электростатические бездисперсионные и дисперсионные энергоанализаторы. Полупроводниковые детекторы-энергоанализаторы.

## 1.2.3. Измерения состава веществ, основанные на исследовании электронной структуры атомов

Строение атомов вещества. Временное уравнение Шрёдингера. Волновая функция. Уравнение Шрёдингера для стационарных состояний квантовой системы. Особенности решения стационарного уравнения Шрёдингера для атома водорода. Строение атома водорода. Собственные значения энергии атома. Схема энергетических уровней и излучательных переходов атома водорода. Собственные волновые функции атома. Атомные электронные орбитали. Квантовые числа. Спин и собственный магнитный момент электрона. Принцип Паули. Последовательность заполнения электронных оболочек в многоэлектронных атомах. Спин-орбитальное взаимодействие. Полный момент электрона в атоме.

Излучение электромагнитной энергии атомами. Спектроскопический анализ веществ. Физические основы оптической спектроскопии. Эмиссионный и атомно-абсорбционный спектральный анализ. Лазерная спектроскопия. Ширина атомных энергетических уровней и естественная ширина спектральных линий.

Многоэлектронные атомы. Спектры щелочных металлов. Схема энергетических уровней и излучательных переходов атома лития. Правила отбора. Дублетная структура спектров щелочных металлов. Спин-орбитальное взаимодействие. Мультиплетность энергетических

уровней атомов и атомных спектров. Тонкая структура спектральных линий. Правило мультиплетностей.

Взаимодействие атомов с электромагнитным полем. Расщепление энергетических уровней атомов в магнитном поле. Эффект Зе́емана. Эффект Па́шена – Бака. Магнитный резонанс. Электронный парамагнитный резонанс. Принцип действия радиоспектрометра. Эффект Штарка. Вырождение энергетических уровней атомов. Кратность вырождения. Снятие вырождения.

Природа характеристического рентгеновского электромагнитного излучения. Спектральные серии рентгеновского излучения атомов. Физические основы рентгеновского спектрального микроанализа. Взаимодействие электрона, возбуждающего атом, и электрона, входящего в состав атома. Прицельный параметр. Эффективное сечение взаимодействия. Электронный микроанализ. Спектроскопия характеристического рентгеновского излучения с дисперсией по энергиям и по длинам волн. Качественный и количественный анализ состава веществ методом рентгеновского спектрального микроанализа.

Физические основы рентгеновской фотоэлектронной спектроскопии. Закон сохранения энергии при фотоэмиссии остовных электронов атомов. Принцип действия фотоэлектронного спектрометра. Источники рентгеновского излучения, возбуждающего фотоэлектронную эмиссию. Фотоэлектронные спектры. Обработка спектров. Сечение фотоионизации. Качественный и количественный анализ состава веществ методом рентгеновской фотоэлектронной спектроскопии. Химический сдвиг энергии связи электронов.

Физические основы оже́-электронной спектроскопии. Оже́-эффект. Оже́-электронные переходы в атомах. Кинетическая энергия оже́-электронов. Эффект Костера – Кронига. Качественный и количественный анализ состава веществ методом оже́-электронной спектроскопии.

#### 1.2.4. Ядерно-физические измерения состава веществ

Типы ядерных взаимодействий и соответствующие ядернофизические методы измерения состава веществ.

Физические основы спектроскопии резерфордовского обратного рассеяния. Схема упругого резерфордовского рассеяния быстрых ионов гелия на ядре атома исследуемого вещества. Законы сохранения энергии и импульса при резерфордовском рассеянии. Кинематический фактор рассеяния. Слагаемые потерь энергии иона, рассеивающегося на ядре атома, расположенного на определенной глубине анализируемого образца. Тормозная способность, сечение торможения, фактор тормозного сечения. Дифференциальное сечение рассеяния. Измерение состава веществ методом резерфордовского обратного рассеяния.

Спектры резерфордовского обратного рассеяния. Обработка спектров. Калибровка энергетической шкалы анализатора. Построение шкалы глубин. Определение интегрального количества и относительной концентрации атомов элементов, расчет профилей распределения атомов в приповерхностном слое вещества.

Основы ядерного активационного микроанализа. Мгновеннорадиационный и активационный радиационный анализ. Реакции с образованием составного ядра. Характеристики, позволяющие идентифицировать продукты ядерных реакций. Качественный и количественный анализ состава веществ.

#### 1.2.5. Основы акустических измерений

Природа и основные характеристики акустического излучения. Принципы преобразований акустического излучения. Источники и приемники акустического излучения. Электроакустические преобразователи и их характеристики. Формирование акустических полей и потоков акустического излучения. Акустические линзы, зеркала, волноводы и концентраторы. Акустическое волновое сопротивление среды. Принципы измерений с применением акустического излучения. Акустический микроскоп.

#### 2. МЕТОДИКА ВЫПОЛНЕНИЯ ЗАДАНИЙ

## 2.1. Построение физико-математических моделей и определение статических характеристик измерительных преобразователей

К статическим характеристикам измерительных преобразователей относят: функцию преобразования, передаточный коэффициент, передаточную характеристику, а также чувствительность и порог чувствительности.

Функцией преобразования измерительного преобразователя называют функциональную зависимость выходной величины от входной, описываемую аналитическим выражением

$$x_a = f(x_e) \tag{1}$$

или графиком. График функции преобразования  $f(x_e)$ , отображающий зависимость выходной величины от входной, называется передаточной характеристикой. Если связь между входной и выходной величинами при преобразовании является линейной, то передаточная характеристика измерительного преобразователя представляет собой прямую. Преобразование при этом описывается уравнением

$$x_a = K_p x_e, \tag{2}$$

где  $K_p$  — передаточный коэффициент измерительного преобразователя.

Чувствительность преобразователя — это величина, показывающая, на сколько изменяется приращение выходной величины  $x_a$  при определенном приращении входной величины  $x_e$ :

$$S = \Delta x_a / \Delta x_{e^{\bullet}} \tag{3}$$

Порог чувствительности представляет собой наименьшее значение измеряемой величины, которое вызывает заметное для восприятия изменение выходного сигнала средства измерения. Единица измерения порога чувствительности совпадает с единицей соответствующей измеряемой величины. По заметному для восприятия изменению выходного сигнала  $x_{a \text{ пор}}$  и чувствительности S средства измерения можно рассчитать порог чувствительности  $x_{e \text{ пор}}$ :

$$x_{e \text{ nop}} = S^{-1} \cdot \Delta x_{a \text{ nop}}. \tag{4}$$

Для нахождения характеристик конкретного измерительного преобразователя необходимо сформулировать (построить) физикоматематическую модель данного устройства, т. е. описать анали-

тически (математическими формулами) физические законы, на основе которых оно действует, с учетом условий измерения.

Рассмотрим несколько простых примеров, иллюстрирующих подходы в определении статических характеристик измерительных преобразователей.

## Пример 1. Определение статических характеристик жидкостного термометра

При рассмотрении принципа измерения температуры жидкостным термометром (рис. 1) предположим для упрощения, что: при исходной температуре  $T_0$  капиллярная трубка термометра не заполнена рабочей жидкостью (пуста), а его баллончик заполнен жидкостью полностью;

объем баллончика  $V_0$  и площадь A сечения капиллярной трубки не изменяются при изменении температуры от исходного значения  $T_0$  до измеряемого T в процессе измерения; силы поверхностного натяжения пренебрежимо малы.

Построим физико-математическую модель измерительного преобразователя. Принцип измерения температуры жидкостным термометром основан на явлении теплового расширения жидкости. Входным сигналом такого преобразователя является измеряемая температура T, выходным — высота h столбика жидкости в капиллярной трубке ( $x_e = T, x_a = h$ ). При увеличении температуры на  $\Delta T = T - T_0$  объем жидкости в термометре увеличивается вследствие теплового расширения на  $\Delta V = V_T - V_0$ , т. е.

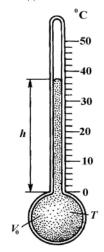



Рис. 1. Схематическое изображение жидкостного термометра

$$V_T = V_0 + \Delta V. \tag{5}$$

С другой стороны, зависимость объема жидкости от температуры

$$V_T = V_0(1 + \gamma \cdot \Delta T) = V_0 + V_0 \gamma \cdot \Delta T, \tag{6}$$

где  $\gamma$  — температурный коэффициент объемного расширения жидкости (для ртути  $\gamma = 1.8 \cdot 10^{-4} \ K^{-1}$ ).

Из (5) и (6) следует, что объем жидкости в капиллярной трубке изменяется на величину

$$\Delta V = V_0 \gamma \cdot \Delta T. \tag{7}$$

С другой стороны,

$$\Delta V = \Delta h \cdot A,\tag{8}$$

где  $\Delta h$  — изменение высоты столбика жидкости в трубке. Поскольку изменение объема жидкости в термометре пропорционально изменению температуры ( $\Delta V = \Delta h \cdot A \sim \Delta T$ ) и, соответственно, при постоянном сечении трубки  $h \sim T$ , то термометр является линейным измерительным преобразователем и его передаточная характеристика линейна.

Из выражений (7) и (8) получим

$$\Delta h = \Delta V / A = V_0 \gamma \Delta T / A.$$

Тогда в соответствии с (3) чувствительность термометра

$$S = \Delta x_a / \Delta x_e = \Delta h / \Delta T = V_0 \gamma / A. \tag{9}$$

Единица измерения [S] = мм/K.

Чувствительность возрастает с увеличением объема  $V_0$  жидкости в баллончике и с уменьшением площади A сечения цилиндрической капиллярной трубки, а также зависит от природы (температурного коэффициента объемного расширения  $\gamma$ ) жидкости.

Однако сильно увеличить чувствительность термометра за счет увеличения объема жидкости или за счет уменьшения сечения капиллярной трубки нельзя, т. к. при этом сам прибор будет влиять на измеряемую величину вследствие увеличения его теплоемкости и преобладания капиллярного эффекта.

#### Пример 2. Определение статических характеристик U-образного жидкостного манометра

В основе принципа измерений давления жидкостным манометром лежит уравновешивание измеряемого давления гидростатическим давлением столба жидкости. В левом колене манометра (рис. 2) на нулевом уровне (h=0) на жидкость действует сила измеряемого давления  $F_p = p \cdot A$ , где A — сечение манометрической трубки. Это давление p уравновешивается давлением  $p_{\pi}$  столбика жидкости высотой h в правом колене:  $p = p_{\pi}$ .

Входной величиной такого измерительного преобразователя является измеряемое давление p, выходной — высота h столбика ртути в правом колене ( $x_e = p$ ,  $x_a = h$ ).

Поскольку гидростатическое давление  $p_* = \rho g h$ , то при нарушении равновесия  $\Delta p = p - p_* = \rho g \Delta h$ . Высота столба жидкости в

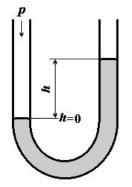



Рис. 2. Схема U-образного жидкостного манометра

правом колене манометра прямо пропорциональна величине измеряемого давления: манометр является линейным преобразователем.

Чувствительность манометра

$$S = \Delta h / \Delta p = 1 / \rho g$$
 10)

обратно пропорциональна плотности жидкости ( $S \sim 1 / \rho$ ), т. е. зависит от рода жидкости. [S] = мм/Па.

## Пример 3. Определение статических характеристик емкостного измерительного преобразователя

Емкостный (конденсаторный) измерительный преобразователь, предназначенный для измерения малых перемещений, состоит из двух пластин площадью A каждая, образующих конденсатор; одна из пластин подвижна (рис. 3). Входной величиной является расстояние d между пластинами, которое изменяется при перемещении подвижной пластины ( $x_e = d$ ). Выходной величиной является электрическая емкость конденсатора




Рис. 3. Схема емкостного измерительного преобразователя

 $C(x_a = C)$ . Статическая характеристика преобразователя определяется выражением для электроемкости плоского конденсатора

$$C = \frac{\varepsilon_0 \varepsilon A}{d},\tag{11}$$

где  $\varepsilon_0 = 8,85 \cdot 10^{-12} \, \Phi/\text{м} -$ электрическая постоянная;  $\varepsilon$  – диэлектрическая проницаемость среды между пластинами (для воздуха  $\varepsilon \approx 1$ ).

Эта характеристика нелинейна (см. рис. 4), и поэтому значение чувствительности преобразователя будет зависеть от значения входного сигнала.

Вначале определим чувствительность преобразователя по аналогии с предыдущими примерами как отношение приращений входной и выходной величин, или разностным методом. Емкость конденсатора в исходном состоянии, когда расстояние между его обкладками  $d = d_1$ ,

$$C_1 = \frac{\varepsilon_0 \varepsilon A}{d}$$
.

При увеличении расстояния между пластинами от  $d_1$  до  $d_2$  на  $\Delta d=d_2-d_1$  емкость уменьшается до  $C_2=\dfrac{\varepsilon_0\varepsilon A}{d_1+\Delta d}$  .

Изменение емкости конденсатора

$$\Delta C = C_2 - C_1 = \frac{\varepsilon_0 \varepsilon A}{d_1 + \Delta d} - \frac{\varepsilon_0 \varepsilon A}{d_1} =$$

$$\begin{split} &= \epsilon_0 \varepsilon A \Bigg( \frac{1}{d_1 + \Delta d} - \frac{1}{d_1} \Bigg) = e_0 \varepsilon A \Bigg( \frac{d_1 - (d_1 + \Delta d)}{(d_1 + \Delta d) d_1} \Bigg) = \\ &= - \frac{\epsilon_0 \varepsilon A}{d_1} \cdot \frac{\Delta d}{d_1 + \Delta d} = - C_1 \frac{\Delta d}{d_1 + \Delta d} \;. \end{split}$$

Чувствительность преобразователя

$$S_1 = \Delta x_a / \Delta x_e = \frac{\Delta C}{\Delta d} = -\frac{C_1}{d_1 + \Delta d} = -\frac{C_1}{d_2}.$$
 (12)

Знак «минус» в выражении для определения чувствительности оз-

начает, что выходной сигнал уменьшается по мере увеличения входного сигнала.

Вследствие нелинейности передаточной характеристики преобразователя его чувствительность зависит от значения входной величины. Поэтому более корректным является определение чувствительности такого преобразователя методом дифференцирования его передаточной характеристики. Дифференцируя выражение (11) емкости плоского конденсатора по переменной d, получим

$$S_1$$
 $S_2$ 
 $d_1$ 
 $d_2$ 
 $d$ 

Рис. 4. Передаточная характеристика емкостного преобразователя

$$\frac{\partial C}{\partial d} = \frac{\partial}{\partial d} \left( \frac{\varepsilon_0 \varepsilon A}{d} \right) = -\frac{\varepsilon_0 \varepsilon A}{d^2} .$$

Для конечных приращений расстояния d и емкости C имеем

$$\Delta C = -\frac{\varepsilon_0 \varepsilon A}{d^2} \Delta d .$$

Откуда получим следующее выражение для определения чувствительности преобразователя:

$$S = \Delta x_a / \Delta x_e = \frac{\Delta C}{\Delta d} = -\frac{\varepsilon_0 \varepsilon A}{d^2} \,. \tag{13}$$

Можно проанализировать зависимость чувствительности преобразователя от значения входного сигнала. В точке передаточной характеристики, соответствующей исходному состоянию конденсатора,

т. е. при  $d=d_1, \ S_2=-\frac{C_1}{d_1}$  , а в точке характеристики, соответствующей

расстоянию между пластинами конденсатора  $d=d_2$ ,  $S_3=-C_1\frac{d_1}{d_2^2}$ . Эти

выражения отличаются от выражения (12), полученного разностным методом. Однако поскольку при малых перемещениях  $\Delta d$  мало и  $d_1 \approx d_2$ , то при вычислении значений чувствительности преобразователя по формулам, полученным различными методами, результаты окажутся близкими. Наклонные отрезки на рис. 4 иллюстрируют различия в определении значений чувствительности  $S_1$  и  $S_2$ .

## Пример 4. Определение статических характеристик ареометра

Определим передаточную характеристику, чувствительность и порог чувствительности ареометра, предназначенного для измерения плотности  $\rho$  жидкости (рис. 5). Пусть масса ареометра равна m. В нижней части ампулы, которая имеет площадь поперечного сечения A, находится груз, а удлиненная верхняя часть ампулы проградуирована

в единицах плотности. Высота ареометра H. Выходным сигналом является длина h верхней части ампулы, выступающей над поверхностью жидкости. Чувствительность ареометра определяется соотношением  $S = \Delta h / \Delta \rho$ .

Сила тяжести ареометра уравновешивается выталкивающей силой:

$$mg = \rho A(H-h)g.$$
  
Отсюда  $m = \rho A(H-h)$ , и  $(H-h) = m / \rho A.$  (14)

Поскольку  $(H-h) \sim 1/\rho$ , то передаточная характеристика является нелинейной (может быть представлена в виде гиперболы). Поэтому чувствительность ареометра необходимо определять методом дифференцирования передаточной характеристики.

Дифференцируя выражение (14), получим

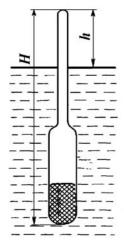



Рис. 5. Схематическое изображение ареометра

$$-dh = \frac{m}{A} \left( -\frac{d\rho}{\rho^2} \right).$$

Для конечного изменения высоты h можно записать

$$\Delta h = \frac{m}{A\rho^2} \Delta \rho \ .$$

Отсюда чувствительность ареометра

$$S = \Delta h / \Delta \rho = m/\rho^2 A. \tag{15}$$

Чувствительность прямо пропорциональна массе ареометра ( $S \sim m$ ) и обратно пропорциональна площади поперечного сечения ампулы ( $S \sim 1/A$ ). Однако достичь повышения чувствительности путем значительного увеличения массы и уменьшения площади сечения невозможно.

Оценим значение чувствительности ареометра. Если  $m = 100 \,\mathrm{r}$ ,  $A = 1 \,\mathrm{cm}^2$ , то чувствительность при измерении плотности водных растворов (плотность воды  $\rho = 1 \,\mathrm{r/cm}^3$ ) составит

$$S = (100 \text{ r})/[(1 \text{ r/cm}^3)^2 \cdot 1 \text{ cm}^2] = 100 \text{ cm}/(\text{r/cm}^3).$$

Если предположить, что еще различимое человеком изменение глубины погружения ареометра в воду составляет 0,5 мм, то порог чувствительности ареометра в воде

$$\rho_{\text{nop}} = \Delta h_{\text{nop}} / S;$$

$$\rho_{\text{nop}} = (0.05 \text{ cm}) / [100 \text{ cm} / (\text{r/cm}^3)] = 5 \cdot 10^{-4} \text{ r/cm}^3.$$

Относительный порог чувствительности  $x_e *_{\text{пор}} = (x_{e\text{пор}}) / x_e$ . Для ареометра  $\rho *_{\text{пор}} = 5 \cdot 10^{-4} \text{ г/см}^3 / 1 \text{ г/см}^3 = 5 \cdot 10^{-4}$ .

## Пример 5. Определение статических характеристик прибора для измерения pH растворов (pH-метра)

Первичный измерительный преобразователь рH-метра гальванического принципа действия состоит из стеклянного электрода 2, заполненного образцовым раствором с известным значением pH, и электрода сравнения 4 (рис. 6).

При погружении электродов в исследуемый раствор вследствие электрохимических реакций возникает ЭДС гальванической цепи и между электродами появляется соответствующая разность потенциалов, зависящая от активности ионов водорода в исследуемом растворе. Напряжение  $U_{\rm pH}$ , пропорциональное значению водородного показателя, усиливается с помощью усилителя 5 и измеряется вольтметром 6. Входной величиной первичного преобразователя является значение водородного показателя рН, выходной величиной — напряжение  $U_{\rm pH}$ . Усилитель 5 и вольтметр 6 являются вторичными измерительными преобразователями рН-метра (прибора).

Определим чувствительность первичного гальванического преобразователя. Воспользуемся зависимостью гальванического напряжения  $U_{\rm pH}$  от концентрации ионов водорода в водном растворе  $c_{\rm H}$ , или от значения pH:

$$pH = -\lg c_H. \tag{16}$$



Рис. 6. Схематическое изображение pH-метра (a) и соответствующая схема передачи сигналов ( $\delta$ ): I – кювета с исследуемым раствором; 2 – стеклянный электрод; 3 – термометр; 4 – электрод сравнения; 5 – усилитель;  $\delta$  – вольтметр

В соответствии с уравнением Нернста гальваническое напряжение, возникающее в результате электродной реакции в растворе (электродный потенциал), определяется следующим образом:

$$U = U_0 + \frac{RT}{nF} \ln(f c) , \qquad (17)$$

где R=8,313 Дж/(моль·К) — универсальная газовая постоянная; T — термодинамическая температура раствора; n — валентность ионов; F=96 552 Кл/моль — постоянная Фарадея; f — коэффициент активности раствора; c — концентрация ионов.

Для ионов водорода (n = 1) в сильно разбавленном (f = 1) растворе

$$U_{\rm pH} = U_0 + \frac{RT}{F} \ln c_{\rm H} \,,$$

или, после подстановки значений констант,

$$U_{\rm pH} = U_0 + 8,61 \cdot 10^{-5} \, T \cdot \ln c_{\rm H} \, .$$

С учетом, что  $\ln x = 2,3026 \lg x$ , и соотношения (16):

$$U_{\rm pH} = U_0 - 1,983 \cdot 10^{-4} \, T \cdot (\text{pH}). \tag{18}$$

Из (18) следует, что первичный преобразователь pH-метра является линейным. Изменению водородного показателя на  $\Delta$ (pH) соответствует изменение напряжения

$$\Delta U_{\rm pH} = 1.983 \cdot 10^{-4} \ T \cdot \Delta (\rm pH).$$
 (19)

Чувствительность первичного преобразователя

$$S_1 = \Delta U_{\text{pH}} / \Delta(\text{pH}); \quad S_1 = 1.983 \cdot 10^{-4} T \quad \text{B/}\Delta(\text{pH}).$$
 (20)

При температуре раствора T = 293 К  $S_1 = 0.058$  В/ $\Delta$ (рН) = 58 мВ/ $\Delta$ (рН) (милливольт на единицу изменения рН).

Определим характеристики вторичных измерительных преобразователей рН-метра: усилителя и вольтметра.

Пусть диапазон измерений стрелочного вольтметра pH-метра составляет от 0 до 50 B, а длина его шкалы l=150 мм. Налагаемое условие к показаниям pH-метра: изменение значения pH на единицу (например, от pH<sub>1</sub> = 5 до pH<sub>2</sub> = 6) должно вызывать отклонение стрелки вольтметра на всю шкалу до ее предела. Т. е. общая чувствительность pH-метра должна быть  $S_{\rm pH}=150$  мм/ $\Delta$ (pH).

Чувствительность вольтметра  $S_V = 150 \text{ мм} / 50 \text{ B} = 3 \text{ мм/B}.$ 

Определим необходимую чувствительность усилителя  $S_2$ . Поскольку общая чувствительность прибора равна произведению чувствительностей последовательно составляющих его звеньев  $(S_{\rm pH}=S_1\cdot S_2\cdot S_{\rm V})$ , то чувствительность усилителя  $S_2=S_{\rm pH}/(S_1\cdot S_{\rm V})$ .  $S_2=150\ /\ (58\cdot 3)=0,86\ \ {\rm B/mB}$ . Коэффициент усиления  $K_{\rm y}$  усилителя должен быть равен значению

$$K_v = 0.86 \text{ B/mB} = 860 \text{ mB/mB} = 860.$$

## 2.2. Построение блок-схем преобразования сигналов в средствах измерений

Процесс преобразования и передачи сигналов в средствах измерений изображается графически в виде блок-схем. Основные элементы передачи и преобразования сигналов обозначаются на блок-схемах специальными графическими символами (см. [1], табл. 1.1). Применение блок-схем преобразования сигналов является одним из методов описания принципа действия и инструментом исследования средств измерений. Принципы построения блок-схем и расчета передаточных характеристик средств измерений на основе блок-схем подробно изложены в учебных пособиях (см. [1], с. 19–27, 43–47; [2], с. 61–72, 158–159).

Рассмотрим несколько примеров составления блок-схем преобразования сигналов в измерительных устройствах.

## Пример 6. Построение блок-схемы преобразования сигналов в пружинных весах

Входной величиной измерительного устройства является масса взвешиваемого груза ( $x_e = m$ ), выходной величиной – смещение s стрелочного указателя вследствие деформации пружины ( $x_a = s$ ). В пределах упругости выполняется закон Гука:  $F_{\rm ynp} = k \, s$ , где  $F_{\rm ynp}$  – сила упру-

гости пружины, k – коэффициент упругости пружины. На взвешиваемый груз массой m действует сила тяжести F = mg, где g – ускорение свободного падения. Пружина весов растягивается до тех пор, пока сила тяжести груза не уравновешивается силой упругости пружины. Физико-математическая модель принципа измерений массы пружинными весами в статическом режиме может быть представлена следующей системой уравнений:

$$\begin{cases} F = mg; \\ F_{ynp} = ks; . \\ F = F_{ynp}. \end{cases}$$

Сила тяжести F является выходным сигналом первого передаточного звена с постоянным коэффициентом передачи g. Она вызывает удлинение пружины до тех пор, пока не уравновесится противопо-

ложно направленной силой упругости пружины  $F_{\rm упр}$ , т. е. пока их разность  $\Delta F$  не станет равной нулю. При этом масса оказывается пропорциональной смещению указателя весов. Соответствующая блок-схема преобразования и передачи сигналов приведена на рис. 7, где  $K_x$  – общий передаточный коэффициент весов как измерительного устройства.

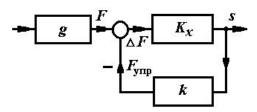



Рис. 7. Блок-схема преобразования сигналов при определении массы пружинными весами

## Пример 7. Построение блок-схем преобразования сигналов в U-образном ртутном манометре

Измеряемое манометром избыточное (сверх атмосферного) давление p уравновешивается давлением силы тяжести F столба ртути высотой h (гидростатическим давлением  $p_{\rm Hg} = \rho g h$ ). Столбик ртути поднимается на высоту h до тех пор, пока сила тяжести F = mg не уравновесит силу  $F_p$ , создаваемую измеряемым давлением. В свою очередь сила тяжести  $F = mg = \rho Vg = \rho Ahg$ , где  $m = \rho V -$  масса столбика ртути высотой h;  $\rho -$  плотность ртути; V = Ah - объем столбика ртути; A - площадь сечения манометрической трубки; g - ускорение свободного падения.

Преобразование сигнала h в сигнал F может осуществляться (см. рис. 8) и в соответствии с блок-схемой a, и общим передаточным

звеном (блок-схема  $\delta$ ). Работу манометра можно представить и как уравновешивание измеряемого давления p гидростатическим давлением столбика ртути  $p_{\text{Hg}}$  (блок-схема  $\delta$ ).

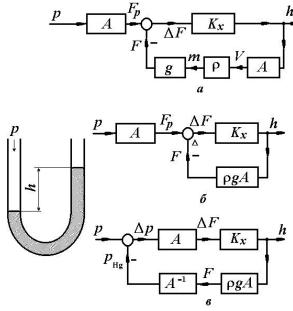



Рис. 8. U-образный манометр и возможные блок-схемы сигналов, отображающих его действие

## Пример 8. Построение блок-схем преобразования сигналов в электрической цепи

На рис. 9 приведена схема электрической цепи (a), состоящей из четырех резисторов, которую можно рассматривать как преобразователь электрического напряжения, а также два варианта  $(\delta$  и  $\theta$ ) блоксхемы сигналов этой цепи. Входной величиной является напряжение  $U_e$ , а выходной — падение напряжения на резисторе  $R_4$ , т. е.  $U_a = U_4$ . Цепь представляет собой преобразователь постоянного напряжения  $U_e$  в напряжение  $U_a$ .

Напряжение  $U_e$ , подаваемое на вход, создает в цепи ток силой  $I_1$ , который протекает через резистор с сопротивлением  $R_1$ , а затем разветвляется на токи  $I_2$  и  $I_3$ . Входное напряжение перераспределяется между резистором  $R_1$  и остальным участком цепи:  $U_e = U_1 + U_2$ ; в свою очередь, падение напряжения на резисторе  $R_2$  равно сумме паде-

ний напряжения на последовательно соединенных резисторах  $R_3$  и  $R_4$ :  $U_2 = U_3 + U_4$ . Соотношения между токами и напряжениями на различных участках цепи можно представить системой уравнений

$$\begin{cases} I_{1} = I_{2} + I_{3}; \\ U_{e} = U_{1} + U_{2}; \\ U_{2} = U_{3} + U_{4}; \\ U_{4} = U_{a}; \\ U_{i} = I_{i}R_{i}, \end{cases}$$
(21)

которые отображают физико-математическую модель преобразователя.

Падение напряжения  $U_1$  на резисторе  $R_1$   $U_1 = U_e - U_2$ , что отражено на блок схеме  $\delta$  соответствующим узлом суммирования. При этом ток

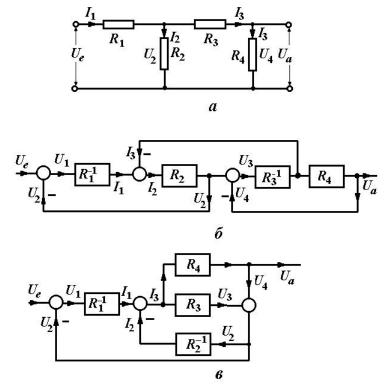



Рис. 9. Электрическая цепь (a) и соответствующие блок-схемы  $(\delta)$ , (s) преобразования сигналов

I равен  $U_1R_1^{-1}$ , а  $R_1^{-1}$  является передаточным коэффициентом первого из звеньев. По току I можно определить силу тока  $I_2$  (второй узел суммирования) и падение напряжения  $U_2$  (звено с передаточным коэффициентом  $R_2$ ). При переходе от одного звена к другому сигнал тока преобразуется в сигнал напряжения и наоборот.

Если во втором (среднем) узле суммирования поменять местами токи  $I_2$  и  $I_3$ , то блок-схема  $\delta$  преобразуется в блок-схему  $\epsilon$ . Обе эти блок-схемы они воспроизводят одни и те же зависимости токов и напряжений:  $I=I_2+I_3,\;U_e=U_1+U_2$  и  $U_2=U_3+U_4$ , а также закон Ома для участков цепи постоянного тока. В каждую из блок-схем входят по три узла суммирования и по четыре передаточных звена.

#### 2.3. Определение статических и динамических характеристик средств измерений на основе блок-схем сигналов

По блок-схемам выясняются взаимосвязи между сигналами измерительной информации на различных этапах преобразования входной величины в выходную, что позволяет проанализировать процесс измерений. Кроме того, на основе блок-схем выводятся аналитические выражения для определения функций преобразования средств измерений, работающих как в статическом, так и в динамическом режимах. При статических измерениях определяется передаточный коэффициент K (см. [1], формула (1.18)), в случае динамических измерений — передаточная функция G(p) (см. [1], формула (1.55)). Алгоритм для вычисления любой из этих характеристик через значения путей и контуров имеет вид (см. [1], формула (1.18))

$$K = \frac{\sum_{k=1}^{n} P_k (1 - \sum_{i=1}^{r} S_i + \sum_{(i,j)=1}^{s} S_{(i,j)} - \dots)}{1 - \sum_{i=1}^{m} S_i + \sum_{(i,j)=1}^{p} S_{(i,j)} - \dots},$$
(22)

где n – количество путей блок-схемы; m – количество контуров; p – число контуров второго порядка; r – число контуров, не относящихся к соответствующему пути; s – число контуров второго порядка, не относящихся к данному пути; \* – суммы контуров, не связанных на данном пути.

В дополнение к примеру, рассмотренному в учебном пособии [1] (с. 25–27), получим выражения для расчета передаточного коэффициента преобразователя постоянного электрического напряжения, электрическая схема которого приведена на рис. 9, a.

Пример 9. Определение передаточного коэффициента преобразователя постоянного

#### электрического напряжения

Блок-схема, представленная на рис. 9,  $\delta$ , включает один путь  $(P_k = P_1)$  и три контура  $(S_i = S_1, S_2, S_3)$ , а также один контур второго порядка  $(S_{(ij)} = S_{(1\,2)})$ :

$$\begin{split} P_{1} \colon U_{e} &\to R_{1}^{-1} \to R_{2} \to R_{3}^{-1} \to R_{4} \to U_{a}; \qquad \left( R_{1}^{-1} \cdot R_{2} \cdot R_{3}^{-1} \cdot R_{4} = \frac{R_{2}R_{4}}{R_{1}R_{3}} \right); \\ S_{1} \colon \qquad & \left( -R_{1}^{-1} \cdot R_{2} = -\frac{R_{2}}{R_{1}} \right); \\ S_{2} \colon \qquad & \left( -R_{3}^{-1} \cdot R_{4} = -\frac{R_{4}}{R_{3}} \right); \\ S_{3} \colon \qquad & \left( -R_{2} \cdot R_{3}^{-1} = -\frac{R_{2}}{R_{3}} \right); \\ S_{(1 \ 2)} = S_{1} \cdot S_{2} ; \qquad & \left( (-\frac{R_{2}}{R_{3}})(-\frac{R_{4}}{R_{2}}) = \frac{R_{2}R_{4}}{R_{3}R_{3}} \right). \end{split}$$

В круглых скобках приведены значения соответствующих путей и контуров.

Схема на рис. 9,  $\varepsilon$  включает один путь ( $P_k = P_1$ ) и четыре контура ( $S_i = S_1, S_2, S_3, S_4$ ):

$$P_{1}: \qquad U_{e} \to R_{1}^{-1} \to R_{4} \to U_{a}; \qquad \left(R_{1}^{-1} \cdot R_{4} = \frac{R_{4}}{R_{1}}\right);$$

$$S_{1}: \qquad R_{1}^{-1} \to R_{3}; \qquad \left(-R_{1}^{-1} \cdot R_{3} = -\frac{R_{3}}{R_{1}}\right);$$

$$S_{2}: \qquad R_{1}^{-1} \to R_{4}; \qquad \left(-R_{1}^{-1} \cdot R_{4} = -\frac{R_{4}}{R_{1}}\right);$$

$$S_{3}: \qquad R_{3} \to R_{2}^{-1}; \qquad \left(-R_{3} \cdot R_{2}^{-1} = -\frac{R_{3}}{R_{2}}\right);$$

$$S_{4}: \qquad R_{4} \to R_{2}^{-1}; \qquad \left(-R_{4} \cdot R_{2}^{-1} = -\frac{R_{4}}{R_{2}}\right).$$

Для блок-схемы, представленной на рис. 9, e, включающей пути и контуры только первого порядка, в соответствии с формулой (22) передаточный коэффициент

$$\begin{split} K &= \frac{R_4/R_1}{1 + R_3/R_1 + R_4/R_1 + R_3/R_2 + R_4/R_2} = \\ &= \frac{R_2R_4}{R_1R_2 + R_2R_3 + R_2R_4 + R_1R_3 + R_1R_4} \,. \end{split}$$

Для блок-схемы, приведенной на рис. 9,  $\delta$ , в соответствии с формулой (23)

$$\begin{split} K &= \frac{(R_2 R_4)/(R_1 R_3)}{1 + R_2/R_1 + R_4/R_3 + R_2/R_3 + [(-R_2/R_1)(-R_4/R_3)]} = \\ &= \frac{R_2 R_4}{R_1 R_3 + R_2 R_3 + R_1 R_4 + R_1 R_2 + R_2 R_4}. \end{split}$$

Поскольку различные блок-схемы, представленные на рис. 9,  $\delta$  и  $\epsilon$ , отображают действие одного и того же преобразователя, то выражения для расчета передаточного коэффициента K, полученные на основе этих блок-схем, совпадают. При заданных значениях сопротивлений  $R_i$  можно вычислить значение коэффициента K.

## Пример 10. Определение передаточной функции преобразователя переменного электрического напряжения

Определение динамических характеристик средств измерений на основе блок-схем сигналов можно осуществлять практически так же, как и статических. При этом строятся физикоматематическая модель и блок-схема сигналов измерительного устройства. Нелинейные передаточные звенья с передаточными функциями дифференцирования и интегрирования можно в случае периодических сигналов заменить с использованием комплексного операторного представления линейными. Далее можно с применением понятий путей P, контуров S и их значений по формуле (23), аналогичной (22), рассчитать передаточную функцию G(p):

$$G(p) = \frac{\sum_{k=1}^{n} P_k (1 - \sum_{i=1}^{r} S_i + \sum_{(i,j)=1}^{s} S_{(i,j)} - \dots)}{1 - \sum_{i=1}^{m} S_i + \sum_{(i,j)=1}^{p} S_{(i,j)} - \dots},$$
(23)

а затем с использованием замены  $p = i\omega$  и комплексный коэффициент передачи  $G(i\omega)$  измерительного устройства.

В тех случаях, когда в состав средств измерений входят преобразователи на основе электрических цепей переменного тока, содержащие реактивные элементы – конденсаторы, которые характеризуются электроемкостью, и катушки индуктивности,

необходимо учитывать комплексный характер реактивных сопротивлений конденсаторов и катушек. Использование оператора комплексной частоты  $p = i\omega$  позволяет в случае синусоидального переменного тока перейти от нелинейных передаточных функций дифференцирования и интегрирования к линейным преобразованиям умножения и деления. Линейные коэффициенты преобразования синусоидального переменного тока в напряжение и напряжения в ток на катушке индуктивности имеют вид (см. [1], формула (1.57)):

$$G_{I \to U}^{L} = -pL \quad \text{if} \quad G_{U \to I}^{L} = -1/pL ,$$
 (24)

а на конденсаторе (см. [1], формула (1.59)) выглядят следующим образом:

$$G_{I \to U}^{c} = 1/pC \quad \text{M} \quad G_{U \to I}^{c} = pC .$$
 (25)

Причем если в состав электрической цепи переменного тока входят активные элементы (резисторы  $R_i$ ) и реактивные элементы одного типа (только индуктивности  $L_i$ ), то коэффициенты преобразования  $G_{I \to U}^L$  и  $G_{U \to I}^L$  можно брать со знаком «+». Знак «-» обязателен в том случае, когда в цепи наряду с активными элементами имеются реактивные элементы разных типов (конденсаторы и катушки индуктивности), напряжения на которых изменяются в противофазе.

Рассмотрим в качестве примера преобразователь переменного

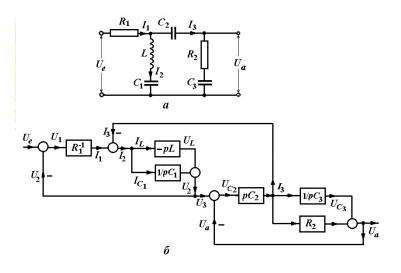



Рис. 10. Электрическая цепь (a) и соответствующая блок-схема  $(\delta)$  преобразования сигналов

электрического напряжения, электрическая схема которого приведена

на рис. 10, a. Входное напряжение  $U_e$  создает в цепи ток силой  $I_1$ , который протекает через резистор с сопротивлением  $R_1$ , а затем разветвляется на токи  $I_2$  и  $I_3$ . Переменный ток силой  $I_2$  протекает через катушку индуктивности и конденсатор электроемкостью  $C_1$ , а ток силой  $I_3$  — через соединенные последовательно конденсатор  $C_2$ , резистор  $R_2$  и конденсатор  $C_3$ . Входное напряжение перераспределяется между резистором  $R_1$  и остальным участком цепи:  $U_e = U_1 + U_2$ ; в свою очередь, падения напряжения на участках с токами  $I_2$  и  $I_3$  одинаковы  $\left(U_3 = U_2\right)$  и перераспределяются между элементами цепи, входящими в состав этих участков. Выходное напряжение  $U_a$  снимается с соединенных последовательно резистора  $R_2$  и конденсатора  $C_3$ .

Соотношения между токами и напряжениями на различных участках цепи можно представить системой уравнений

$$\begin{cases} I_{1} = I_{2} + I_{3}; \\ I_{2} = I_{L} = I_{C_{1}}; \\ I_{3} = I_{C_{2}} = I_{R_{2}} = I_{C_{3}}; \\ U_{e} = U_{1} + U_{2}; \\ U_{2} = U_{L} + U_{C_{1}}; \\ U_{3} = U_{2}; \\ U_{3} = U_{C_{2}} + U_{a}; \\ U_{a} = U_{R_{2}} + U_{C_{3}}; \\ U_{i} = I_{i}Z_{i}, \end{cases}$$

$$(26)$$

отображающих физико-математическую модель преобразователя.

На основании физико-математической модели построим соответствующую блок-схему преобразования сигналов (рис. 10,  $\delta$ ), учитывая преобразования на каждом из элементов электрической цепи. Узлы суммирования блок-схемы отображают соответственно четвертое, первое, пятое, седьмое и восьмое уравнения системы (26). Узлы разветвления отображают равенства сил токов и напряжений, определяемые вторым, шестым и третьим уравнениями системы (26) соответственно.

Укажем передаточные коэффициенты каждого из элементов, входящих в состав преобразователя. При этом воспользуемся законом Ома для участка электрической цепи и соотношениями (24), (25).

Получим выражение для определения передаточной функции G(p) преобразователя в соответствии с алгоритмом (23). Для этого определим пути и контуры блок-схемы (рис.  $10, \delta$ ) и их значения. Блок-схема

преобразования сигналов включает 4 пути, 6 контуров первого порядка и 4 контура второго порядка:

$$\begin{split} P_{1} \colon U_{e} \to R_{1}^{-1} \to -pL \to pC_{2} \to R_{2} \to U_{a} \,; \\ & \left( R_{1}^{-1} \cdot (-pL) \cdot pC_{2} \cdot R_{2} = -\frac{p^{2}LC_{2}R_{2}}{R_{1}} \right) ; \\ P_{2} \colon U_{e} \to R_{1}^{-1} \to (pC_{1})^{-1} \to pC_{2} \to R_{2} \to U_{a} \,; \\ & \left( R_{1}^{-1} \cdot (pC_{1})^{-1} \cdot pC_{2} \cdot R_{2} = \frac{C_{2}R_{2}}{C_{1}R_{1}} \right) ; \\ P_{3} \colon U_{e} \to R_{1}^{-1} \to -pL \to pC_{2} \to (pC_{3})^{-1} \to U_{a} \,; \\ & \left( R_{1}^{-1} \cdot (-pL) \cdot pC_{2} \cdot (pC_{3})^{-1} = -\frac{pLC_{2}}{R_{1}C_{3}} \right) ; \\ P_{4} \colon U_{e} \to R_{1}^{-1} \to (pC_{1})^{-1} \to pC_{2} \to (pC_{3})^{-1} \to U_{a} \,; \\ & \left( R_{1}^{-1} \cdot (pC_{1})^{-1} \cdot pC_{2} \cdot (pC_{3})^{-1} = \frac{C_{2}}{pR_{1}C_{1}C_{3}} \right) ; \\ S_{1} \colon R_{1}^{-1} \to (pC_{1})^{-1} \,; & \left( -\frac{1}{pC_{1}R_{1}} \right) ; \\ S_{2} \colon R_{1}^{-1} \to (-pL) \,; & \left( \frac{pL}{R_{1}} \right) ; \\ S_{3} \colon (-pL) \to pC_{2} \,; & \left( -pC_{2} \cdot R_{2} \right) ; \\ S_{6} \colon pC_{2} \to R_{2} \,; & \left( -pC_{2} \cdot R_{2} \right) ; \\ S_{6} \colon pC_{2} \to \frac{1}{pC_{3}} \,; & \left( -\frac{pC_{2}}{pC_{3}} - \frac{C_{2}}{C_{3}} \right) ; \\ S_{15} \colon \left[ \left( -\frac{1}{pC_{1}R_{1}} \right) \left( -pC_{2} \cdot R_{2} \right) = \frac{C_{2}}{pC_{1}R_{1}C_{3}} \right] ; \\ S_{16} \colon \left[ \left( -\frac{1}{pC_{1}R_{1}} \right) \left( -\frac{C_{2}}{C_{3}} \right) = \frac{C_{2}}{pC_{1}R_{1}C_{3}} \right] ; \\ \end{split}$$

$$\begin{split} S_{25}: \\ &\left[\left(\frac{pL}{R_1}\right)\!\!\left(-pC_2R_2\right) = -\frac{p^2LC_2R_2}{R_1}\right]; \\ S_{26}: &\left[\left(\frac{pL}{R_1}\right)\!\!\left(-\frac{C_2}{C_3}\right) = -\frac{pLC_2}{R_1C_3}\right]. \end{split}$$

В скобках указаны значения путей и контуров.

Передаточная функция преобразователя

$$G(p) = \frac{-\frac{p^2LC_2R_2}{R_1} + \frac{C_2R_2}{C_1R_1} - \frac{pLC_2}{R_1C_3} + \frac{C_2}{pR_1C_1C_3}}{1 + \frac{1}{pC_1R_1} - \frac{pL}{R_1} - p^2LC_2 + \frac{C_2}{C_1} + pC_2 \cdot R_2 + \frac{C_2}{C_3} + \frac{C_2R_2}{C_1R_1} + \frac{C_2}{pC_1R_1C_3} - \frac{p^2LC_2R_2}{R_1} - \frac{pLC_2}{R_1C_3}} = \frac{-\frac{p^3R_2LC_1C_2C_3 + pR_2C_2C_3 - p^2LC_1C_2 + C_2}{R_1C_3}}{\frac{pR_1C_1C_3}{pR_1C_1C_3}} = \frac{-\frac{p^3R_2LC_1C_2C_3 + pR_1C_2C_3 + pR_1C_1C_2 + PR_2C_2C_3 + PR_2C_2C_3 - p^2LC_1C_2 + C_2}{pR_1C_1C_3} = \frac{-p^3R_2LC_1C_2C_3 + pR_1C_2C_3 + pR_2C_2C_3 + pR_1C_1C_2 + pR_2C_2C_3 + C_2 - p^3R_2LC_1C_2C_3 - p^2LC_1C_2}{pR_1C_1C_3} = \frac{-p^3R_2LC_1C_2C_3 + pR_2C_2C_3 - p^2LC_1C_2 + C_2}{pR_1C_1C_3 + PR_2C_2C_3 + PR_2C_2C_3 + PR_2C_2C_3 + PR_2C_2C_3 + C_2 - p^3R_2LC_1C_2C_3 - p^2LC_1C_2} = \frac{-p^3R_2LC_1C_2C_3 + pR_1C_2C_3 + pR_2C_2C_3 - p^2LC_1C_2 + C_2}{pR_1C_1C_3 + PR_2C_2C_3 + pR_2C_2C_3 + pR_2C_2C_3 + pR_2C_2C_3 + C_2 - p^3R_2LC_1C_2C_3 - p^2LC_1C_2} = \frac{-p^3R_2LC_1C_2C_3 + pR_1C_2C_3 + pR_2C_2C_3 - P^2LC_1C_2 - p^3R_1LC_1C_2C_3 - p^3R_2LC_1C_2C_3 - P^2LC_1C_2 + PR_2C_2C_3 + PR_2C_2C_3 + PR_2C_2C_3 + PR_2C_2C_3 - P^2LC_1C_3 - P^2LC_1C_2 - P^3R_1LC_1C_2C_3 - P^3R_2LC_1C_2C_3 - P^2LC_1C_2 + PR_2C_2C_3 + PR_2C_2C_3 + PR_2C_2C_3 + PR_2C_2C_3 - P^2LC_1C_3 - P^2LC_1C_3 - P^2LC_1C_2 - P^3R_1LC_1C_2C_3 - P^3R_2LC_1C_2C_3 - P^2LC_1C_3 - P^2LC_1C_3$$

## Пример 11. Определение динамических характеристик пружинных весов

В качестве примера продолжим рассмотрение процесса измерения массы пружинными весами (см. рис. 11).

В общем случае процесс взвешивания осуществляется с временной

задержкой, т. е. в динамическом режиме. Для того чтобы описать динамический режим измерения и временную задержку при взвешивании, необходимо записать уравнение динамики измерительного преобразователя. При этом помимо силы тяжести груза (F = mg) и силы упругости пружины  $(F_{\text{VIID}} = -ks)$  нужно учесть силу трения (силу сопротивления среды). Сила сопротивления пропорциональна скорости о движения взвешиваемого

$$(F_{\text{comp}} = -b\upsilon = -b\frac{ds}{dt})$$
, где  $b$  —

ат коэффициент сопротивления среды.

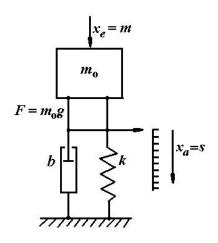



Рис. 11. Схематическое изображение измерения массы пружинными весами в динамическом режиме

Уравнение динамики движения взвешиваемого груза:

$$-b\frac{ds}{dt} - ks + (m + m_W)g = m_o \frac{d^2s}{dt^2},$$
(27)

где s – удлинение пружины; k – коэффициент упругости пружины;  $m_0 = m + m_W$  – общая масса взвешиваемого груза (m) и самой измерительной системы  $(m_W)$ ; g – ускорение свободного падения.

Выражение (27) представляет собой дифференциальное уравнение, описывающее действие пружинных весов. Его можно переписать в виде

$$m_0 \frac{d^2 s}{dt^2} + b \frac{ds}{dt} + ks = (m + m_W)g$$
. (28)

Для построения блок-схемы сигналов выражение (28) можно с применением комплексной частоты  $p = i\omega$  преобразовать к виду

$$m_{\rm o}p\frac{ds}{dt} + b\frac{ds}{dt} = F - F_{\rm ymp};$$
 (29)

$$(m_0 p + b) \frac{ds}{dt} = \Delta F$$
, (30)

что позволяет нелинейные преобразования заменить линейными. На рис. 12 представлена полная блок-схема сигналов пружинных весов с указанием коэффициентов передачи отдельных звеньев, где  $s_{\rm o}$  – удлинение пружины под действием общей массы  $m_{\rm o}$ . Все нелинейные преобразования, в т. ч. и преобразование, соответствующее нахождению второй производной от смещения s по времени:  $\frac{d^2s}{dt^2} = \ddot{s} = p^2s$ , заменены линейными.

В соответствии с блок-схемой определим передаточную функцию весов. Блок-схема (рис. 12) включает один путь и один контур:

$$P_1$$
:  $m \to g \to \frac{p}{pm_o + b} \to \frac{1}{p} \to \frac{1}{p} \to s$ ;  
 $S_1$ :  $\frac{p}{pm_o + b} \to \frac{1}{p} \to \frac{1}{p} \to k$ .

В соответствии с (23) передаточная функция

$$G(p) = \frac{g \frac{p}{pm_o + b} \cdot \frac{1}{p} \cdot \frac{1}{p}}{1 - (-k) \frac{p}{p^2 (pm_o + b)}} = \frac{g}{k + p(b + m_o p)},$$
 (31)

или

$$G(p) = \frac{g}{k + pb + p^2 m_o} \,. \tag{32}$$

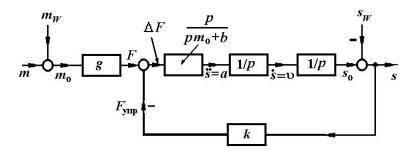



Рис. 12. Блок-схема сигналов при измерении массы пружинными весами в динамическом режиме

Передаточная функция весов в динамическом режиме измерений зависит от всех величин  $(k, m_0 \text{ и } b)$ , влияющих на инерционность средства измерения. При уравновешивании и переходе в статическое состояние  $p \to 0$  и  $G(p) \to g/k = K_p$ .

Итак, передаточная функция весов

$$G(p) = \frac{x_a}{x_e} = \frac{s}{m} = \frac{g}{k + bp + m_0 p^2},$$
 (33)

где  $x_e = m$  — масса взвешиваемого груза;  $x_a = s$  — перемещение стрелочного указателя, а их комплексный коэффициент передачи

$$G(i\omega) = \frac{g}{k + i\omega b - \omega^2 m_o}.$$
 (34)

Сопоставляя выражения (33) и (34) с общими выражениями для комплексного коэффициента передачи (см. [1], формула (1.48))

$$G(i\omega) = \frac{K_p}{1 + i\omega \cdot 2T_1 - \omega^2 T_2^2}$$
(35)

и передаточной функции (см. [1], формула (1.50))

$$G(p) = \frac{K_p}{1 + 2T_1 p + T_2^2 p^2}$$
 (36)

и учитывая, что собственная частота колебаний груза на пружине  $\omega_0 = \sqrt{k/m_0}$  , получим следующие соотношения:

$$K_p = g/k;$$
  $k = m_0 \omega_0^2;$   $b/k = 2T_1;$   $m_0/k = T_2^2;$   $T_2^2 = \frac{1}{\omega_0^2}.$  (37)

Коэффициент затухания (демпфирования) колебаний (см. [1], формула (1.32))

$$D = T_1 / T_2^2 = \frac{b\omega_0^2}{2k} \,. \tag{38}$$

С учетом (37) и (38) выражение (32) для передаточной функции весов преобразуется к виду

$$G(p) = \frac{g/k}{1 + 2pD/\omega_0^2 + p^2/\omega_0^2}.$$
 (39)

Отсюда получаем выражение для постоянной времени:

$$T_1 = D/\omega_0^2 . (40)$$

Комплексный коэффициент передачи весов

$$G(i\omega) = \frac{g/k}{(1 - \omega^2/\omega_0^2) + i \cdot 2D \,\omega/\omega_0^2} \tag{41}$$

объединяет в себе амплитудно-частотную и фазово-частотную динамические характеристики. Модуль комплексного коэффициента передачи, или амплитудно-частотная характеристика весов,

$$|G(i\omega)| = \frac{g/k}{\sqrt{(1-\omega^2/\omega_0^2)^2 + 4D^2 \omega^2/\omega_0^4}}$$
 (42)

Фазово-частотная характеристика весов определяется соотношением

$$\delta\varphi(\omega) = -\arctan\frac{2D\,\omega/\omega_0^2}{1 - \omega^2/\omega_0^2}.$$
 (43)

Амплитудно-частотные характеристики пружинных весов при различных коэффициентах затухания D показаны на рис. 13. При малых значениях D амплитуда колебаний весов вблизи собственной частоты резко возрастает. При больших значениях коэффициента затухания перехо́дный колебательный процесс установления весов переходит в процесс апериодический.

С другой стороны, процесс измерения массы пружинными весами в динамическом режиме можно рассматривать с позиций временных динамических характеристик. При малых значениях коэффициента затухания измерения реализуются с запаздыванием и затухающим колебательным перехо́дным процессом. Средство измерений характеризуется при этом перехо́дной характеристикой с временно́й задержкой второго порядка (см. [1], формула (1.25) и рис. 1.7). При больших значениях D процесс установления весов является апериодическим и весы можно охарактеризовать перехо́дной характеристикой с временно́й задержкой первого порядка (см. [1], формула (1.24) и рис. 1.6).

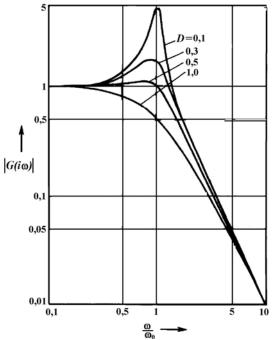



Рис. 13. Амплитудно-частотные характеристики пружинных весов при различных значениях коэффициента затухания D

## 2.4. Определение характеристик оптических спектральных приборов

Принцип действия оптических спектральных приборов основан чаще всего на пространственном разделении излучений, различаю-

щихся по длинам волн. Такое разделение возможно вследствие дисперсии или дифракции электромагнитных световых волн. Наиболее универсальные рабочие элементы оптических спектральных приборов – дисперсионные призмы и дифракционные решетки. Основными характеристиками способности призм и решеток к пространственному разделению спектральных линий с близкими значениями длин волн являются угловая дисперсия и разрешающая способность.

Угловая дисперсия характеризует угловую ширину спектра и определяется как угол между двумя соседними спектральными линиями, длины волн которых различаются на единицу:

$$D = \Delta \beta / \Delta \lambda . \tag{44}$$

Разрешающая способность спектрального прибора определяется отношением длины волны  $\lambda$  анализируемого излучения к наименьшему интервалу  $\Delta \lambda = \lambda_2 - \lambda_1$  длин волн, который еще может разрешить спектральный прибор:

$$R = \lambda/\Delta\lambda . (45)$$

Угловая дисперсия спектральной призмы  $\Delta\delta/\Delta\lambda$  зависит от материала призмы (показателя преломления n и дисперсии  $dn/d\lambda \approx \Delta n/\Delta\lambda$ ), преломляющего угла  $\gamma$  призмы и угла падения i света на призму (а следовательно, от углов  $i_1$  и  $i_2$  преломления на каждой из граней призмы) (см. [1], формула (2.25) и рис. 2.18):

$$D = \frac{\Delta \delta}{\Delta \lambda} = \frac{\sin \gamma}{\sin i_1 \cdot \cos i_2} \cdot \frac{\Delta n}{\Delta \lambda}$$
 (46)

Разрешающая способность спектральной призмы определяется в соответствии с критерием Рэлея исходя из того, что угловое расстояние между максимумами двух соседних спектральных линий больше или равно угловому расстоянию от максимума до ближайшего минимума. Она оказывается равной произведению длины l основания призмы на дисперсию ее показателя преломления (см. [1], формула (2.28)):

$$R = \frac{\lambda}{\Delta \lambda} = l \frac{\Delta n}{\Delta \lambda} \,. \tag{47}$$

Соответствующие характеристики дифракционной решетки рассмотрим более подробно.

## Пример 12. Определение спектральных характеристик дифракционной решетки

Пусть имеется прозрачная дифракционная решетка, ширина заштрихованной области которой W=2,5 см. Период решетки d=5 мкм, ширина ее прозрачных щелей b=1 мкм. Определим максимально возможный порядок спектра  $m_{\rm max}$ , в котором с применением решетки можно наблюдать спектральную линию с длиной волны  $\lambda=500$  нм, а также

угловую дисперсию решетки и максимальное значение ее разрешающей способности для света с данной длиной волны.

При нормальном падении анализируемого излучения на дифракционную решетку условие получения главных дифракционных максимумов (см. [1], формула (2.23) и рис. 2.19) имеет вид

$$d\sin\beta = \pm m\lambda \ . \tag{48}$$

Максимально возможному значению порядка спектра m соответствует максимальное значение  $\sin \beta = 1$  для угла отклонения  $\beta = 90^{\circ}$ . Поэтому

$$m_{\text{max}} = d/\lambda \,. \tag{49}$$

Вычисления по формуле (49) дают значение  $m_{\rm max}=10$ , которое в точности соответствует углу отклонения  $\beta=90^{\circ}$ . Однако световые лучи, отклоненные дифракционной решеткой на угол  $\beta=90^{\circ}$ , наблюдаться не могут. Поэтому в качестве  $m_{\rm max}$  следует взять значение на единицу меньшее ( $m_{\rm max}=9$ ). Спектральная линия с заданной длиной волны в спектре девятого порядка должна наблюдаться при угле от-

клонения  $\beta = \arcsin\left(9\frac{\lambda}{d}\right)$ . Согласно вычислениям,  $\beta \approx 64,16^{\circ}$ . В силу

симметрии дифракционной картины, получаемой с применением решетки, должно наблюдаться 18 спектральных линий (по обе стороны от центрального максимума) с длиной волны  $\lambda$ .

Однако не все из этих линий будут иметь достаточную интенсивность. Наиболее интенсивными и, следовательно, доступными для наблюдения будут те из спектральных линий, которые расположены в пределах угловой ширины центрального дифракционного максимума, даваемого каждой из щелей решетки. Условие получения минимумов интенсивности при дифракции света на одной щели шириной b:

$$b\sin\beta = \pm m\lambda \ . \tag{50}$$

Половине угловой ширины центрального дифракционного максимума, даваемого каждой из щелей решетки и расположенного между двумя симметричными первыми (m=1) минимумами, соответствует условие:

$$\sin \beta = \lambda/b \ . \tag{51}$$

Подставим выражение (51) в условие (48) получения главных дифракционных максимумов решетки:

$$d\frac{\lambda}{h} = m_{\text{max}}\lambda. \tag{52}$$

Откуда

$$m_{\text{max}} = d/b . (53)$$

Вычисление по формуле (53) дает значение  $m_{\text{max}} = 5$ . Следовательно, в дифракционном спектре будет наблюдаться пять порядков с интенсивными, доступными для наблюдения и анализа спектральными линиями. Общее количество интенсивных спектров равно десяти. Спектральная линия с длиной волны  $\lambda = 500$  нм в спектре пятого порядка будет наблюдаться под углом  $\beta = 30^{\circ}$ .

Выведем выражение для угловой дисперсии дифракционной решетки. Дифференцируя выражение (48), получим

$$d\cos\beta\cdot\delta\beta=m\cdot\delta\lambda$$
.

Откуда угловая дисперсия

$$D = \frac{\Delta \beta}{\Delta \lambda} = \frac{\delta \beta}{\delta \lambda} = \frac{m}{d \cos \beta} \,. \tag{54}$$

Выражая соѕβ из (48), получим формулу для определения угловой дисперсии решетки через ее период и длину волны спектральной линии:

$$D = \frac{m}{\sqrt{d^2 - m^2 \lambda^2}} \,. \tag{55}$$

Вычислим значения угловой дисперсии решетки для длины волны  $\lambda = 500$  нм в спектрах пятого и первого порядков:

$$D_5 = \frac{5}{\sqrt{5000^2 - 5^2 \cdot 500^2}} = 1,155 \cdot 10^{-3} \text{ Hm}^{-1};$$

$$D_1 = \frac{1}{\sqrt{5000^2 - 1^2 \cdot 500^2}} = 2 \cdot 10^{-4} \text{ Hm}^{-1}.$$

Полученный результат означает, что в спектре пятого порядка соседние спектральные линии, длины волн которых различаются на 1 нм, будут отклонены на углы  $\beta$ , значения которых различаются на  $\Delta\beta=1,155\cdot10^{-3}$  рад =  $6,62\cdot10^{-2}\circ=3,97'$ . Кроме того, значение D зависит от порядка спектра и периода решетки. В спектре первого порядка значение  $\Delta\beta=2\cdot10^{-4}$  рад =  $1,15\cdot10^{-2}\circ=0,69'=41,25''$ .

Определим максимальное значение соответствующей критерию Рэлея (см. [1], формула (2.26) и рис. 2.21) разрешающей способности решетки:

$$R_{\text{max}} = m_{\text{max}} N = m_{\text{max}} \frac{W}{d} \,. \tag{56}$$

Вычисленное значение (для  $m_{\rm max}=5$ )  $R_{\rm max}=25\,000$ . Поскольку  $R=\lambda/\Delta\lambda$ , то полученный результат означает, что в спектре пятого порядка дифракционная решетка сможет разрешить соседние спектральные линии вблизи  $\lambda=500$  нм, длины волн которых различаются на  $\Delta\lambda=0.02$  нм.

### 2.5. Моделирование распределений интенсивности рентгеновских спектральных линий

Регистрация и спектрометрия характеристического излучения, испускаемого атомами исследуемых веществ, лежат спектрального рентгеновского анализа веществ. расщепления энергетических уровней атомов, обусловленного спинвзаимодействием, орбитальным рентгеновские спектры дублетную структуру. Наиболее интенсивными являются спектральные линии  $K_{\alpha}$ -серии рентгеновского излучения. Распределение интенсивности спектрального дублета  $K_{\alpha}$ -серии излучения атомов алюминия по энергиям представлено в качестве примера на рис. 2.51 пособия [1]. Интенсивность  $K_{\alpha 1}$ -линии всегда больше интенсивности  $K_{\alpha 2}$ -линии. Профиль распределения интенсивности каждой из линий дублета можно моделировать нормальным распределением Гаусса. Ширина спектральной линии связана с временем жизни соответствующего возбужденного состояния атома, а также определяется разрешающей способностью спектрального прибора. Спектроскопия с дисперсией по длинам волн основана на дифракции рентгеновского излучения на кристаллическом анализаторе. В прил. 7 пособия [1] приведены приближенные значения энергии квантов  $K_{\alpha}$ -излучения и достаточно точные значения длин волн  $K_{\alpha 1}$ - и  $K_{\alpha 2}$ - рентгеновских спектральных линий атомов элементов. Построение распределения интенсивности спектральных линий позволяет сформировать представления о структуре спектров характеристического рентгеновского излучения, а также о структуре атомных спектров вообще.

При расчете распределений интенсивности спектральных линий характеристического рентгеновского излучения атомов распределение интенсивности каждой из линий спектрального  $K_{\alpha}$ -дублета будем моделировать нормальным распределением Гаусса. В общем случае распределение Гаусса выражается функцией

$$y = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right],\tag{57}$$

где  $\mu$  – значение аргумента x, соответствующее максимуму функции y(x);  $\sigma$  – стандартное отклонение.

В нашем случае нормальное распределение для интенсивности спектральной линии можно представить соотношением

$$I(\lambda) = I_{\text{max}} \exp \left[ -\frac{1}{2} \left( \frac{\lambda - \lambda_{\text{max}}}{\sigma} \right)^2 \right], \tag{58}$$

где  $I(\lambda)$  – интенсивность спектральной линии в зависимости от длины волны  $\lambda$ ;  $I_{\max}$  – значение интенсивности спектральной линии в максимуме распределения;  $\lambda_{\max}$  – длина волны, соответствующая максимуму распределения интенсивности спектральной линии;  $\sigma$  – стандартное отклонение, определяющее ширину моделируемой спектральной линии. При заданных значениях  $I_{\max}$ ,  $\lambda_{\max}$  и  $\sigma$  по формуле (58) можно рассчитать распределение интенсивности спектральной линии по длинам волн.

Используя подстановку

$$\frac{x-\mu}{\sigma} = u \tag{59}$$

и получая при  $\mu = 0$   $\sigma = 1$ , от выражения (57) можно перейти к нормированной функции гауссового распределения

$$y = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right). \tag{60}$$

Значения нормированной функции (60) нормального распределения в зависимости от параметра u приведены в табл. 1.

## Пример 13. Построение распределения интенсивности рентгеновских спектральных линий

 $K_{\alpha}$ -серии алюминия по длинам волн

При построении распределения интенсивности спектральной линии по длинам волн параметр

$$u = \frac{\lambda - \lambda_{\text{max}}}{\sigma} \,, \tag{61}$$

и функция распределения (58) будет иметь вид

$$I(\lambda) = I_{\text{max}} \exp\left(-\frac{u^2}{2}\right),\tag{62}$$

или с учетом формулы (60)

$$I(\lambda) = \sqrt{2\pi} I_{\text{max}} y(u) , \qquad (63)$$

где y(u) – значения нормированной функции распределения, взятые из табл. 1.

Таблица 1 Значения нормированной функции y(u) нормального распределения Гаусса

| и   | 0,00     | 0,01     | 0,02     | 0,03     | 0,04     | 0,05     | 0,06     | 0,07     | 0,08     | 0,09     |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0,0 | 0,398 94 | 0,398 92 | 0,398 86 | 0,398 76 | 0,398 62 | 0,398 44 | 0,398 22 | 0,397 97 | 0,397 67 | 0,397 33 |
| 0,1 | 0,396 95 | 0,396 54 | 0,396 08 | 0,395 59 | 0,395 05 | 0,394 48 | 0,393 87 | 0,393 22 | 0,392 53 | 0,391 81 |
| 0,2 | 0,391 04 | 0,390 24 | 0,389 40 | 0,388 53 | 0,387 62 | 0,386 67 | 0,385 68 | 0,384 66 | 0,383 61 | 0,382 51 |
| 0,3 | 0,381 39 | 0,380 23 | 0,379 03 | 0,377 80 | 0,376 54 | 0,375 24 | 0,373 91 | 0,372 55 | 0,371 15 | 0,369 53 |
| 0,4 | 0,368 27 | 0,366 78 | 0,365 26 | 0,363 71 | 0,362 13 | 0,360 53 | 0,358 89 | 0,357 23 | 0,355 53 | 0,353 81 |
| 0,5 | 0,352 07 | 0,350 29 | 0,348 49 | 0,346 67 | 0,344 82 | 0,342 94 | 0,341 05 | 0,339 12 | 0,337 18 | 0,335 21 |
| 0,6 | 0,333 22 | 0,331 21 | 0,329 18 | 0,327 13 | 0,325 06 | 0,322 97 | 0,320 86 | 0,318 74 | 0,316 59 | 0,314 43 |
| 0,7 | 0,312 25 | 0,310 06 | 0,307 85 | 0,305 63 | 0,303 39 | 0,301 14 | 0,298 87 | 0,296 59 | 0,294 31 | 0,292 00 |
| 0,8 | 0,289 69 | 0,287 37 | 0,285 04 | 0,282 69 | 0,280 34 | 0,277 87 | 0,275 62 | 0,273 24 | 0,270 86 | 0,268 48 |
| 0,9 | 0,266 09 | 0,263 69 | 0,261 29 | 0,258 88 | 0,256 47 | 0,254 06 | 0,251 64 | 0,249 23 | 0,246 81 | 0,244 39 |

Продолжение табл. 1

| и   | 0,00     | 0,01     | 0,02     | 0,03     | 0,04     | 0,05     | 0,06      | 0,07     | 0,08     | 0,09     |
|-----|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|
| 1,0 | 0,241 97 | 0,239 55 | 0,237 13 | 0,234 71 | 0,232 30 | 0,229 88 | 0,227 47  | 0,225 06 | 0,222 65 | 0,220 25 |
| 1,1 | 0,217 85 | 0,215 46 | 0,213 07 | 0,210 69 | 0,208 31 | 0,205 94 | 0,203 57  | 0,201 21 | 0,198 86 | 0,196 52 |
| 1,2 | 0,194 19 | 0,191 86 | 0,189 54 | 0,187 24 | 0,184 94 | 0,182 65 | 0,180 37  | 0,178 10 | 0,175 85 | 0,173 60 |
| 1,3 | 0,171 37 | 0,169 15 | 0,166 94 | 0,164 74 | 0,162 56 | 0,160 38 | 0,158 22  | 0,156 08 | 0,153 95 | 0,151 83 |
| 1,4 | 0,149 37 | 0,147 64 | 0,145 56 | 0,143 50 | 0,141 46 | 0,139 43 | 0,137 42  | 0,135 42 | 0,133 44 | 0,131 47 |
| 1,5 | 0,129 52 | 0,127 58 | 0,125 66 | 0,123 76 | 0,121 88 | 0,120 51 | 0, 118 16 | 0,116 32 | 0,114 50 | 0,112 70 |
| 1,6 | 0,110 92 | 0,109 15 | 0,107 41 | 0,105 67 | 0,103 96 | 0,102 26 | 0,100 59  | 0,098 92 | 0,097 28 | 0,095 66 |
| 1,7 | 0,094 05 | 0,092 46 | 0,090 89 | 0,089 33 | 0,087 80 | 0,086 28 | 0,084 78  | 0,083 29 | 0,081 83 | 0.080 38 |
| 1,8 | 0,078 95 | 0,077 54 | 0,076 14 | 0,074 77 | 0,073 41 | 0,072 06 | 0,070 74  | 0,069 43 | 0,068 14 | 0,066 87 |
| 1,9 | 0,065 62 | 0,064 38 | 0,063 16 | 0,061 95 | 0,060 77 | 0,059 59 | 0,058 44  | 0,057 30 | 0,056 18 | 0,055 08 |
| 2,0 | 0,053 99 | 0,052 92 | 0,051 86 | 0,050 82 | 0,049 80 | 0,048 79 | 0,047 80  | 0,046 32 | 0,045 86 | 0,044 91 |

Окончание табл. 1

| и   | 0,00     | 0,01     | 0,02     | 0,03     | 0,04     | 0,05     | 0,06     | 0,07     | 0,08     | 0,09     |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 2,1 | 0,043 98 | 0,043 07 | 0,04217  | 0,041 28 | 0,040 41 | 0,039 55 | 0,038 71 | 0,037 88 | 0,037 06 | 0,036 26 |
| 2,2 | 0,035 47 | 0,034 70 | 0,033 94 | 0,033 19 | 0,032 46 | 0,031 74 | 0,031 03 | 0,030 34 | 0,029 65 | 0,028 98 |
| 2,3 | 0,028 33 | 0,027 68 | 0,027 05 | 0,026 43 | 0,025 82 | 0,025 22 | 0,024 63 | 0,024 06 | 0,023 49 | 0,022 94 |
| 2,4 | 0,022 39 | 0,021 86 | 0,021 34 | 0,020 83 | 0,020 33 | 0,019 84 | 0,019 36 | 0,018 89 | 0,018 42 | 0,017 97 |
| 2,5 | 0,017 53 | 0,017 09 | 0,016 67 | 0,016 25 | 0,015 85 | 0,015 45 | 0,015 06 | 0,014 68 | 0,014 31 | 0,013 94 |
| 2,6 | 0,013 58 | 0,013 23 | 0,012 89 | 0,012 56 | 0,012 33 | 0,011 91 | 0,011 60 | 0,011 30 | 0,011 00 | 0,010 71 |
| 2,7 | 0,010 42 | 0,010 14 | 0,009 87 | 0,009 61 | 0,009 35 | 0,009 09 | 0,008 85 | 0,008 61 | 0,008 37 | 0,008 14 |
| 2,8 | 0,007 92 | 0,007 70 | 0,007 48 | 0,007 27 | 0,007 07 | 0,006 87 | 0,006 68 | 0,006 49 | 0,006 31 | 0,006 13 |
| 2,9 | 0,005 95 | 0,005 78 | 0,005 62 | 0,005 45 | 0,005 30 | 0,005 14 | 0,004 99 | 0,004 85 | 0,004 71 | 0,004 57 |
|     | 0,0      | 0,1      | 0,2      | 0,3      | 0,4      | 0,5      | 0,6      | 0,7      | 0,8      | 0,9      |
| 3,0 | 0,004 43 | 0,003 27 | 0,002 38 | 0,001 72 | 0,001 23 | 0,000 87 | 0,000 61 | 0.000 42 | 0,000 29 | 0,000 20 |

Значения длин волн  $K_{\alpha}$ -излучения атомов элементов приведены в прил. 7 [1]. Для атомов алюминия длина волны  $K_{\alpha 1}$ -излучения  $\lambda_1 = \lambda_{1\max} = 8,339$  34 Å, а длина волны  $K_{\alpha 2}$ -излучения  $\lambda_2 = \lambda_{2\max} = 8,341$  73 Å. Этим значениям длин волн соответствуют максимумы интенсивности спектральных линий. Отношение максимальных значений интенсивности спектральных линий  $K_{\alpha 1}$  и  $K_{\alpha 2}$  примем равным 2 : 1; максимальное значение интенсивности  $K_{\alpha 1}$ -линии примем равным единице ( $I_{1\max} = 1$  отн. ед.), тогда  $I_{2\max} = 0,5$  отн. ед. Разность  $\Delta\lambda = \lambda_{2\max} - \lambda_{1\max} = 0,002$  39 Å; значение стандартного отклонения примем  $\sigma = 0,0015$  Å.

Результаты расчетов, проведенных с применением соотношений (61), (62) и данных табл. 1, представлены в табл. 2. При вычислениях для каждой из спектральных линий определен по формуле (61) модуль параметра u в интервале значений длин волн  $\lambda$ , в которых значения  $u \le 3$ . Значения u определены также для длин волн  $\lambda_{1\max}$  и  $\lambda_{2\max}$ . Затем с использованием данных табл. 1 по формуле (63) вычислены относительные значения интенсивности I каждой из  $K_{\alpha 1}$ - и  $K_{\alpha 2}$ - спектральных линий. В последней колонке табл. 2 приведены значения суммарной интенсивности обеих спектральных линий  $K_{\alpha}$ -серии в зависимости от длины волны.

По расчетным данным построены графические зависимости интенсивности спектральных линий от длины волны рентгеновского излучения. В результате получено распределение интенсивности спектральных линий дублета  $K_{\alpha}$ -серии излучения атомов алюминия по длинам волн (рис. 14). Такое же распределение, только по энергии, приведено в учебном пособии [1] на рис. 2.51. В силу небольшой разности  $\Delta\lambda = \lambda_{2\max} - \lambda_{1\max}$  суммарное  $K_{\alpha}$ -излучение алюминия можно считать практически монохроматичным. Это позволяет использовать  $K_{\alpha}$ -излучение алюминия, а также магния в качестве возбуждающего эмиссию фотоэлектронов в рентгеновских фотоэлектронных спектрометрах.

Таблица 2 Результаты расчетов распределения интенсивности спектральных линий  $K_{\alpha}$ -излучения атомов алюминия

| . 8     | $K_{\alpha 1}: \lambda_1 =$ | 8,339 34 Å          | $K_{\alpha 2}$ : $\lambda_2$ | = 8,341 73 Å        | $K_{\alpha}$        |
|---------|-----------------------------|---------------------|------------------------------|---------------------|---------------------|
| λ, Å    | и                           | <i>I</i> , отн. ед. | и                            | <i>I</i> , отн. ед. | <i>I</i> , отн. ед. |
| 8,3350  | 2,89                        | 0,015               |                              |                     | 0,015               |
| 8,3355  | 2,56                        | 0,038               |                              |                     | 0,038               |
| 8,3360  | 2,23                        | 0,083               |                              |                     | 0,083               |
| 8,3365  | 1,89                        | 0,168               |                              |                     | 0,168               |
| 8,3370  | 1,56                        | 0,296               |                              |                     | 0,296               |
| 8,3375  | 1,23                        | 0,469               | 2,82                         | 0,009               | 0,478               |
| 8,3380  | 0,89                        | 0,673               | 2,49                         | 0,023               | 0,696               |
| 8,3385  | 0,56                        | 0,855               | 2,15                         | 0,050               | 0,905               |
| 8,3390  | 0,23                        | 0,974               | 1,82                         | 0,095               | 1,069               |
| 8,33934 | 0                           | 1,000               | 1,59                         | 0,141               | 1,141               |
| 8,3395  | 0,11                        | 0,994               | 1,49                         | 0,165               | 1,159               |
| 8,3400  | 0,44                        | 0,908               | 1,15                         | 0,258               | 1,166               |
| 8,3405  | 0,77                        | 0,743               | 0,82                         | 0,357               | 1,100               |
| 8,3410  | 1,11                        | 0,540               | 0,49                         | 0,443               | 0,983               |
| 8,3415  | 1,44                        | 0,355               | 0,15                         | 0,494               | 0,849               |
| 8,34173 | 1,59                        | 0,282               | 0                            | 0,500               | 0,782               |
| 8,3420  | 1,77                        | 0,209               | 0,18                         | 0,492               | 0,701               |
| 8,3425  | 2,11                        | 0,108               | 0,51                         | 0,439               | 0,547               |
| 8,3430  | 2,44                        | 0,051               | 0,85                         | 0,348               | 0,399               |
| 8,3435  | 2,77                        | 0,022               | 1,18                         | 0,249               | 0,271               |
| 8,3440  |                             |                     | 1,51                         | 0,160               | 0,160               |
| 8,3445  |                             |                     | 1,85                         | 0,090               | 0,090               |
| 8,3450  |                             |                     | 2,18                         | 0,046               | 0,046               |
| 8,3455  |                             |                     | 2,51                         | 0,021               | 0,021               |
| 8,3460  |                             |                     | 2,85                         | 0,009               | 0,009               |

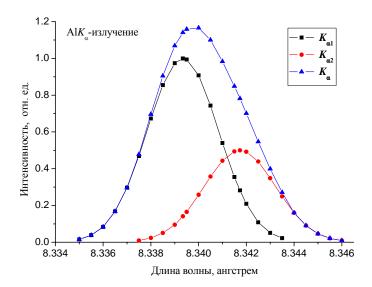



Рис. 14. Распределение интенсивности спектральных линий дублета  $K_{\alpha}$ -серии излучения атомов алюминия по длинам волн

# Пример 14. Построение распределения интенсивности рентгеновских спектральных линий $K_{\alpha}$ -серии платины по длинам волн

Для платины (см. [1], прил. 7) длины волн  $K_{\alpha 1}$ - и  $K_{\alpha 2}$ -излучения, которым соответствуют максимумы интенсивности спектральных линий, —  $\lambda_1 = \lambda_{1 \max} = 0.185~511$  Å и  $\lambda_2 = \lambda_{2 \max} = 0.190~381$  Å. Разность  $\lambda_{2 \max} - \lambda_{1 \max} = 0.004~87$  Å. Отношение максимальных значений интенсивностей спектральных линий  $K_{\alpha 1}$  и  $K_{\alpha 2}$  также примем равным 2 : 1; максимальное значение интенсивности  $K_{\alpha 1}$ -линии примем равным единице ( $I_{1 \max} = 1$  отн. ед.), тогда  $I_{2 \max} = 0.5$  отн. ед.; значение станлартного отклонения  $\sigma = 0.0015$  Å.

Результаты расчетов, проведенных с применением соотношений (61), (62) и значений нормированной функции Гаусса (табл. 1), представлены в табл. 3, а график распределения интенсивности спектральных линий – на рис. 15.

Распределение интенсивности, приведенное на рис. 15, показывает, что спектральный дублет  $K_{\alpha}$ -излучения платины практически полностью разрешается в соответствии с критерием Рэлея (см. [1], рис. 2.21).

 $\label{eq:2.2} \begin{tabular}{ll} \begin{t$ 

| . 0      | $K_{\alpha 1}: \lambda_1 =$ | 0,185 511 Å         | $K_{\alpha 2}$ : $\lambda_2$ | = 0,190 381 Å       | $K_{\alpha}$        |
|----------|-----------------------------|---------------------|------------------------------|---------------------|---------------------|
| λ, Å     | и                           | <i>I</i> , отн. ед. | и                            | <i>I</i> , отн. ед. | <i>I</i> , отн. ед. |
| 0,1810   | 3,01                        | 0,011               |                              |                     | 0,011               |
| 0,1815   | 2,67                        | 0,028               |                              | 2                   | 0,028               |
| 0,1820   | 2,34                        | 0,065               |                              |                     | 0,065               |
| 0,1825   | 2,01                        | 0,133               |                              |                     | 0,133               |
| 0,1830   | 1,67                        | 0,245               |                              |                     | 0,245               |
| 0,1835   | 1,34                        | 0,407               |                              |                     | 0,407               |
| 0,1840   | 1,01                        | 0,600               |                              |                     | 0,600               |
| 0,1845   | 0,67                        | 0,799               |                              | 2                   | 0,799               |
| 0,1850   | 0,34                        | 0,944               |                              |                     | 0,944               |
| 0,185511 | 0                           | 1,000               |                              |                     | 1,000               |
| 0,1860   | 0,33                        | 0,947               | 2,92                         | 0,007               | 0,954               |
| 0,1865   | 0,66                        | 0,804               | 2,59                         | 0,017               | 0,821               |
| 0,1870   | 0,99                        | 0,613               | 2,25                         | 0,040               | 0,653               |
| 0,1875   | 1,33                        | 0,413               | 1,92                         | 0,079               | 0,492               |
| 0,1880   | 1,66                        | 0,252               | 1,59                         | 0,141               | 0,393               |
| 0,1885   | 1,99                        | 0,138               | 1,25                         | 0,229               | 0,367               |
| 0,1890   | 2,33                        | 0,066               | 0,92                         | 0,327               | 0,393               |
| 0,1895   | 2,66                        | 0,029               | 0,59                         | 0,420               | 0,449               |
| 0,1900   | 2,99                        | 0,011               | 0,25                         | 0,485               | 0,496               |
| 0,190381 |                             |                     | 0                            | 0,500               | 0,500               |
| 0,1905   |                             |                     | 0,08                         | 0,498               | 0,498               |
| 0,1910   |                             |                     | 0,41                         | 0,460               | 0,460               |
| 0,1915   |                             |                     | 0,75                         | 0,377               | 0,377               |
| 0,1920   |                             |                     | 1,08                         | 0,279               | 0,279               |
| 0,1925   |                             |                     | 1,41                         | 0,185               | 0,185               |

| λ, Å   | $K_{\alpha 1}: \lambda_1 =$ | 0,185 511 Å         | $K_{\alpha 2}$ : $\lambda_2$ | = 0,190 381 Å       | $K_{\alpha}$        |
|--------|-----------------------------|---------------------|------------------------------|---------------------|---------------------|
|        | и                           | <i>I</i> , отн. ед. | и                            | <i>I</i> , отн. ед. | <i>I</i> , отн. ед. |
| 0,1930 |                             |                     | 1,75                         | 0,108               | 0,108               |
| 0,1935 |                             |                     | 2,08                         | 0,057               | 0,057               |
| 0,1940 |                             |                     | 2,41                         | 0,027               | 0,027               |
| 0,1945 |                             |                     | 2,75                         | 0,011               | 0,011               |

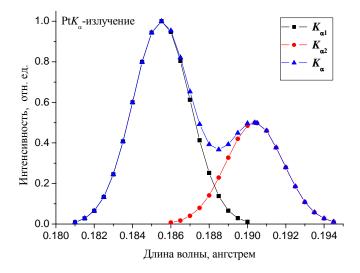



Рис. 15. Распределение интенсивности спектральных линий дублета  $K_{\alpha}$ -серии излучения атомов платины по длинам волн

## 2.6. Определение состава веществ методом рентгеновской фотоэлектронной спектроскопии

Фотоэлектронный спектр представляет собой распределение по кинетическим энергиям фотоэлектронов, эмиттируемых из остовных энергетических уровней атомов исследуемого вещества под действием рентгеновского излучения. Для удобства анализа в фотоэлектронных спектрах по оси энергий вместо кинетической энергии  $E_k$  фотоэлектронов откладываются значения энергий связи электронов  $E_B(k)$ 

в атомах (см. [1], формула (2.107)). Элементный анализ проводится путем сравнения экспериментально полученных фотоэлектронных спектральных линий исследуемого образца с известными значениями энергий связи электронов в атомах элементов, представленными в соответствующих таблицах (см. [1], прил. 8).

Пример 15. Определение элементного состава образца по обзорному фотоэлектронному спектру

На рис. 16 представлен спектр фотоэлектронов, возбужденных рентгеновским  $MgK_{\alpha}$ -излучением с поверхности покрытия, сформированного на стеклоуглероде осаждением иридия и свинца.

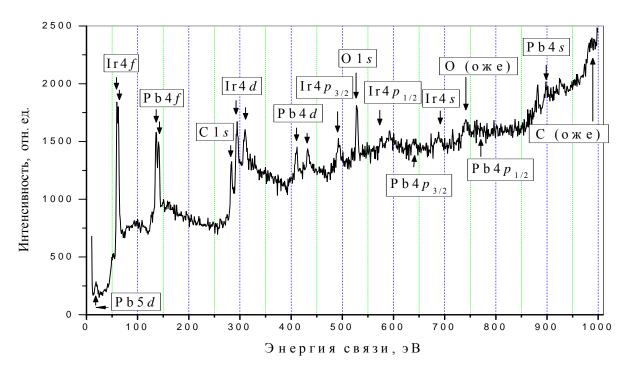



Рис. 16. Спектр фотоэлектронов, возбужденных рентгеновским  $MgK_{\alpha}$ -излучением с поверхности покрытия, сформированного на стеклоуглероде осаждением иридия и свинца

Спектр снят в интервале кинетических энергий фотоэлектронов ~1000 эВ (соответствующие значения энергии связи лежат в интервале от 10 до 1000 эВ), т. е. является обзорным.

Экспериментальные значения энергий связи могут вследствие энергетических сдвигов отличаться от табличных в пределах нескольких электронвольт. Однако, несмотря на это, соответствующие фотоэлектронные линии идентифицируются достаточно надежно. Для идентификации элементов, атомы которых имеют более сложное электронное строение, анализируется несколько энергетических уровней. При этом в спектре берется наиболее интенсивная спектральная линия, входящая, как правило, в спектральный дублет, наличие которого обусловлено расщеплением энергетических уровней атомов на подуровни вследствие спин-орбитального взаимодействия. Измеренное значение энергии связи, соответствующее данной линии, сравнивается с табличными значениями, которые выделены в прил. 8 [1] жирным шрифтом. Результаты обработки спектра, приведенного на рис. 16, представлены в табл. 4.

Таблица 4 Результаты обработки фотоэлектронного спектра

|       | я связи,<br>В | Атом     | Энергетический        | Сечение<br>фото-       | Интенсивность<br>линии, |
|-------|---------------|----------|-----------------------|------------------------|-------------------------|
| эксп. | табл.         | элемента | уровень               | ионизации,<br>отн. ед. | отн. ед.                |
| 19    | 20; 22        | Pb       | 5d <sub>5/2;3/2</sub> | 0,212                  | _                       |
| 59    | 60            | Ir       | $4f_{7/2}$            | 8,03                   | 1350                    |
| 62    | 63            | Ir       | $4f_{5/2}$            | 6,30                   | _                       |
| 136   | 138           | Pb       | $4f_{7/2}$            | 12,80                  | 810                     |
| 141   | 143           | Pb       | $4f_{5/2}$            | 10,0                   | -                       |
| 284   | 284           | С        | 1s <sub>1/2</sub>     | 1,00                   | 470                     |
| 294   | 295           | Ir       | $4d_{5/2}$            | 8,90                   | _                       |
| 310   | 312           | Ir       | $4d_{3/2}$            | 6,05                   | -                       |
| 411   | 413           | Pb       | $4d_{5/2}$            | 10,4                   | _                       |
| 432   | 435           | Pb       | $4d_{3/2}$            | 6,94                   | _                       |

| _   | я связи,<br>В<br>табл. | Атом<br>элемента | Энергетический<br>уровень | Сечение<br>фото-<br>ионизации,<br>отн. ед. | Интенсивность линии, отн. ед. |
|-----|------------------------|------------------|---------------------------|--------------------------------------------|-------------------------------|
| 492 | 495                    | Ir               | $4p_{3/2}$                | 4,34                                       | _                             |
| 528 | 532                    | 0                | 1s <sub>1/2</sub>         | 2,85                                       | 495                           |
| 577 | 577                    | Ir               | $4p_{1/2}$                | 1,55                                       | _                             |
| 639 | 645                    | Pb               | $4p_{3/2}$                | 4,86                                       | _                             |
| 688 | 690                    | Ir               | 4s <sub>1/2</sub>         | 1,43                                       | -                             |
| 741 | 743                    | 0                | Оже-линия                 | _                                          | -                             |
| 770 | 764                    | Pb               | $4p_{1/2}$                | 1,47                                       | -                             |
| 898 | 894                    | Pb               | 4s <sub>1/2</sub>         | 1,46                                       | -                             |
| 988 | 993                    | С                | Оже́-линия                | _                                          | -                             |

В нашем примере в качестве такой линии можно выбрать линию, которой соответствует измеренное значение энергии связи, равное 59 эВ. Подходящей линией является линия с табличным значением энергии связи 60 эВ, обусловленная эмиссией фотоэлектронов с  $4f_{7/2}$ -уровней атомов иридия. Анализируя табличные данные прил. 8 [1], находим спектральные линии, соответствующие эмиссии электронов из других энергетических уровней атомов иридия, и вносим табличные значения энергии связи, а также обозначения энергетических уровней в табл. 4. При этом идентифицируется семь спектральных линий атомов иридия.

После этого часть спектральных линий остается все еще не идентифицированной. Из оставшихся линий выбираем наиболее интенсивную и принадлежащую спектральному дублету. Такой является линия с измеренным значением энергии связи, равным 136 эВ. Этой линии соответствуют эмиссия фотоэлектронов из  $4f_{7/2}$ -уровней атомов свинца. Анализ табличных данных прил. 8 [1] позволяет идентифицировать набор из восьми спектральных линий, обусловленных эмиссией электронов из атомов свинца.

Еще две из оставшихся спектральных линий удается идентифицировать как ожé-линии атомов углерода и кислорода.

Затем из прил. 9 [1] выпишем значения сечений фотоионизации атомов элементов, входящих в состав анализируемого слоя исследуемого образца. Сечение фотоионизации имеет тот же смысл, что и эффективное сечение взаимодействия (см. [1], с. 178), и в данном случае характеризует вероятность процесса эмиссии электрона из определенного энергетического состояния атома под воздействием рентгеновского фотона. Значение сечения фотоионизации зависит от природы атома и конкретного энергетического уровня. Наиболее интенсивным спектральным линиям одного и того же элемента соответствуют большие значения сечений фотоионизации. В прил. 9 [1] значения сечений фотоионизации о энергетических уровней атомов элементов приведены по отношению к сечению фотоионизации 1*s*-уровня атомов углерода (значение о для C1*s*-уровня принято равным единице), и по этой причине они безразмерны, или выражены в относительных единицах.

Определим также интенсивности наиболее характерных спектральных линий каждого из элементов. Интенсивность линии определяется как площадь под спектральным пиком за вычетом фона. Однако определение площади под пиком обзорного фотоэлектронного спектра затруднительно. Поэтому для оценочного расчета относительного содержания атомов можно интенсивность спектральных линий определять как их высоту над уровнем фона. Определенные таким образом значения интенсивности приведены в табл. 4.

По отношению интенсивностей спектральных линий оценим относительное содержание атомов элементов в анализируемом слое. При этом можно применить приближенное соотношение (2.111) [1]. Оценку относительного содержания атомов иридия, свинца и кислорода проведем по отношению к углероду. Тогда относительное содержание каждого из элементов будет равным

$$\frac{n_i}{n_C} \approx \frac{\sigma_C}{\sigma_i} \frac{I_i}{I_C} \,, \tag{64}$$

где  $\sigma$  – значения сечений фотоионизации атомов i-го элемента и углерода из определенных энергетических состояний; I – интенсивности соответствующих спектральных линий.

Результаты вычислений с использованием соответствующих значений интенсивностей и сечений фотоионизации (табл. 4) приведены в табл. 5.

Значительное относительное содержание атомов углерода и кислорода может быть объяснено тем, что толщина анализируемого методом рентгеновской фотоэлектронной спектроскопии слоя составляет всего несколько нанометров, т. е. анализу подвергается тонкий приповерхностный слой вещества, включающий небольшое число

молекулярных слоев. Атомы углерода и кислорода входят в состав адсорбированных на поверхности газов, а также в состав покрытия.

Таблица 5 Результаты оценочных расчетов относительного содержания атомов элементов в анализируемом слое покрытия

| Элемент  | Относительное содержание |
|----------|--------------------------|
| Иридий   | 0,36                     |
| Свинец   | 0,14                     |
| Кислород | 0,37                     |
| Углерод  | 1,00                     |

Пример 16. Анализ особенностей электронной структуры атомов палладия в составе покрытия

При исследовании особенностей электронной структуры атомов элементов методом рентгеновской фотоэлектронной спектроскопии спектр снимается по участкам в пределах 10–20 эВ вблизи наиболее характерных спектральных линий атомов, входящих в состав анализируемого слоя.

На рис. 17 приведены спектры фотоэлектронов, возбужденных с 3d-уровня атомов палладия, входящих в состав покрытия, сформированного на стеклоуглероде (GC) осаждением палладия и вольфрама. Приведены спектры, снятые с самой поверхности покрытия (без травления поверхности) и после непродолжительного (в течение нескольких минут) травления анализируемой поверхности ускоренными ионами  $\mathrm{Ar}^+$  при плотности ионного тока в несколько мкА/см². Спектры сняты на участке в пределах энергий связи  $\sim$ (334–349 эВ) с интервалом значений кинетических энергий фотоэлектронов, составляющим 0,2 эВ. Этому участку соответствует эмиссия электронов с  $3d_{5/2}$ - и  $3d_{3/2}$ -подуровней атомов палладия; табличные значения энергии связи равны соответственно 335 и 340 эВ (см. прил. 8 [1]).

Спектры математически обработаны путем однократного сглаживания по пяти соседним точкам, вычитания фона и последующего разложения на составляющие спектральные пики по модели Гаусса. При разложении спектров обнаруживается, что исследуемый участок спектра представляет собой совокупность двух спектральных дублетов с соответствующими значениями энергий связи: вблизи 336 и 341 эВ; 338 и 343 эВ.

Первый из дублетов можно идентифицировать как обусловленный эмиссией электронов из атомов палладия в металлическом состоянии  $(Pd_{Me})$ ; второй дублет с более высокими значениями энергий связи — эмиссией электронов из атомов, находящихся в определенной степени окисления  $(Pd_{Ox})$ .

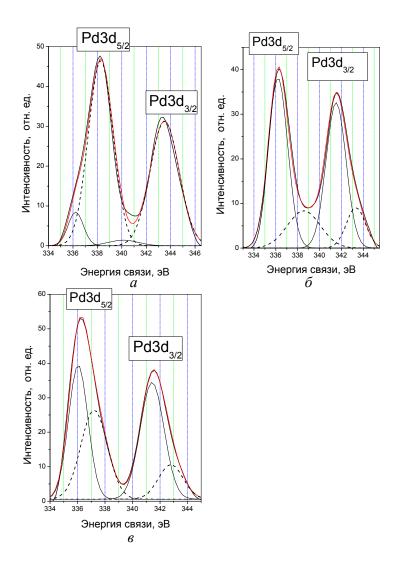



Рис. 17. Спектры фотоэлектронов, возбужденных с 3d-уровня атомов палладия, входящих в состав покрытий, сформированных на стеклоуглероде (GC) осаждением палладия и вольфрама: a – Pd-W/GC;  $\delta$  – Pd-W/GC после травления поверхности пучком ионов  $Ar^{+}$  при плотности ионного тока 10 мкA/см $^{2}$  на протяжении 10 мин.;  $\epsilon$  – Pd-W/GC после травления поверхности пучком ионов  $Ar^{+}$  при плотности ионного тока 10 мкA/см $^{2}$  на протяжении 30 мин.

Электронная структура атомов Pd в составе покрытия изменяется по мере ионного травления поверхности, т. е. с глубиной анализируемого слоя. На самой поверхности (спектр a) преобладает содержание атомов в высокой степени окисления. По мере ионного травления поверхности соотношение между концентрацией атомов Pd в различных степенях окисления изменяется, что свидетельствует о сложности состава исследуемых покрытий. В более глубоком слое (спектр  $\delta$ ) преобладает содержание атомов Pd в металлическом состоянии. При дальнейшем увеличении глубины анализируемого покрытия (спектр  $\epsilon$ ) вновь увеличивается содержание атомов Pd в более высокой степени окисления за счет их взаимодействия с атомами углеродной матрицы.

Оценим относительное содержание атомов палладия в металлическом и окисленном состояниях в зависимости от глубины анализируемого слоя (от времени травления поверхности). Результаты оценочных расчетов, проведенных по наиболее характерным спектральным линиям  $Pd3d_{5/2}$  или  $Pd3d_{3/2}$ , представлены в табл. 6. Интенсивность спектральных линий рассчитывалась при этом как площадь под спектральным пиком (рис. 17).

Таблица 6 Результаты оценочных расчетов относительного содержания атомов палладия в анализируемом покрытии

|        | Pd3 <i>d</i> <sub>5</sub> | <sub>/2</sub> -, Pd3d <sub>3/2</sub> -сп | ектральные           | линии              | Отношение               |
|--------|---------------------------|------------------------------------------|----------------------|--------------------|-------------------------|
| Спектр | Po                        | $l_{Me}$                                 | Po                   | $d_{Ox}$           | интенсивностей<br>линий |
|        | Энергия<br>связи, эВ      | Интен-<br>сивность                       | Энергия<br>связи, эВ | Интен-<br>сивность | $Pd_{Me}/Pd_{Ox}$       |
| 1      | 336,1                     | 13,3                                     | 338,2                | 118,4              | 0,11                    |
| 2      | 341,5                     | 74,6                                     | 343,5                | 19,8               | 3,77                    |
| 3      | 336,0                     | 111,2                                    | 337,2                | 40,5               | 2,75                    |

#### 2.7. Определение состава веществ методом спектроскопии резерфордовского обратного рассеяния

Спектр резерфордовского обратного рассеяния представляет собой распределение по кинетическим энергиям анализирующих ионов (атомных ядер)  $^4$ Не, претерпевших рассеяние на ядрах атомов элементов, входящих в состав исследуемого вещества. В результате рассеяния изменяется направление движения иона  $^4$ Не и часть энергии иона передается ядру, на котором происходит рассеяние; имеют место потери энергии ионов  $^4$ Не при ядерном взаимодействии. Угол рассеяния  $\theta$  зависит от значения прицельного параметра b (см. [1], рис. 2.58).

Регистрируется энергетический спектр ионов <sup>4</sup>He, попадающих в поверхностно-барьерный кремниевый детектор-энергоанализатор, установленный под углом  $\theta$  к направлению первичного ионного пучка. Энергия рассеянных ионов зависит от угла рассеяния  $\theta$ , а также от массы  $M_2$  ядра, с которым произошло взаимодействие. Эта зависимость учитывается кинематическим фактором рассеяния (см. [1], формула (2.118)) и обеспечивает возможность анализа элементного состава исследуемого вещества. Если же рассеяние происходит на ядрах атомов, расположенных на некоторой глубине, то имеют место дополнительные потери энергии ионов <sup>4</sup>Не при их взаимодействии с электронами атомов при движении в глубь образца до взаимодействия с ядром и при движении к поверхности после резерфордовского рассеяния на ядре. Эти потери учитываются фактором тормозного сечения  $\left[\epsilon\right]_{i}^{i}$  (см. [1], формула (2.129)); их наличие обеспечивает возможность анализа распределения атомов каждого из элементов, входящих в состав исследуемого вещества, по глубине образца.

#### Пример 17. Определение элементного состава стекла

Спектр резерфордовского обратного рассеяния ионов <sup>4</sup>Не, снятый для стекла, состав которого нужно определить, приведен в числовой форме в табл. 7. В первом столбце таблицы указаны номера каналов спектрометра (через 10 каналов), а в остальных столбцах — выход обратного рассеяния, соответствующий каждому из каналов, в электрических импульсах, формируемых поверхностно-барьерным кремниевым детектором (см. [1], рис. 2.40). Начальная энергия анализирующих ионов <sup>4</sup>Не составляла 2,0 МэВ; угол рассеяния  $\theta = 170^\circ$ ; углы, отсчитанные от нормали к поверхности исследуемого образца (см. [1], рис. 2.59),  $\theta_1 = 0^\circ$  и  $\theta_2 = 10^\circ$ .

Построим по данным табл. 7 спектр обратного рассеяния, откладывая по оси абсцисс номер канала многоканального анализатора, а по оси ординат – выход рассеяния (рис. 18).

Таблица 7 Распечатка спектра обратного рассеяния

| №<br>ка-<br>нала | Выход рассеяния, имп. |       |       |       |       |       |       |       |       |       |  |  |
|------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| 50.              | 46621                 | 45577 | 45116 | 44946 | 43479 | 43531 | 42895 | 42836 | 41348 | 41234 |  |  |
| 60.              | 40827                 | 40887 | 39906 | 39651 | 39430 | 39157 | 38365 | 38128 | 37717 | 37898 |  |  |
| 70.              | 36827                 | 36799 | 36257 | 36475 | 35791 | 35618 | 34903 | 35301 | 34288 | 34385 |  |  |
| 80.              | 34150                 | 33897 | 33474 | 33294 | 32884 | 32706 | 32229 | 32413 | 32363 | 32040 |  |  |
| 90.              | 31676                 | 31127 | 31325 | 31330 | 30963 | 30538 | 30182 | 30268 | 29884 | 29769 |  |  |
| 100.             | 29578                 | 29352 | 28866 | 29117 | 28821 | 29063 | 28568 | 28370 | 28359 | 28189 |  |  |

| No   |       |       |       | Dri   | m.o.o.   |          |       |       |       |       |  |  |
|------|-------|-------|-------|-------|----------|----------|-------|-------|-------|-------|--|--|
| ка-  |       |       |       | Вы    | ход расс | еяния, и | MII.  |       |       |       |  |  |
| нала |       |       |       |       |          |          |       |       |       |       |  |  |
| 110. | 27845 | 27972 | 27411 | 27480 | 27273    | 27155    | 26921 | 27018 | 26949 | 26982 |  |  |
| 120. | 26978 | 26930 | 26889 | 26940 | 26664    | 26485    | 26297 | 25854 | 25557 | 25601 |  |  |
| 130. | 25288 | 25112 | 25501 | 25035 | 25032    | 24857    | 24669 | 24945 | 24486 | 24573 |  |  |
| 140. | 24547 | 24537 | 23903 | 24275 | 24028    | 24030    | 23738 | 23750 | 23840 | 23611 |  |  |
| 150. | 23421 | 23576 | 23426 | 23542 | 23323    | 23191    | 23103 | 23041 | 22756 | 22845 |  |  |
| 160. | 23097 | 22741 | 22665 | 22622 | 22503    | 22881    | 22359 | 22549 | 22337 | 22190 |  |  |
| 170. | 22258 | 22067 | 22127 | 21661 | 21584    | 20797    | 19581 | 19036 | 18252 | 18060 |  |  |
| 180. | 17791 | 17436 | 17030 | 17338 | 17532    | 17289    | 17169 | 16807 | 17057 | 17117 |  |  |
| 190. | 17115 | 16902 | 17016 | 17189 | 16811    | 16765    | 16924 | 17051 | 16546 | 16865 |  |  |
| 200. | 16492 | 16655 | 16506 | 16616 | 16343    | 16531    | 16476 | 16311 | 16328 | 16391 |  |  |
| 210. | 16036 | 16106 | 16340 | 16463 | 16061    | 16038    | 16071 | 16084 | 15818 | 15950 |  |  |
| 220. | 16071 | 16118 | 16002 | 15911 | 15875    | 15896    | 15876 | 16008 | 15746 | 15454 |  |  |
| 230. | 15666 | 15510 | 15570 | 15553 | 15332    | 15377    | 15435 | 15253 | 15097 | 15100 |  |  |
| 240. | 15472 | 15201 | 15266 | 15195 | 14724    | 14442    | 14195 | 14344 | 14180 | 14000 |  |  |
| 250. | 14152 | 14280 | 14162 | 14142 | 14029    | 14118    | 14319 | 14281 | 14053 | 14072 |  |  |
| 260. | 13967 | 14152 | 13980 | 13906 | 13799    | 13986    | 13735 | 13966 | 13820 | 13953 |  |  |
| 270. | 13715 | 13701 | 13666 | 13131 | 12720    | 12173    | 11131 | 10071 | 9479  | 9118  |  |  |
| 280. | 8898  | 8840  | 8587  | 8626  | 8614     | 8580     | 8331  | 8370  | 8315  | 8343  |  |  |
| 290. | 8334  | 8260  | 8205  | 8400  | 7997     | 8207     | 8308  | 8353  | 8067  | 8357  |  |  |
| 300. | 8136  | 8195  | 8156  | 7999  | 8057     | 8143     | 7987  | 8130  | 8080  | 7876  |  |  |
| 310. | 8124  | 8006  | 8083  | 8070  | 8074     | 7965     | 8044  | 8019  | 7911  | 7761  |  |  |
| 320. | 7824  | 7868  | 7864  | 7784  | 7693     | 7618     | 7161  | 6878  | 6627  | 6191  |  |  |
| 330. | 6117  | 6080  | 5980  | 5909  | 5835     | 5890     | 5984  | 5832  | 5812  | 5813  |  |  |
| 340. | 5835  | 5809  | 5916  | 5679  | 5920     | 5755     | 5791  | 5690  | 6013  | 5659  |  |  |
| 350. | 5853  | 5717  | 5876  | 5597  | 5758     | 5820     | 5713  | 5684  | 5652  | 5635  |  |  |
| 360. | 5651  | 5694  | 5484  | 5724  | 5390     | 5726     | 5587  | 5538  | 5614  | 5533  |  |  |
| 370. | 5644  | 5612  | 5484  | 5545  | 5439     | 5416     | 5447  | 5451  | 5387  | 5457  |  |  |
| 380. | 5432  | 5429  | 5236  | 5579  | 5474     | 5446     | 5359  | 5411  | 5405  | 5365  |  |  |
| 390. | 5483  | 5364  | 5462  | 5422  | 5338     | 5306     | 5369  | 5253  | 5347  | 5152  |  |  |
| 400. | 5426  | 5357  | 5307  | 5388  | 5302     | 5319     | 5286  | 5352  | 5239  | 5410  |  |  |
| 410. | 5416  | 5295  | 5157  | 5117  | 5246     | 5223     | 5021  | 5063  | 5124  | 5260  |  |  |
| 420. | 5226  | 5240  | 5138  | 5221  | 5132     | 5175     | 5124  | 5067  | 5163  | 4919  |  |  |
| 430. | 4985  | 4918  | 5031  | 4837  | 4526     | 4256     | 3572  | 2681  | 1563  | 759   |  |  |
| 440. | 364   | 145   | 68    | 61    | 35       | 40       | 34    | 44    | 42    | 41    |  |  |
| 450. | 34    | 42    | 44    | 51    | 48       | 41       | 27    | 30    | 20    | 17    |  |  |
| 460. | 15    | 16    | 14    | 21    | 15       | 17       | 11    | 9     | 12    | 17    |  |  |

Каждому из каналов анализатора-спектрометра соответствует определенный интервал значений кинетической энергии регистрируемых ионов  $^4$ Не (энергетическая ширина канала). Для определения энергетической ширины канала и последующей калибровки шкалы спектрометра при снятии спектра определяются данные для калибровки (табл. 8). В табл. 8 приведены номера каналов анализатора, соответствующие энергиям ионов  $^4$ Не, претерпевших резерфордовское рассеяние под углом  $\theta$  на ядрах атомов указанных элементов, расположенных на поверхности исследуемого образца.

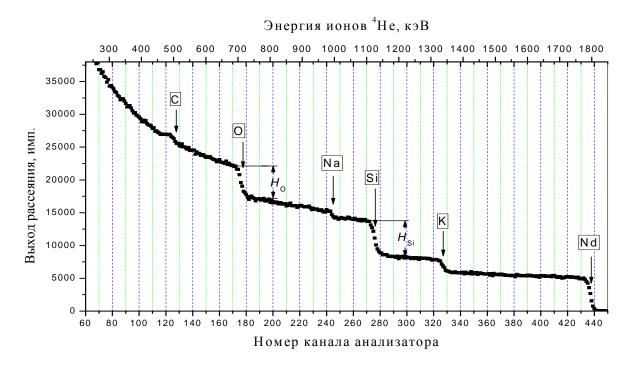



Рис. 18. Спектр резерфордовского обратного рассеяния ионов <sup>4</sup>Не от поверхности исследуемого стекла

Используя попарно данные табл. 8, рассчитаем по формуле (2.133) [1] четыре значения энергетической ширины канала  $\delta E$ . Вначале определим значения энергий ионов <sup>4</sup>He, имеющих начальную энергию  $E_0 = 2,0$  МэВ = 2 000 кэВ, после их рассеяния на ядрах атомов элементов, приведенных в табл. 8 (см. [1], формула (2.132)). Значения кинематического фактора рассеяния K возьмем из прил. 10 [1].

Таблица 8 Данные для калибровки шкалы спектрометра

| Элемент           | С   | О   | Si  | Pb  |
|-------------------|-----|-----|-----|-----|
| Канал анализатора | 127 | 177 | 276 | 450 |

Значения K и результаты вычислений внесем в табл. 9. При дальнейшей обработке спектра будем использовать полученное среднее значение  $\delta E = 4{,}162$  кэВ/канал.

Таблица 9 Результаты расчета энергетической ширины канала спектрометра

| Drawarr | К      | E voD  | $\delta E$ , кэ $B$ /канал |          |         |  |  |
|---------|--------|--------|----------------------------|----------|---------|--|--|
| Элемент | Λ      | Е, кэВ | Пара                       | Значение | Среднее |  |  |
| С       | 0,2526 | 505,2  | Pb–C                       | 4,171    |         |  |  |
| О       | 0,3625 | 725,0  | Pb–O                       | 4,130    | 4.162   |  |  |
| Si      | 0,5657 | 1131,4 | Pb–Si                      | 4,144    | 4,162   |  |  |
| Pb      | 0,9262 | 1852,4 | Si–C                       | 4,203    |         |  |  |

На спектре (рис. 18) определим номера каналов, соответствующих средней части каждой из «ступенек», и отметим их вертикальными стрелками. Вертикальные участки «ступенек» размыты вследствие ограничений по разрешающей способности спектрометра, а отмеченные каналы соответствуют энергии ионов <sup>4</sup>He, претерпевших рассеяние на ядрах атомов элементов, расположенных на поверхности образца.

При определении элементного состава исследуемого вещества необходимо идентифицировать каждый из таких сигналов. Как следует из данных табл. 8, отмеченные каналы с номерами 127, 177 и 276 соответствуют рассеянию анализирующих ионов на ядрах углерода, кислорода и кремния соответственно. Обозначим эти элементы на спектре. Остается идентифицировать сигналы, соответствующие другим, неизвестным элементам.

Для этого произведем калибровку энергетической шкалы спектрометра и переход к шкале энергий. В качестве привязки возьмем сигнал, соответствующий рассеянию на ядрах атомов углерода. Ближайшее к  $E_{\rm C}=505,2$  кэВ округленное значение энергии ионов <sup>4</sup>Не равно 500 кэВ. Разность этих значений составляет 5,2 кэВ, что соответствует  $\Delta n=5,2/4,162\approx1,25$  канала. Следовательно, значению энергии ионов E=500 кэВ соответствует примерно 126-й канал. Интервалу энергий в 100 кэВ соответствует количество каналов, равное  $100/4,162\approx24$ . Используя это значение и привязку к сигналу углерода, построим шкалу энергий (верхняя шкала на рис. 18).

Неизвестным элементам соответствуют сигналы, приходящиеся на каналы номер 244, 326 и 436. Рассчитаем энергии, соответствующие этим каналам, а также значения кинематического фактора рассеяния. Расчетные значения *К*-фактора сравним с табличными (прил. 10 [1]) и определим элементы, входящие в состав исследуемого стекла. Результаты анализа представлены в табл. 10, куда внесены и данные, содержащиеся в табл. 8 и 9.

Таблица 10 Результаты определения элементного состава исследуемого вещества

| Номер  | Энергия | Значения | К-фактора |                  | Высота |
|--------|---------|----------|-----------|------------------|--------|
| канала | `       |          | Элемент   | сигнала,<br>имп. |        |
| 127    | 505,2   | _        | 0,2526    | С                | _      |
| 177    | 725,0   | _        | 0,3625    | О                | 4790   |
| 244    | 992,2   | 0,4961   | 0,4974    | Na               | 1280   |
| 276    | 1131,4  | _        | 0,5657    | Si               | 5335   |
| 326    | 1333,4  | 0,6667   | 0,6651    | K                | 1950   |
| 436    | 1791,3  | 0,8956   | 0,8957    | Nd               | 5160   |

Итак, в состав исследуемого стекла входят кремний, натрий, калий, кислород, неодим, а также углерод. Форма пика углерода на спектре (рис. 18) свидетельствует о том, что атомы этого элемента содержатся только в тонком приповерхностном слое стекла.

Оценим относительное содержание атомов элементов, входящих в состав стекла, по отношению к кремнию. Для этого воспользуемся соотношением (2.139) из пособия [1]. Отношение концентрации атомов *j*-го элемента к концентрации атомов кремния

$$\frac{N_{j}}{N_{\text{Si}}} = \left[ \frac{\sigma_{\text{Si}} \left[ \varepsilon \right]_{j}^{\text{Si}}}{\sigma_{j} \left[ \varepsilon \right]_{\text{Si}}^{\text{Si}}} \right] \cdot \frac{H_{j}}{H_{\text{Si}}}, \tag{65}$$

где  $\sigma$  – дифференциальные сечения рассеяния ионов <sup>4</sup>He на ядрах соответствующих элементов (сечения взаимодействия (см. [1], с. 178));  $\left[\varepsilon\right]_{j}^{i}$  – факторы тормозного сечения ионов <sup>4</sup>He в основном материале, в качестве которого условно примем кремний; H – значения высоты сигнала от соответствующего элемента.

Значения высот  $H_j$ , определенные по спектру (рис. 18), также внесены в табл. 10; значения сечений рассеяния содержатся в прил. 12 [1].

Рассчитаем величину, учитывающую потери энергии ионов <sup>4</sup>Не при их взаимодействии с электронами атомов при движении в глубь образца до взаимодействия с ядром и при движении к поверхности после резерфордовского рассеяния на ядре, называемую фактором тормозного сечения. Выражение для определения фактора тормозного сечения (см. [1], формула (2.129)) имеет вид

$$\left[\varepsilon\right]_{j}^{i} = \left[\frac{K_{j}}{\cos\theta_{1}} \cdot \varepsilon_{i}\left(E_{0}\right) + \frac{1}{\cos\theta_{2}} \cdot \varepsilon_{i}\left(K_{j} \cdot E_{0}\right)\right],\tag{66}$$

где индекс i относится к тормозящей среде — основному материалу, а индекс j — к рассеивающему центру — ядру атома примеси;  $\varepsilon_i$  — сечение торможения ионов  $^4$ He на атомах основного материала.

Рассчитаем значения фактора тормозного сечения для всех элементов, входящих в состав стекла, полагая основным элементом кремний. Значения сечений торможений в кремнии будем брать из прил. 11 [1]. Для кремния

$$\left[\varepsilon\right]_{\text{Si}}^{\text{Si}} = \left[\frac{0,5657}{\cos 0^{\circ}} \cdot 49,26 + \frac{1}{\cos 10^{\circ}} \cdot 63,80\right] \cdot 10^{-15} =$$
$$= 92,65 \cdot 10^{-15} \text{ 3B/(atom/cm}^2).$$

Значение сечения торможения  $\epsilon_{Si} = 63,80 \cdot 10^{-15} \ \mathrm{эB/(aтом/cm^2)}$  при энергии ионов <sup>4</sup>He, равной 1131,4 кэВ и соответствующей рассеянию на ядрах Si, найдено путем интерполяции табличных данных прил. 11 [1].

Проведем аналогичные расчеты значений  $[\varepsilon]_{i}^{i}$  для других элементов:

$$\left[\epsilon\right]_{0}^{si} = \left[\frac{0,3625}{\cos\,0^{\circ}} \cdot 49,26 + \frac{1}{\cos\,10^{\circ}} \cdot 70,64\right] \cdot 10^{-15} \, = \,$$

$$= 89,59 \cdot 10^{-15} \text{ } 9B/(\text{atom/cm}^2);$$

$$\left[\epsilon\right]_{Na}^{Si} = \left[\frac{0,4974}{\cos 0^{\circ}} \cdot 49,26 + \frac{1}{\cos 10^{\circ}} \cdot 66,38\right] \cdot 10^{-15} =$$

$$= 91,91 \cdot 10^{-15} \text{ } 9B/(\text{atom/cm}^2);$$

$$\left[\epsilon\right]_{K}^{Si} = \left[\frac{0,6651}{\cos 0^{\circ}} \cdot 49,26 + \frac{1}{\cos 10^{\circ}} \cdot 59,97\right] \cdot 10^{-15} =$$

$$= 93,66 \cdot 10^{-15} \text{ } 9B/(\text{atom/cm}^2);$$

$$\left[\epsilon\right]_{Nd}^{Si} = \left[\frac{0,8957}{\cos 0^{\circ}} \cdot 49,26 + \frac{1}{\cos 10^{\circ}} \cdot 52,05\right] \cdot 10^{-15} =$$

$$= 96,98 \cdot 10^{-15} \text{ } 9B/(\text{atom/cm}^2).$$

По формуле (65) рассчитаем относительное содержание атомов элементов в составе исследуемого стекла. Значения величин, входящих в выражение (65), и результаты вычислений представим в табл. 11.

Таблица 11 Результаты расчета относительного содержания атомов элементов в составе исследуемого стекла

| Элемент | $\left[\varepsilon\right]_{j}^{i}, 10^{-15}$ эВ/(атом/см <sup>2</sup> ) | Сечение рассеяния $\sigma_j$ , $10^{-24} \text{ cm}^2/\text{cp}$ | Высота сигнала $H_j$ , имп. | $N_j/N_{ m Si}$ |
|---------|-------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|-----------------|
| О       | 89,59                                                                   | 0,297                                                            | 4790                        | 2,90            |
| Na      | 91,91                                                                   | 0,599                                                            | 1280                        | 0,40            |
| Si      | 92,65                                                                   | 0,991                                                            | 5335                        | 1,00            |
| K       | 93,66                                                                   | 1,861                                                            | 1950                        | 0,19            |
| Nd      | 96,98                                                                   | 18,92                                                            | 5160                        | 0,05            |

На основе проведенных измерений и литературных данных можно заключить, что в состав исследуемого стекла входит  $SiO_2$ , который является основным стеклообразующим компонентом, а также  $Na_2O$  и  $K_2O$  в качестве модификаторов. Кроме того, содержится добавка оксида неодима  $Nd_2O_3$ . Силикатное стекло, содержащее неодим, используется в качестве активной среды твердотельных лазеров. Ионы  $Nd^{3+}$  являются ионами-активаторами, обеспечивающими инверсию населенностей и лазерные переходы.

### Пример 18. Анализ слоя силицида молибдена, сформированного на поверхности кремния

Спектр резерфордовского обратного рассеяния ионов <sup>4</sup>He, снятый для исследуемого образца, приведен в табл. 12. Так же как и в примере 16, в первом столбце таблицы указаны номера каналов спектрометра (через 10 каналов), а в остальных столбцах – выход обратного рассеяния, соответствующий каждому из каналов, в импульсах, генерируемых поверхностно-барьерным кремниевым детектором. Начальная энергия анализирующих ионов <sup>4</sup>He составляла 1,5 МэВ; угол рассеяния  $\theta = 170^\circ$ ; углы, отсчитанные от нормали к поверхности исследуемого образца (см. [1], рис. 2.59),  $\theta_1 = 0^\circ$  и  $\theta_2 = 10^\circ$ . В табл. 13 приведены данные для калибровки шкалы спектрометра.

Таблица 12 Распечатка спектра обратного рассеяния

| <b>№</b><br>ка-<br>нала | Выход рассеяния, имп. |       |       |       |       |       |       |       |       |       |
|-------------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 40.                     | 15310                 | 14910 | 14022 | 14069 | 13986 | 13745 | 13195 | 13075 | 13057 | 12682 |
| 50.                     | 12555                 | 12182 | 11933 | 11629 | 11392 | 11468 | 11307 | 11102 | 10837 | 10962 |
| 60.                     | 10607                 | 10641 | 10371 | 10378 | 10166 | 10192 | 9916  | 9886  | 9748  | 9974  |
| 70.                     | 9500                  | 9485  | 9491  | 9255  | 9386  | 9384  | 9146  | 8916  | 8976  | 8921  |
| 80.                     | 8913                  | 8802  | 8548  | 8680  | 8724  | 8726  | 8466  | 8402  | 8403  | 8484  |
| 90.                     | 8262                  | 8227  | 8289  | 8250  | 8070  | 8025  | 8009  | 7928  | 7960  | 7821  |
| 100.                    | 7841                  | 7895  | 7615  | 7898  | 7567  | 7708  | 7486  | 7475  | 7596  | 7565  |
| 110.                    | 7523                  | 7252  | 7345  | 7542  | 7205  | 7325  | 7465  | 7385  | 7423  | 6965  |
| 120.                    | 7588                  | 7458  | 7458  | 7622  | 7395  | 7306  | 7112  | 6961  | 7006  | 6891  |
| 130.                    | 6864                  | 6842  | 6904  | 6940  | 6798  | 6730  | 6770  | 6750  | 6801  | 6773  |
| 140.                    | 6652                  | 6682  | 6516  | 6641  | 6539  | 6587  | 6539  | 6467  | 6413  | 6429  |
| 150.                    | 6296                  | 6254  | 6363  | 6317  | 6346  | 6356  | 6497  | 6159  | 6160  | 6082  |
| 160.                    | 5425                  | 5034  | 4255  | 3525  | 2952  | 2512  | 2289  | 2054  | 2007  | 1922  |
| 170.                    | 1888                  | 1801  | 1749  | 1749  | 1761  | 1720  | 1789  | 1750  | 1662  | 1773  |
| 180.                    | 1737                  | 1814  | 1713  | 1703  | 1707  | 1709  | 1672  | 1706  | 1745  | 1643  |
| 190.                    | 1652                  | 1581  | 1465  | 1415  | 1072  | 781   | 471   | 310   | 240   | 206   |
| 200.                    | 145                   | 149   | 133   | 108   | 82    | 98    | 95    | 91    | 87    | 97    |
| 210.                    | 93                    | 77    | 84    | 78    | 110   | 82    | 81    | 102   | 87    | 97    |
| 220.                    | 80                    | 97    | 96    | 86    | 87    | 74    | 80    | 87    | 97    | 101   |
| 230.                    | 99                    | 96    | 106   | 119   | 104   | 125   | 120   | 110   | 125   | 102   |
| 240.                    | 132                   | 127   | 119   | 160   | 202   | 206   | 230   | 271   | 281   | 357   |
| 250.                    | 466                   | 674   | 1043  | 1690  | 2676  | 4358  | 6418  | 9135  | 11787 | 14466 |
| 260.                    | 16885                 | 18578 | 19285 | 19556 | 20413 | 20298 | 20072 | 20420 | 20314 | 20279 |
| 270.                    | 20279                 | 20076 | 20097 | 20051 | 20022 | 19941 | 19988 | 19947 | 19880 | 19495 |
| 280.                    | 19641                 | 19787 | 19703 | 19640 | 19586 | 19487 | 19430 | 18959 | 19200 | 18627 |
| 290.                    | 18039                 | 16899 | 15436 | 13450 | 11164 | 8596  | 6483  | 4215  | 2515  | 1369  |
| 300.                    | 665                   | 396   | 279   | 196   | 167   | 168   | 160   | 153   | 151   | 142   |
| 310.                    | 143                   | 135   | 164   | 157   | 145   | 148   | 134   | 123   | 104   | 103   |
| 320.                    | 79                    | 89    |       |       |       |       |       |       |       |       |

Таблица 13 **Данные для калибровки шкалы спектрометра** 

| Элемент           | С  | О   | Si  | In  |  |
|-------------------|----|-----|-----|-----|--|
| Канал анализатора | 89 | 126 | 198 | 308 |  |

По данным табл. 12 построим спектр обратного рассеяния, откладывая по оси абсцисс номер канала многоканального анализатора, а по оси ординат – выход рассеяния (рис. 19).

С применением формулы (2.133) [1] и значений кинематического фактора рассеяния K из прил. 10 [1] так же, как и в предыдущем примере, определим значение энергетической ширины канала спектрометра  $\delta E$ . Значения K и результаты вычислений внесем в табл. 14. При дальнейшей обработке спектра будем использовать полученное среднее значение  $\delta E = 4.222$  кэВ/канал.

Таблица 14 **Результаты расчета энергетической ширины канала спектрометра** 

| Элемент | K      | Е, кэВ  | $\delta E$ , кэ $B$ /канал |          |         |  |  |
|---------|--------|---------|----------------------------|----------|---------|--|--|
| Элемент | K      | E, KJD  | Пара                       | Значение | Среднее |  |  |
| С       | 0,2526 | 378,90  | In–C                       | 4,234    |         |  |  |
| О       | 0,3625 | 543,75  | In–O                       | 4,188    |         |  |  |
| Si      | 0,5657 | 848,55  | In–Si                      | 4,159    | 4,222   |  |  |
| In      | 0,8707 | 1306,05 | Si–C                       | 4,309    |         |  |  |
| Mo      | 0,8473 | 1270,95 | _                          | _        | -       |  |  |

В исследуемом образце содержатся кремний и молибден. Поэтому нужно дополнительно рассчитать значение энергии ионов <sup>4</sup>Не после их рассеяния на ядрах атомов молибдена. Это значение также внесено в табл. 14.

Отметим на спектре (рис. 19) заданные в табл. 13 каналы с номерами 89, 126 и 198, которые соответствуют значениям энергии ионов <sup>4</sup>Не, претерпевших рассеяние на ядрах атомов соответственно углерода, кислорода и кремния, расположенных на поверхности образца. На спектре имеется сигнал, соответствующий кислороду, а канал, соответствующий углероду, можно использовать для привязки при переходе к шкале энергий.

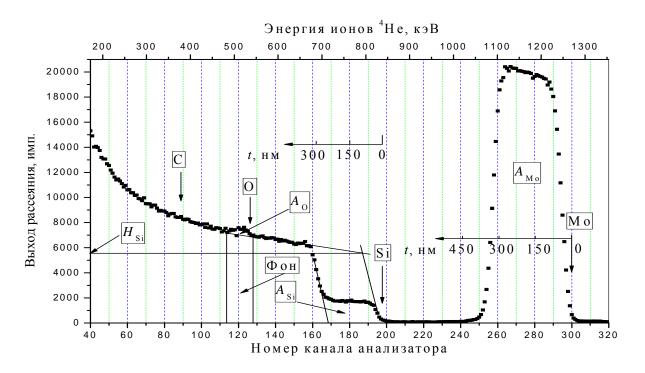



Рис. 19. Спектр резерфордовского обратного рассеяния ионов <sup>4</sup>Не от слоя силицида молибдена на кремниевой подложке

Ближайшее к  $E_{\rm C}$  = 378,9 кэВ значение энергии равно 400 кэВ. Разность этих значений равна 21,1 кэВ, и ей соответствует 5 каналов. Следовательно, значению энергии E = 400 кэВ соответствует 94-й канал. Интервалу энергий в 100 кэВ соответствует 100/4,222 = 23,7 канала. С использованием этих данных осуществим переход от шкалы «Номер канала» к шкале «Энергия ионов» (верхняя шкала на рис. 19).

Определим также номер канала, соответствующий энергии ионов  $^4$ Не после их рассеяния на ядрах атомов молибдена, расположенных на поверхности,  $E_{\rm Mo}$  = 1270,95 кэВ. Этой энергии соответствует примерно 300-й канал.

Построим шкалу глубин для кремния и молибдена, т. е. определим толщину слоя  $\delta t$ , соответствующую одному каналу анализатора. Вычисление значений  $\delta t$  осуществляется по формуле (2.135) [1]. Атомная плотность кремния  $N=5,00\cdot10^{22}$  атом/см<sup>3</sup> (см. [1], прил. 10). Вначале рассчитаем по формуле (66) значения фактора тормозного сечения ионов <sup>4</sup>Не в среде при рассеянии на ядрах кремния и молибдена, а затем вычислим значения  $\delta t$  для каждого из этих элементов.

Соответствующие вычисления:

$$\begin{split} \left[\varepsilon\right]_{\mathrm{Si}}^{\mathrm{Si}} &= \left[\frac{0,5657}{\cos 0^{\circ}} \cdot 56,82 + \frac{1}{\cos 10^{\circ}} \cdot 68,68\right] \cdot 10^{-15} = \\ &= 101,88 \cdot 10^{-15} \; \mathrm{9B/(atom/cm^2)}; \\ \left[\varepsilon\right]_{\mathrm{Mo}}^{\mathrm{Si}} &= \left[\frac{0,8473}{\cos 0^{\circ}} \cdot 56,82 + \frac{1}{\cos 10^{\circ}} \cdot 61,12\right] \cdot 10^{-15} = \\ &= 110,21 \cdot 10^{-15} \; \mathrm{9B/(atom/cm^2)}; \\ \delta t_{\mathrm{Si}} &= \frac{4222}{5 \cdot 10^{22} \cdot 101,88 \cdot 10^{-15}} = 8,29 \cdot 10^{-7} \; \mathrm{cm/канал} = 8,29 \; \mathrm{нm/канал}; \\ \delta t_{\mathrm{Mo}} &= \frac{4222}{5 \cdot 10^{22} \cdot 110,22 \cdot 10^{-15}} = 7,66 \cdot 10^{-7} \; \mathrm{cm/канал} = 7,66 \; \mathrm{нm/канал}. \end{split}$$

Значения  $\delta t$  для кремния и молибдена несколько различаются. Нанесем полученную для каждого из элементов шкалу глубин на спектр (рис. 19).

По этим шкалам определим толщину слоя силицида. Рассеянию ионов <sup>4</sup>Не на ядрах атомов молибдена отвечает спектральный пик в интервале энергий, которому соответствуют каналы с 240-го по 310-й. Энергии ионов, претерпевших рассеяние на ядрах атомов Мо, расположенных на поверхности образца, соответствует 300-й канал. Оба

края (правый и левый) спектрального пика размываются вследствие ограничений по разрешающей способности спектрометра. Толщине слоя, содержащего атомы молибдена, соответствует интервал с 300-го по 257-й канал. Следовательно, толщина слоя силицида молибдена  $t_{\text{Мо}} = (300-257)$  7, 66 = 329 нм. Кремнию, входящему в состав силицида молибдена, соответствует сигнал, расположенный в интервале с 163-го по 198-й канал. Толщина слоя силицида, определенная по сигналу кремния,  $t_{\text{Si}} = (198-163)$  8, 29 = 290 нм. Среднее значение толщины исследуемого слоя равно примерно 310 нм. На остальном участке спектра, которому соответствуют номера каналов <163, наблюдается сигнал от кремниевой подложки. На фоне сигнала от подложки имеется спектральный пик кислорода, атомы которого находятся на самой поверхности и вероятнее всего входят в состав поверхностных оксилов.

Рассчитаем слоевые содержания атомов молибдена и кремния в слое силицида, а также кислорода на его поверхности. Слоевое содержание вычисляется по формуле (2.141) [1]:

$$(Nt)_{j} = \frac{A_{j} \cdot \sigma_{i} \cdot \delta E}{H_{i} \cdot \sigma_{j} \cdot \left\lceil \varepsilon \right\rceil_{i}^{j}},$$
 (67)

где  $A_j$  – площадь под спектральным пиком соответствующего элемента с учетом вычета фона;  $H_i$  – высота сигнала от основного материала (матрицы).

Высота сигнала от кремниевой матрицы определяется по ординате точки пересечения касательных к участкам спектра, соответствующим рассеянию ионов  $^4$ Не на ядрах атомов кремния, расположенных на поверхности матрицы (см. рис. 19). Полученное значение  $H_i = H_{\rm Si} = 5587$  имп. Спектральный пик молибдена фона не имеет, поэтому площадь под пиком можно определить по распечатке спектра (табл. 12) как сумму значений выхода в интервале с 240-го по 310-й канал. Результат суммирования  $A_{\rm Mo} = 745~720$  имп. канал. Слоевое содержание атомов молибдена в исследуемом слое

$$(Nt)_{Mo} = \frac{745720 \cdot 0,991 \cdot 4222}{5587 \cdot 9.253 \cdot 101.88 \cdot 10^{-15}} = 5,92 \cdot 10^{17} \text{ atom/cm}^2.$$

Площадь под спектральным пиком кремния в составе силицида определим как сумму выходов в интервале со 163-го по 203-й канал (табл. 17) за вычетом фона. Результат вычислений  $A_{\rm Si}$  = 52 970 имп. канал. Слоевое содержание атомов кремния в исследуемом слое

$$(Nt)_{Si} = \frac{52.970 \cdot 0,991 \cdot 4222}{5587 \cdot 0,991 \cdot 101,88 \cdot 10^{-15}} = 3,93 \cdot 10^{17} \text{ atom/cm}^2.$$

По полученным данным можно оценить стехиометрический состав силицида. Отношение слоевых содержаний

$$\frac{\left(Nt\right)_{\text{Mo}}}{\left(Nt\right)_{\text{Si}}} \approx 1,5 = \frac{3}{2}.$$

Следовательно, стехиометрический состав слоя можно представить формулой  $Mo_3Si_2$  .

Рассчитаем также слоевое содержание кислорода на поверхности исследуемого слоя. Спектральный пик кислорода на фоне сигнала кремниевой подложки расположен в интервале со 113-го по 128-й канал. Площадь под пиком кислорода за вычетом фонового сигнала  $A_{\rm O} = 8105$  имп. канал. Слоевое содержание кислорода

$$(Nt)_{\rm O} = \frac{8105 \cdot 0,991 \cdot 4222}{5587 \cdot 0,297 \cdot 101,88 \cdot 10^{-15}} = 2,00 \cdot 10^{17} \, \text{atom/cm}^2.$$

Пример 19. Анализ поверхности монокристаллического кремния, легированного мышьяком и индием методом ионной имплантации

Спектроскопия резерфордовского обратного рассеяния позволяет исследовать состав тонкого (примерно до 1 мкм) приповерхностного слоя вещества без его разрушения. Поэтому метод нашел широкое применение для анализа структур, формируемых методами поверхностного легирования, в т. ч. получаемых имплантацией ускоренных в вакууме ионов. Ионная имплантация применяется для введения электрически активных примесей (донорных или акцепторных) в полупроводниковую матрицу, что является одной из технологических операций в микроэлектронной промышленности.

Рассмотрим два спектра резерфордовского обратного рассеяния ионов  $^4$ He, снятых для одного и того же образца монокристаллического кремния, легированного ускоренными ионами мышьяка и индия. Первый из спектров снят от неориентированного монокристалла, второй — от ориентированного по отношению к пучку анализирующих ионов таким образом, что ионы входят в кристалл в направлении межплоскостного канала (режим каналирования). Предварительно в монокристаллическую кремниевую пластину-подложку имплантированы ионы  $As^+$  с энергией 60 кэB и  $In^+$  с энергией 40 кэB.

Распечатка спектра, снятого от неориентированного монокристалла, приведена в табл. 15. Спектр снят в тех же условиях, что и в примере 17. Начальная энергия анализирующих ионов <sup>4</sup>Не составляла 1,5 МэВ; угол рассеяния  $\theta = 170^\circ$ ; углы, отсчитанные от нормали к поверхности исследуемого образца (см. [1], рис. 2.59),  $\theta_1 = 0^\circ$  и  $\theta_2 = 10^\circ$ . Данные для калибровки шкалы спектрометра не изменены по сравнению с предыдущим спектром и приведены в табл. 13.

Таблица 15 Распечатка спектра обратного рассеяния снятого от неориентированного монокристалла кремния

| № ка-<br>нала         Выход рассеяния, имп.           80.         8433         8531         8371         8346         8340         8042         8124         7965         8031         8220           90.         7739         7836         7895         7561         7574         7681         7519         7438         7278         7362           100.         7289         7201         7268         7269         7064         7115         7030         6960         7034         6866           110.         6880         6871         6962         6768         6762         6902         6717         6791         6677         6701           120.         6667         6617         6595         6492         6587         6693         6782         6648         6635         6495           130.         6481         6376         6561         6334         6374         6329         6407         6176         6187         6240           140.         6157         6211         6060         6244         6311         6143         6190         6186         6094         6146           150.         5976         6084         5968         5994         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                     |                       |      |      |          |         |      |      |                                         |      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------|-----------------------|------|------|----------|---------|------|------|-----------------------------------------|------|--|--|
| Name   Name |      |                                                                     |                       |      | Dri  | WOT BOOK | ogung u | NOT  |      |                                         |      |  |  |
| 80.         8433         8531         8371         8346         8340         8042         8124         7965         8031         8220           90.         7739         7836         7895         7561         7574         7681         7519         7438         7278         7362           100.         7289         7201         7268         7269         7064         7115         7030         6960         7034         6866           110.         6880         6871         6962         6768         6762         6902         6717         6791         6677         6701           120.         6667         6617         6595         6492         6587         6693         6782         6648         6635         6495           130.         6481         6376         6561         6334         6374         6329         6407         6176         6187         6240           140.         6157         6211         6060         6244         6311         6143         6190         6186         6094         6146           150.         5976         6084         5968         5994         6019         6020         6048         5968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                     | выход расселния, имп. |      |      |          |         |      |      |                                         |      |  |  |
| 90.         7739         7836         7895         7561         7574         7681         7519         7438         7278         7362           100.         7289         7201         7268         7269         7064         7115         7030         6960         7034         6866           110.         6880         6871         6962         6768         6762         6902         6717         6791         6677         6701           120.         6667         6617         6595         6492         6587         6693         6782         6648         6635         6495           130.         6481         6376         6561         6334         6374         6329         6407         6176         6187         6240           140.         6157         6211         6060         6244         6311         6143         6190         6186         6094         6146           150.         5976         6084         5968         5994         6019         6020         6048         5968         5906         5787           160.         5973         5984         5819         5834         5849         5743         5767         5876 <td< td=""><td></td><td colspan="12">0422   0521   0271   0246   0240   0042   0124   7065   0021   0220</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 0422   0521   0271   0246   0240   0042   0124   7065   0021   0220 |                       |      |      |          |         |      |      |                                         |      |  |  |
| 100.         7289         7201         7268         7269         7064         7115         7030         6960         7034         6866           110.         6880         6871         6962         6768         6762         6902         6717         6791         6677         6701           120.         6667         6617         6595         6492         6587         6693         6782         6648         6635         6495           130.         6481         6376         6561         6334         6374         6329         6407         6176         6187         6240           140.         6157         6211         6060         6244         6311         6143         6190         6186         6094         6146           150.         5976         6084         5968         5994         6019         6020         6048         5968         5906         5787           160.         5973         5984         5819         5834         5849         5743         5767         5876         5607         5654           170.         5641         5774         5793         5757         5582         5531         5693         5726 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>***************************************</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                     |                       |      |      |          |         |      |      | *************************************** |      |  |  |
| 110.         6880         6871         6962         6768         6762         6902         6717         6791         6677         6701           120.         6667         6617         6595         6492         6587         6693         6782         6648         6635         6495           130.         6481         6376         6561         6334         6374         6329         6407         6176         6187         6240           140.         6157         6211         6060         6244         6311         6143         6190         6186         6094         6146           150.         5976         6084         5968         5994         6019         6020         6048         5968         5906         5787           160.         5973         5984         5819         5834         5849         5743         5767         5876         5607         5654           170.         5641         5774         5793         5757         5582         5531         5693         5726         5466         5589           180.         5383         5428         5421         5441         5304         5493         5315         5265 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                     |                       |      |      |          |         |      |      |                                         |      |  |  |
| 120.         6667         6617         6595         6492         6587         6693         6782         6648         6635         6495           130.         6481         6376         6561         6334         6374         6329         6407         6176         6187         6240           140.         6157         6211         6060         6244         6311         6143         6190         6186         6094         6146           150.         5976         6084         5968         5994         6019         6020         6048         5968         5906         5787           160.         5973         5984         5819         5834         5849         5743         5767         5876         5607         5654           170.         5641         5774         5793         5757         5582         5531         5693         5726         5466         5589           180.         5383         5428         5421         5441         5304         5493         5315         5265         5166         5163           190.         5152         4934         4957         4980         4954         4809         4344         3712 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                     |                       |      |      |          |         |      |      |                                         |      |  |  |
| 130.         6481         6376         6561         6334         6374         6329         6407         6176         6187         6240           140.         6157         6211         6060         6244         6311         6143         6190         6186         6094         6146           150.         5976         6084         5968         5994         6019         6020         6048         5968         5906         5787           160.         5973         5984         5819         5834         5849         5743         5767         5876         5607         5654           170.         5641         5774         5793         5757         5582         5531         5693         5726         5466         5589           180.         5383         5428         5421         5441         5304         5493         5315         5265         5166         5163           190.         5152         4934         4957         4980         4954         4809         4344         3712         2680         1727           200.         957         563         391         289         212         131         133         70         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                     |                       |      |      |          |         |      |      | *************************************** |      |  |  |
| 140.         6157         6211         6060         6244         6311         6143         6190         6186         6094         6146           150.         5976         6084         5968         5994         6019         6020         6048         5968         5906         5787           160.         5973         5984         5819         5834         5849         5743         5767         5876         5607         5654           170.         5641         5774         5793         5757         5582         5531         5693         5726         5466         5589           180.         5383         5428         5421         5441         5304         5493         5315         5265         5166         5163           190.         5152         4934         4957         4980         4954         4809         4344         3712         2680         1727           200.         957         563         391         289         212         131         133         70         49         48           210.         39         34         34         35         37         23         21         26         31         27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                     |                       |      |      |          |         |      | 6648 |                                         | 6495 |  |  |
| 150.         5976         6084         5968         5994         6019         6020         6048         5968         5906         5787           160.         5973         5984         5819         5834         5849         5743         5767         5876         5607         5654           170.         5641         5774         5793         5757         5582         5531         5693         5726         5466         5589           180.         5383         5428         5421         5441         5304         5493         5315         5265         5166         5163           190.         5152         4934         4957         4980         4954         4809         4344         3712         2680         1727           200.         957         563         391         289         212         131         133         70         49         48           210.         39         34         34         35         37         23         21         26         31         27           220.         22         23         20         24         22         12         17         15         22         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 6481                                                                | 6376                  | 6561 | 6334 | 6374     | 6329    | 6407 | 6176 | 6187                                    | 6240 |  |  |
| 160.         5973         5984         5819         5834         5849         5743         5767         5876         5607         5654           170.         5641         5774         5793         5757         5582         5531         5693         5726         5466         5589           180.         5383         5428         5421         5441         5304         5493         5315         5265         5166         5163           190.         5152         4934         4957         4980         4954         4809         4344         3712         2680         1727           200.         957         563         391         289         212         131         133         70         49         48           210.         39         34         34         35         37         23         21         26         31         27           220.         22         23         20         24         22         12         17         15         22         15           230.         15         19         23         8         11         14         14         12         18         17           240.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140. | 6157                                                                | 6211                  | 6060 | 6244 | 6311     | 6143    | 6190 | 6186 | 6094                                    | 6146 |  |  |
| 170.         5641         5774         5793         5757         5582         5531         5693         5726         5466         5589           180.         5383         5428         5421         5441         5304         5493         5315         5265         5166         5163           190.         5152         4934         4957         4980         4954         4809         4344         3712         2680         1727           200.         957         563         391         289         212         131         133         70         49         48           210.         39         34         34         35         37         23         21         26         31         27           220.         22         23         20         24         22         12         17         15         22         15           230.         15         19         23         8         11         14         14         12         18         17           240.         14         19         13         12         17         8         13         9         8         13           250.         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150. | 5976                                                                | 6084                  | 5968 | 5994 | 6019     | 6020    | 6048 | 5968 | 5906                                    | 5787 |  |  |
| 180.         5383         5428         5421         5441         5304         5493         5315         5265         5166         5163           190.         5152         4934         4957         4980         4954         4809         4344         3712         2680         1727           200.         957         563         391         289         212         131         133         70         49         48           210.         39         34         34         35         37         23         21         26         31         27           220.         22         23         20         24         22         12         17         15         22         15           230.         15         19         23         8         11         14         14         12         18         17           240.         14         19         13         12         17         8         13         9         8         13           250.         7         19         11         6         9         10         7         8         7         15           260.         9         9 <t< td=""><td>160.</td><td>5973</td><td>5984</td><td>5819</td><td>5834</td><td>5849</td><td>5743</td><td>5767</td><td>5876</td><td>5607</td><td>5654</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160. | 5973                                                                | 5984                  | 5819 | 5834 | 5849     | 5743    | 5767 | 5876 | 5607                                    | 5654 |  |  |
| 190.         5152         4934         4957         4980         4954         4809         4344         3712         2680         1727           200.         957         563         391         289         212         131         133         70         49         48           210.         39         34         34         35         37         23         21         26         31         27           220.         22         23         20         24         22         12         17         15         22         15           230.         15         19         23         8         11         14         14         12         18         17           240.         14         19         13         12         17         8         13         9         8         13           250.         7         19         11         6         9         10         7         8         7         15           260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170. | 5641                                                                | 5774                  | 5793 | 5757 | 5582     | 5531    | 5693 | 5726 | 5466                                    | 5589 |  |  |
| 200.         957         563         391         289         212         131         133         70         49         48           210.         39         34         34         35         37         23         21         26         31         27           220.         22         23         20         24         22         12         17         15         22         15           230.         15         19         23         8         11         14         14         12         18         17           240.         14         19         13         12         17         8         13         9         8         13           250.         7         19         11         6         9         10         7         8         7         15           260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180. | 5383                                                                | 5428                  | 5421 | 5441 | 5304     | 5493    | 5315 | 5265 | 5166                                    | 5163 |  |  |
| 210.         39         34         34         35         37         23         21         26         31         27           220.         22         23         20         24         22         12         17         15         22         15           230.         15         19         23         8         11         14         14         12         18         17           240.         14         19         13         12         17         8         13         9         8         13           250.         7         19         11         6         9         10         7         8         7         15           260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28 </td <td>190.</td> <td>5152</td> <td>4934</td> <td>4957</td> <td>4980</td> <td>4954</td> <td>4809</td> <td>4344</td> <td>3712</td> <td>2680</td> <td>1727</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190. | 5152                                                                | 4934                  | 4957 | 4980 | 4954     | 4809    | 4344 | 3712 | 2680                                    | 1727 |  |  |
| 220.         22         23         20         24         22         12         17         15         22         15           230.         15         19         23         8         11         14         14         12         18         17           240.         14         19         13         12         17         8         13         9         8         13           250.         7         19         11         6         9         10         7         8         7         15           260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200. | 957                                                                 | 563                   | 391  | 289  | 212      | 131     | 133  | 70   | 49                                      | 48   |  |  |
| 230.         15         19         23         8         11         14         14         12         18         17           240.         14         19         13         12         17         8         13         9         8         13           250.         7         19         11         6         9         10         7         8         7         15           260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         163         114         69         31         21         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210. | 39                                                                  | 34                    | 34   | 35   | 37       | 23      | 21   | 26   | 31                                      | 27   |  |  |
| 240.         14         19         13         12         17         8         13         9         8         13           250.         7         19         11         6         9         10         7         8         7         15           260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         163         114         69         31         21         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220. | 22                                                                  | 23                    | 20   | 24   | 22       | 12      | 17   | 15   | 22                                      | 15   |  |  |
| 250.         7         19         11         6         9         10         7         8         7         15           260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         163         114         69         31         21         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 230. | 15                                                                  | 19                    | 23   | 8    | 11       | 14      | 14   | 12   | 18                                      | 17   |  |  |
| 260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         163         114         69         31         21         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 240. | 14                                                                  | 19                    | 13   | 12   | 17       | 8       | 13   | 9    | 8                                       | 13   |  |  |
| 260.         9         9         9         12         10         11         9         7         13         12           270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         163         114         69         31         21         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250. | 7                                                                   | 19                    | 11   | 6    | 9        | 10      | 7    | 8    | 7                                       | 15   |  |  |
| 270.         18         23         23         32         48         70         87         104         135         122           280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         163         114         69         31         21         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 260. | 9                                                                   |                       |      | 12   | 10       | 11      | 9    | 7    | 13                                      |      |  |  |
| 280.         134         120         86         78         38         26         15         12         5         10           290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         163         114         69         31         21         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270. | 18                                                                  | 23                    | 23   |      |          |         | 87   | 104  |                                         |      |  |  |
| 290.         11         11         15         19         28         61         82         128         168         220           300.         246         248         267         251         163         114         69         31         21         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 280. |                                                                     |                       |      |      |          |         |      |      |                                         |      |  |  |
| 300. 246 248 267 251 163 114 69 31 21 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 290. |                                                                     |                       |      |      |          |         |      |      | 168                                     |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                                                     |                       |      |      |          |         |      |      | ·                                       |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 310. | 4                                                                   | 12                    | 4    | 2    | 5        | 3       | 3    | 2    | 8                                       | 2    |  |  |

По распечатке (табл. 15) построим спектр обратного рассеяния (рис. 20). Спектральные пики, соответствующие рассеянию ионов <sup>4</sup>Не на ядрах имплантированных атомов мышьяка и индия, имеют малую интенсивность по сравнению с интенсивностью сигнала от кремниевой подложки. Поэтому эти пики можно для наглядности построить дополнительно в другом масштабе.

С использованием данных табл. 13 отметим на спектре (рис. 20) каналы, соответствующие энергиям ионов, претерпевших рассеяние на ядрах атомов элементов, входящих в состав исследуемого слоя.

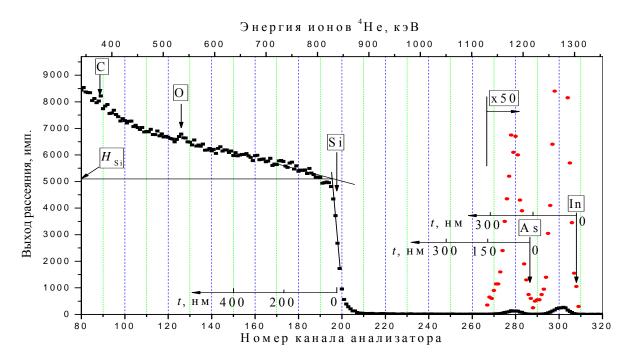



Рис. 20. Спектр резерфордовского обратного рассеяния ионов  $^4$ He от неориентированного монокристалла кремния, легированного ионами  ${\rm As^+}$  и  ${\rm In^+}$ 

На самой поверхности образца обнаруживается некоторое количество кислорода. Остается определить номер канала, соответствующего рассеянию на ядрах атомов мышьяка. Поскольку условия получения спектра такие же, как и в примере 17, то значение энергетической ширины канала спектрометра  $\delta E = 4,222$  кэВ/канал (см. табл. 14). Соответствующее значение энергии ионов <sup>4</sup>Не, претерпевающих резерфордовское рассеяние на ядрах атомов As, расположенных на поверхности,  $E_{\rm As} = 0,8087\cdot1500 = 1213,05\,$  кэВ. Этой энергии соответствует примерно 287-й канал спектрометра.

Используя привязку к сигналу углерода и значение  $\delta E$ , так же как и в предыдущих примерах, осуществим калибровку шкалы спектрометра по энергиям (верхняя шкала на рис. 20).

Построим шкалу глубин для элементов, входящих в состав анализируемого слоя. Сначала рассчитаем по формуле (66) значения фактора тормозного сечения ионов <sup>4</sup>Не в среде при рассеянии на ядрах мышьяка и индия, а затем определим значения  $\delta t$ .

Значения этих параметров для кремния вычислены в предыдущем примере. Для торможения ионов <sup>4</sup>Не, рассеивающихся на ядрах атомов кремния, фактор тормозного сечения  $[\varepsilon]_{\text{Si}}^{\text{Si}} = 101,88 \cdot 10^{-15} \text{ эВ/(атом/см}^2)$ ; соответствующее значение  $\delta t_{\text{Si}} = 8,29 \text{ нм/канал.}$ 

Вычислим значения фактора тормозного сечения ионов <sup>4</sup>He в кремнии при рассеянии на ядрах мышьяка и индия:

$$\begin{split} \left[\epsilon\right]_{As}^{Si} &= \left[\frac{0,8087}{\cos 0^{\circ}} \cdot 56,82 + \frac{1}{\cos 10^{\circ}} \cdot 62,25\right] \cdot 10^{-15} = \\ &= 109,16 \cdot 10^{-15} \ \text{3B/(atom/cm}^2); \\ \left[\epsilon\right]_{In}^{Si} &= \left[\frac{0,8707}{\cos 0^{\circ}} \cdot 56,82 + \frac{1}{\cos 10^{\circ}} \cdot 60,44\right] \cdot 10^{-15} = \\ &= 110,85 \cdot 10^{-15} \ \text{3B/(atom/cm}^2). \end{split}$$

Определим значения толщины слоя  $\delta t$ , соответствующей одному каналу спектрометра:

$$\delta t_{\rm As} = \frac{4222}{5 \cdot 10^{22} \cdot 109, 16 \cdot 10^{-15}} = 7,74 \cdot 10^{-7} \ {\rm cm/канал} = 7,74 \ {\rm нm/канал};$$
 
$$\delta t_{\rm In} = \frac{4222}{5 \cdot 10^{22} \cdot 110,85 \cdot 10^{-15}} = 7,62 \cdot 10^{-7} \ {\rm cm/канал} = 7,62 \ {\rm нm/канал}.$$

Нанесем шкалу глубин для каждого элемента на спектр (рис. 20).

Рассчитаем по формуле (67) слоевые содержания имплантированных атомов мышьяка и индия. Высота сигнала от кремниевой матрицы определяется по ординате точки пересечения касательных к участкам спектра, соответствующим рассеянию ионов <sup>4</sup>Не на ядрах атомов кремния, расположенных на поверхности матрицы (см. рис. 18). Полученное значение  $H_i = H_{\rm Si} = 5096$  имп. Спектральные пики мышьяка и индия практически не имеют фона, поэтому площадь под пиками можно определить по распечатке спектра (табл. 15) как сумму значений выхода в соответствующих интервалах каналов. Результат суммирования:  $A_{\rm As} = 1184$  имп. канал;  $A_{\rm In} = 2141$  имп. канал. Слоевые содержания ионно-имплантированных атомов донорных (As) и акцепторных (In) примесей в исследуемом слое:

$$\begin{split} \left(Nt\right)_{\mathrm{As}} &= \frac{1184 \cdot 0,991 \cdot 4222}{5096 \cdot 5,700 \cdot 101,88 \cdot 10^{-15}} = 1,67 \cdot 10^{15} \text{ atom/cm}^2; \\ \left(Nt\right)_{\mathrm{In}} &= \frac{2141 \cdot 0,991 \cdot 4222}{5096 \cdot 12,608 \cdot 101,88 \cdot 10^{-15}} = 1,37 \cdot 10^{15} \text{ atom/cm}^2. \end{split}$$

Ионно-имплантируемые атомы вследствие многократных столкновений с атомами кремния распределяются в приповерхностном слое случайным образом. В то же время глубина их проникновения зависит от энергии ускоренных в вакууме ионов. Проанализируем по спектру обратного рассеяния профили распределения внедренных атомов в кремниевой подложке по глубине.

Для этого по формуле (2.139) [1]

$$\frac{N_{j}}{N_{i}} = \left[ \frac{\sigma_{i} \cdot \left[ \varepsilon \right]_{j}^{i}}{\sigma_{j} \cdot \left[ \varepsilon \right]_{i}^{i}} \right] \cdot \frac{H_{j}}{H_{i}}$$
(68)

рассчитаем отношение концентраций атомов элементов (мышьяка и индия по отношению к кремнию) пошагово на различных глубинах. Вычисление относительных концентраций по формуле (68) начнем от поверхности. В частности, расчет первых из значений отношений  $N_{\rm As}/N_{\rm Si}$  и  $N_{\rm In}/N_{\rm Si}$  выглядит следующим образом:

$$\left(\frac{N_{\rm As}}{N_{\rm Si}}\right)_1 = \left[\frac{0.991 \cdot 109.16 \cdot 10^{-15}}{5,700 \cdot 101.88 \cdot 10^{-15}}\right] \cdot \frac{12}{2680} = 0.1863 \cdot \frac{12}{2680} = 8,34 \cdot 10^{-4};$$

$$\left(\frac{N_{\rm In}}{N_{\rm Si}}\right)_1 = \left[\frac{0.991 \cdot 110.85 \cdot 10^{-15}}{12.608 \cdot 101.88 \cdot 10^{-15}}\right] \cdot \frac{21}{2680} = 0.0855 \cdot \frac{21}{2680} = 6.70 \cdot 10^{-4} .$$

Последующие значения вычисляются аналогичным образом с использованием значений высот сигналов «на канал глубже». Результаты расчетов представим в табл. 16. При определении глубины t в качестве шкалы глубин примем среднее значение  $\delta t$  для трех элементов:  $\delta t = 7,88$  нм/канал.

Таблица 16 **Результаты расчета распределений атомов As и In по глубине** 

| Глубина, нм | $N_{\mathrm{As}}/N_{\mathrm{Si}}$ , $\times 10^{-4}$ | $N_{\rm In}/N_{\rm Si} \ , \times 10^{-4}$ |
|-------------|------------------------------------------------------|--------------------------------------------|
| 0           | 8,34                                                 | 6,70                                       |
| 7,88        | 7,53                                                 | 7,14                                       |
| 15,76       | 11,15                                                | 13,58                                      |
| 23,64       | 14,72                                                | 20,27                                      |
| 31,52       | 29,33                                                | 28,14                                      |
| 39,40       | 32,17                                                | 43,10                                      |
| 47,28       | 45,10                                                | 46,06                                      |
| 55,16       | 50,60                                                | 42,99                                      |
| 63,04       | 44,12                                                | 40,84                                      |
| 70,92       | 48,71                                                | 36,44                                      |
| 78,80       | 37,51                                                | 27,81                                      |
| 86,68       | 30,78                                                | 20,79                                      |
| 94,56       | 24,54                                                | 13,19                                      |
| 102,44      | 16,28                                                | 9,50                                       |
| 110,32      | 11,24                                                | 4,51                                       |
| 118,20      | 7,88                                                 | 2,99                                       |
| 126,08      | 7,90                                                 | 2,37                                       |
| 133,96      | 6,18                                                 | 1,73                                       |
| 141,84      | 4,15                                                 | 1,75                                       |
| 149,72      | 4,33                                                 | 1,53                                       |
| 157,60      | 2,39                                                 | 0,78                                       |
| 165,48      | 2,93                                                 |                                            |

| Глубина , нм | $N_{\mathrm{As}}/N_{\mathrm{Si}}$ , $\times 10^{-4}$ | $N_{\rm ln}/N_{\rm Si}  ,\!\! \times 10^{-4}$ |
|--------------|------------------------------------------------------|-----------------------------------------------|
| 173,36       | 3,60                                                 |                                               |
| 181,24       | 3,37                                                 |                                               |
| 189,12       | 4,00                                                 |                                               |
| 197,00       | 2,91                                                 |                                               |
| 204,88       | 2,89                                                 |                                               |
| 212,76       | 2,90                                                 |                                               |
| 220,64       | 4,95                                                 |                                               |
| 228,52       | 2,31                                                 |                                               |
| 236,40       | 2,66                                                 |                                               |
| 244,28       | 2,22                                                 |                                               |
| 252,16       | 3,23                                                 |                                               |
| 260,04       | 2,92                                                 |                                               |
| 267,92       | 1,91                                                 |                                               |

По расчетным данным построим графики профилей распределения ионно-имплантированных атомов по глубине (рис. 21). Поскольку процесс торможения ионов в кристаллической подложке является вероятностным, то полученные данные можно аппроксимировать функцией нормального распределения Гаусса (кривые на рис. 21).

Основными параметрами распределения атомов ионно-имплантированных примесей по глубине являются: средний проекционный пробег  $\overline{R}_p$  ионов и среднеквадратичный разброс пробегов (страгглинг)  $\Delta \overline{R}_p$ , а также относительная концентрация в максимуме распределения. Значения этих параметров, полученные при анализе распределений (рис. 21) представлены в табл. 17.

При каналировании ионы <sup>4</sup>Не рассеиваются на поверхностных атомах кристалла и атомах, смещенных из узлов кристаллической решетки. Поэтому участок спектра, обусловленный рассеянием анализирующих ионов на ядрах атомов кремния, характеризуется намного меньшей интенсивностью, чем в спектре 1 (рис. 22), снятом от неориентированного кристалла.

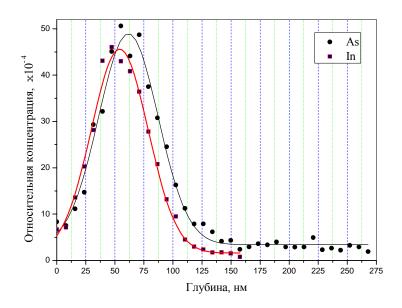



Рис. 21. Распределение атомов As и In, ионно-имплантированных в кремниевую подложку, по глубине

Таблица 17 Параметры распределения по глубине ионно-имплантированных атомов

| Атомы | $\overline{R}_p$ , hm | $\Delta \overline{R}_p$ , hm | $\left(N_{i}/N_{\mathrm{Si}} ight)_{\mathrm{max}}$ |
|-------|-----------------------|------------------------------|----------------------------------------------------|
| As    | 61,65                 | 51,17                        | 0,00488                                            |
| In    | 54,17                 | 48,83                        | 0,00456                                            |

Распечатка спектра, снятого в тех же условиях, но уже от ориентированного монокристалла кремния, легированного ионами мышьяка и кремния, приведена в табл. 18. Спектр, построенный по этим данным, представлен на рис. 22 (спектр 2).

Наблюдаемый спектральный пик в интервале примерно со 180-го по 210-й канал обусловлен наличием приповерхностного разупорядоченного слоя. Разрушение кристаллической решетки происходит под воздействием имплантируемых ионов, многократно сталкивающихся с атомами кристалла при торможении. Интенсивность пика достигает

интенсивности спектра от неориентированного монокристалла, что свидетельствует о полной аморфизации приповерхностного слоя. По шкале глубин (рис. 22) оценим толщину аморфизованного слоя. Она составляет примерно 120 нм; это значение коррелирует с толщиной ионно-легированного слоя (см. рис. 21).

Таблица 18 Распечатка спектра обратного рассеяния, снятого от ориентированного монокристалла кремния

| №<br>ка-    |      |      |      | Вы   | ход расс | еяния, и | МП.  |      |      |      |
|-------------|------|------|------|------|----------|----------|------|------|------|------|
| нала<br>70. | 4188 | 4035 | 3936 | 3952 | 3818     | 3864     | 3840 | 3761 | 3762 | 3696 |
| 80.         | 3765 | 3574 | 3579 | 3558 | 3550     | 3597     | 3545 | 3519 | 3477 | 3488 |
| 90.         | 3217 | 3300 | 3289 | 3292 | 3189     | 3033     | 3221 | 3126 | 3079 | 3023 |
| 100.        | 2958 | 2962 | 2970 | 2936 | 2798     | 2969     | 2920 | 3037 | 2819 | 2828 |
| 110.        | 2731 | 2780 | 2715 | 2721 | 2668     | 2578     | 2646 | 2582 | 2666 | 2668 |
| 120.        | 2560 | 2548 | 2633 | 2613 | 2593     | 2462     | 2595 | 2582 | 2517 | 2432 |
| 130.        | 2420 | 2367 | 2449 | 2314 | 2326     | 2393     | 2344 | 2382 | 2273 | 2325 |
| 140.        | 2299 | 2312 | 2248 | 2190 | 2209     | 2183     | 2124 | 2154 | 2132 | 2158 |
| 150.        | 2199 | 2107 | 2085 | 2011 | 1986     | 2106     | 2085 | 1981 | 2015 | 2061 |
| 160.        | 1918 | 1905 | 1937 | 1936 | 1855     | 1907     | 1960 | 1873 | 1854 | 1834 |
| 170.        | 1792 | 1855 | 1802 | 1788 | 1819     | 1743     | 1725 | 1696 | 1713 | 1862 |
| 180.        | 1784 | 1843 | 2002 | 2231 | 2792     | 3515     | 4284 | 4789 | 5068 | 5157 |
| 190.        | 5055 | 5078 | 5227 | 5264 | 5028     | 4927     | 4323 | 3422 | 2356 | 1313 |
| 200.        | 692  | 401  | 305  | 220  | 173      | 137      | 76   | 41   | 31   | 21   |
| 210.        | 14   | 14   | 9    | 17   | 6        | 7        | 4    | 13   | 7    | 9    |
| 220.        | 11   | 10   | 7    | 8    | 6        | 4        | 4    | 3    | 4    | 5    |
| 230.        | 7    | 5    | 2    | 7    | 6        | 6        | 5    | 2    | 3    | 8    |
| 240.        | 2    | 9    |      | 4    | 2        | 6        | 6    | 3    | 5    | 4    |
| 250.        | 3    | 1    | 9    | 1    | 3        | 1        | 2    | 1    | 1    | 3    |
| 260.        | 5    | 1    | 3    | 5    | 3        | 4        | 3    | 5    | 6    | 3    |
| 270.        | 17   | 16   | 19   | 36   | 47       | 72       | 91   | 125  | 142  | 148  |
| 280.        | 130  | 107  | 70   | 55   | 28       | 9        | 5    | 2    | 7    | 8    |
| 290.        | 8    | 8    | 11   | 15   | 32       | 64       | 83   | 144  | 196  | 244  |
| 300.        | 242  | 292  | 258  | 202  | 135      | 104      | 59   | 29   | 8    | 2    |
| 310.        | 2    | 3    | 3    | 0    | 1        | 3        | 0    | 0    | 0    | 2    |

Пример 20. Исследование углеродной пленки, осажденной на кремний

Спектр резерфордовского обратного рассеяния ионов  $^4$ Не с начальной энергией  $E_0=2,0$  МэВ от углеродной пленки, осажденной на кремниевую подложку, представлен в табл. 19. Угол рассеяния  $\theta=170^\circ$ , углы  $\theta_1=0^\circ$  и  $\theta_2=10^\circ$  Данные для калибровки энергетической шкалы спектрометра приведены в табл. 20.

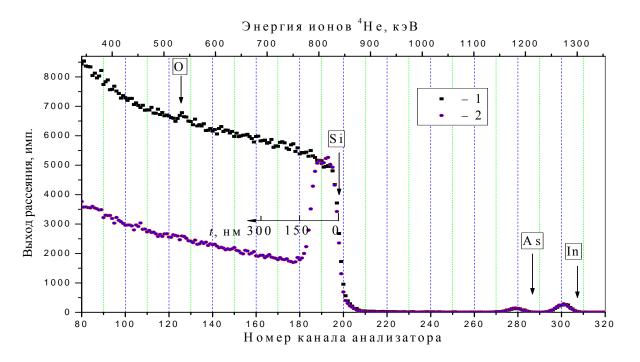



Рис. 22. Спектры резерфордовского обратного рассеяния ионов  $^4$ He от неориентированного (1) и ориентированного (2) монокристалла кремния, легированного ионами  $\mathrm{As}^+$  и  $\mathrm{In}^+$ 

#### Распечатка спектра обратного рассеяния

| №<br>ка-<br>нала | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |      |
|------------------|-----------------------|------|------|------|------|------|------|------|------|------|
| 40.              | 6255                  | 6242 | 6056 | 5905 | 5931 | 5702 | 5503 | 5509 | 5414 | 5388 |
| 50.              | 5285                  | 5193 | 5145 | 4972 | 4866 | 5020 | 4851 | 4865 | 4659 | 4723 |
| 60.              | 4587                  | 4645 | 4496 | 4338 | 4336 | 4430 | 4321 | 4364 | 4259 | 4158 |
| 70.              | 4137                  | 4236 | 4128 | 4140 | 4047 | 4058 | 4008 | 4035 | 4218 | 4243 |
| 80.              | 4378                  | 4430 | 4388 | 4434 | 4417 | 4301 | 4318 | 4301 | 4376 | 4334 |
| 90.              | 4196                  | 4279 | 4203 | 4165 | 4258 | 4307 | 4096 | 4091 | 4193 | 3970 |
| 100.             | 4175                  | 4005 | 3952 | 4024 | 4119 | 4038 | 3795 | 3773 | 3824 | 3856 |
| 110.             | 3906                  | 3680 | 3710 | 3581 | 3517 | 3342 | 3243 | 3200 | 3106 | 3164 |
| 120.             | 3173                  | 3107 | 3055 | 3158 | 3072 | 3002 | 3146 | 3051 | 2990 | 3067 |
| 130.             | 2994                  | 2960 | 2962 | 2936 | 2902 | 3014 | 2943 | 2929 | 2902 | 2832 |
| 140.             | 2827                  | 2976 | 2850 | 2836 | 2897 | 2833 | 2777 | 2815 | 2837 | 2903 |
| 150.             | 2840                  | 2759 | 2771 | 2841 | 2801 | 2808 | 2709 | 2774 | 2661 | 2787 |
| 160.             | 2712                  | 2620 | 2643 | 2697 | 2744 | 2697 | 2634 | 2613 | 2567 | 2744 |
| 170.             | 2563                  | 2550 | 2586 | 2559 | 2689 | 2682 | 2613 | 2522 | 2560 | 2605 |
| 180.             | 2543                  | 2570 | 2480 | 2559 | 2526 | 2520 | 2617 | 2510 | 2576 | 2595 |
| 190.             | 2514                  | 2503 | 2482 | 2551 | 2458 | 2450 | 2498 | 2409 | 2390 | 2437 |
| 200.             | 2421                  | 2454 | 2348 | 2503 | 2524 | 2477 | 2427 | 2458 | 2394 | 2374 |
| 210.             | 2355                  | 2349 | 2294 | 2306 | 2287 | 2279 | 2259 | 2129 | 1967 | 1695 |
| 220.             | 1477                  | 1086 | 784  | 583  | 368  | 285  | 180  | 155  | 128  | 114  |
| 230.             | 93                    | 77   | 52   | 43   | 56   | 33   | 35   | 21   | 23   | 18   |
| 240.             | 19                    | 21   | 16   | 25   | 22   | 23   | 21   | 13   | 17   | 11   |
| 250.             | 26                    | 14   | 19   | 11   | 14   | 8    | 19   | 18   | 12   | 16   |
| 260.             | 16                    | 9    | 11   | 15   | 13   | 16   | 13   | 7    | 12   | 9    |
| 270.             | 11                    | 7    | 7    | 13   | 11   | 9    | 13   | 6    | 10   | 9    |
| 280.             | 8                     | 6    | 6    | 10   | 11   | 6    | 10   | 9    | 6    | 8    |
| 290.             | 1                     | 6    | 7    | 9    | 5    | 8    | 9    | 6    | 7    | 7    |

Таблица 20 **Данные для калибровки шкалы спектрометра** 

| Элемент           | С   | О   | Si  | Pt  |
|-------------------|-----|-----|-----|-----|
| Канал анализатора | 116 | 166 | 265 | 438 |

Спектр обратного рассеяния, соответствующий табл. 19, представлен на рис. 23. По данным табл. 20 определим по методике, изложенной в примерах 16 и 17, энергетическую ширину  $\delta E$  канала спектрометра (табл. 21).

Отметим на спектре (рис. 23) каналы (по данным табл. 20), соответствующие энергиям ионов <sup>4</sup>Не, претерпевших рассеяние на ядрах атомов углерода и кремния, расположенных на поверхности исследуемого образца. Отсутствие сигнала кремния в соответствующем

интервале энергий обусловлено тем, что кремниевая подложка расположена под сравнительно толстой пленкой осажденного углерода.

Таблица 21 **Результаты расчета энергетической ширины канала спектрометра** 

| Элемент   | K      | Е, кэВ | $\delta E$ , кэ $B$ /канал |          |         |  |  |
|-----------|--------|--------|----------------------------|----------|---------|--|--|
| - Jiemeni | 11     | 2, 102 | Пара                       | Значение | Среднее |  |  |
| С         | 0,2526 | 505,2  | Pt–C                       | 4,157    |         |  |  |
| О         | 0,3625 | 725,0  | Pt-O                       | 4,112    | 4 1 47  |  |  |
| Si        | 0,5657 | 1131,4 | Pt–Si                      | 4,117    | 4,147   |  |  |
| Pt        | 0,9218 | 1843,6 | Si–C                       | 4,203    |         |  |  |

Используя среднее значение энергетической ширины канала спектрометра  $\delta E = 4,147$  кэВ/канал и привязку к каналу, соответствующему какому-то из элементов (например, углероду), произведем калибровку энергетической шкалы спектрометра (верхняя шкала на рис. 23). Методика калибровки также подробно изложена в примерах 16 и 17.

Построим шкалу глубин для обоих элементов, входящих в состав анализируемого слоя. Сначала рассчитаем по формуле (66) значения фактора тормозного сечения ионов  $^4$ Не в среде при рассеянии на ядрах кремния и углерода, а затем определим соответствующие значения  $\delta t$ .

Фактор тормозного сечения при рассеянии на ядрах кремния

$$\left[\varepsilon\right]_{\text{Si}}^{\text{Si}} = \left[\frac{0,5657}{\cos 0^{\circ}} \cdot 49,26 + \frac{1}{\cos 10^{\circ}} \cdot 70,06\right] \cdot 10^{-15} =$$

$$= 99.01 \cdot 10^{-15} \text{ aB/(atom/cm}^2),$$

а на ядрах углерода

$$\left[\varepsilon\right]_{C}^{Si} = \left[\frac{0,2526}{\cos 0^{\circ}} \cdot 49,26 + \frac{1}{\cos 10^{\circ}} \cdot 70,64\right] \cdot 10^{-15} =$$

$$= 84,17 \cdot 10^{-15} \text{ aB/(atom/cm}^{2}).$$

Значения глубин, соответствующих одному каналу спектрометра:

$$\delta t_{\mathrm{Si}} = \frac{4147}{5 \cdot 10^{22} \cdot 99,01 \cdot 10^{-15}} = 8,38 \cdot 10^{-7} \,\mathrm{см/канал} = 8,38 \,\mathrm{нм/канал};$$

$$\delta t_{\rm C} = \frac{4147}{5 \cdot 10^{22} \cdot 84,17 \cdot 10^{-15}} = 9,85 \cdot 10^{-7} \,$$
см/канал = 9,85 нм/канал.

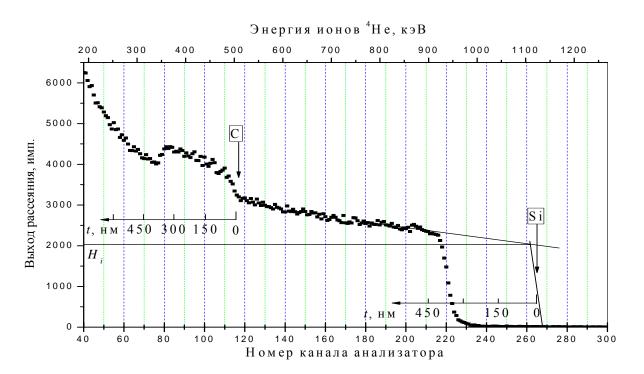



Рис. 23. Спектр резерфордовского обратного рассеяния ионов <sup>4</sup>He от углеродной пленки на кремниевой подложке

Нанесем шкалы глубин на спектр (рис. 23). По шкалам определим толщину углеродной пленки. Слою, содержащему углерод, соответствует на спектре интервал с 76-го по 118-й канал. С учетом размытия правого и левого краев спектра вследствие ограничений по разрешающей способности спектрометра толщина  $t_{\rm C}$  углеродной пленки, определенная по сигналу углерода, составляет (116 – 78) 9,85 = 374,3 нм. Толщина углеродной пленки, определенная по сигналу кремния, равна (265 – 221) 8,38 = 368,7 нм. Среднее значение толщины пленки – примерно 370 нм.

Оценим плотность осажденной на подложке углеродной пленки. Вначале рассчитаем по формуле (67) слоевое содержание углерода. Высота сигнала от кремниевой подложки, определенная по спектру (рис. 21), равна 2035 импульсов. Площадь пика, соответствующего рассеянию анализирующих ионов на ядрах атомов углерода, определенная по спектру за вычетом фона, составляет 23390 имп. канал. Слоевое содержание углерода

$$(Nt)_{\rm C} = \frac{23\ 390 \cdot 0,991 \cdot 4147}{2035 \cdot 0.150 \cdot 99,01 \cdot 10^{-15}} = 3,18 \cdot 10^{18} \, \text{atom/cm}^2.$$

Атомная плотность

$$N_{\rm C} = \frac{(Nt)_{\rm C}}{t_{\rm C}} = \frac{3.18 \cdot 10^{18}}{370 \cdot 10^{-7}} = 8,59 \cdot 10^{22} \text{ atom/cm}^3.$$

Полученное значение меньше атомной плотности графита, равной  $1,76\cdot 10^{23}$  атом/см<sup>3</sup> (см. прил.10 [1]), что вполне объяснимо, поскольку при осаждении тонкопленочных покрытий образуются рыхлые менее плотные в сравнении с массивными материалами структуры.

# Пример 21. Исследование поверхности кремния, подвернутого анодному окислению

Спектр резерфордовского обратного рассеяния ионов <sup>4</sup>He от поверхности кремния, подвергнутого электрохимическому анодному окислению, представлен в табл. 22 и на рис. 24. Начальная энергия анализирующих ионов  $E_0=1,0$  МэВ; угол рассеяния  $\theta=104^\circ$ ; углы  $\theta_1=0^\circ$  и  $\theta_2=76^\circ$ . Данные для калибровки энергетической шкалы спектрометра приведены в табл. 23.

В табл. 23 содержатся номера каналов анализатора, соответствующих энергии анализирующих ионов после их рассеяния на ядрах атомов всех элементов, входящих в состав анализируемого слоя. Отметим эти каналы на спектре (рис. 24).

| No   |      |      |      |      |          |          |      |      |      |      |
|------|------|------|------|------|----------|----------|------|------|------|------|
| ка-  |      |      |      | Вы   | ход расс | еяния, и | МП.  |      |      |      |
| нала |      |      |      |      |          |          |      |      |      |      |
| 40.  | 3737 | 3632 | 3658 | 3450 | 3495     | 3408     | 3498 | 3443 | 3319 | 3253 |
| 50.  | 3237 | 3249 | 3152 | 3157 | 3180     | 3035     | 3106 | 2992 | 2893 | 3045 |
| 60.  | 2911 | 2984 | 2929 | 2866 | 2954     | 2920     | 2800 | 2820 | 2757 | 2746 |
| 70.  | 2869 | 2724 | 2717 | 2725 | 2565     | 2574     | 2637 | 2594 | 2545 | 2606 |
| 80.  | 2542 | 2523 | 2563 | 2593 | 2572     | 2513     | 2496 | 2534 | 2497 | 2425 |
| 90.  | 2448 | 2477 | 2430 | 2473 | 2380     | 2357     | 2398 | 2357 | 2360 | 2355 |
| 100. | 2350 | 2370 | 2366 | 2345 | 2400     | 2374     | 2361 | 2359 | 2350 | 2318 |
| 110. | 2352 | 2305 | 2292 | 2276 | 2312     | 2259     | 2281 | 2325 | 2332 | 2238 |
| 120. | 2316 | 2311 | 2209 | 2269 | 2193     | 2296     | 2321 | 2218 | 2337 | 2268 |
| 130. | 2198 | 2170 | 2194 | 2243 | 2301     | 2114     | 2230 | 2255 | 2310 | 2246 |
| 140. | 2176 | 2247 | 2325 | 2322 | 2353     | 2318     | 2244 | 2362 | 2192 | 2261 |
| 150. | 2262 | 2218 | 2171 | 2193 | 2222     | 2213     | 2210 | 2165 | 2157 | 2208 |
| 160. | 2214 | 2243 | 2319 | 2296 | 2364     | 2394     | 2428 | 2551 | 2545 | 2614 |
| 170. | 2649 | 2603 | 2759 | 2758 | 2654     | 2758     | 2655 | 2685 | 2615 | 2649 |
| 180. | 2572 | 2389 | 2304 | 2254 | 2130     | 2168     | 2148 | 2199 | 2098 | 2158 |
| 190. | 2145 | 2166 | 2271 | 2195 | 2108     | 2135     | 2151 | 2111 | 2150 | 2030 |
| 200. | 2157 | 2107 | 2116 | 2079 | 2145     | 2124     | 2191 | 2072 | 2138 | 2076 |
| 210. | 2099 | 2167 | 2113 | 2160 | 2067     | 2031     | 2109 | 2020 | 2006 | 1949 |
| 220. | 1898 | 1775 | 1623 | 1540 | 1345     | 1348     | 1199 | 1069 | 957  | 939  |
| 230. | 942  | 840  | 832  | 818  | 785      | 774      | 757  | 754  | 621  | 577  |
| 240. | 435  | 263  | 178  | 118  | 90       | 60       | 56   | 44   | 42   | 46   |
| 250. | 37   | 39   | 48   | 41   | 38       | 38       | 32   | 36   | 43   | 50   |
| 260. | 45   | 38   | 43   | 48   | 41       | 47       | 35   | 40   | 42   | 40   |
| 270. | 47   | 31   | 46   | 38   | 58       | 47       | 51   | 55   | 59   | 46   |
| 280. | 54   | 51   | 53   | 58   | 60       | 55       | 46   | 48   | 53   | 34   |
| 290. | 34   | 26   | 27   | 21   | 21       | 20       | 17   | 12   | 11   | 13   |
| 300. | 11   | 7    | 9    | 6    | 2        | 0        | 4    | 3    | 1    | 8    |

Таблица 23 **Данные для калибровки шкалы спектрометра** 

| Элемент           | С   | О   | Si  | As  |
|-------------------|-----|-----|-----|-----|
| Канал анализатора | 144 | 182 | 241 | 295 |

С использованием данных табл. 23, определим по методике, изложенной в примерах 16 и 17, энергетическую ширину  $\delta E$  канала спектрометра (табл. 24). При этом, в отличие от предыдущих примеров, значения кинематического фактора рассеяния необходимо брать из прил. 10 [1] при угле рассеяния  $\theta = 104^{\circ}$ . Среднее значение  $\delta E = 2,996$  кэВ/канал.

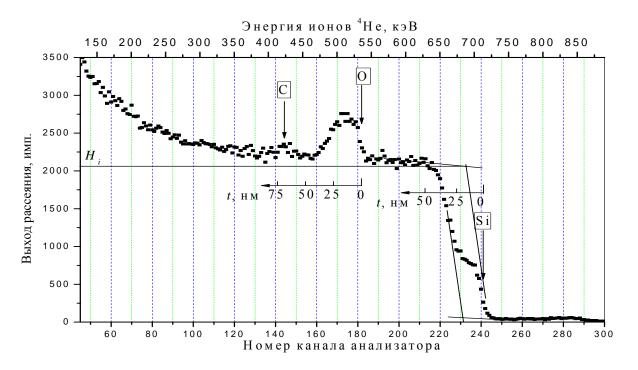



Рис. 24. Спектр резерфордовского обратного рассеяния ионов <sup>4</sup>He от поверхности кремния, подвергнутого анодному окислению

Таблица 24 Результаты расчета энергетической ширины канала спектрометра

| Эномони | T.     | <i>E</i> D | $\delta E$ , кэ $B$ /канал |          |         |  |
|---------|--------|------------|----------------------------|----------|---------|--|
| Элемент | K      | Е, кэВ     | Пара                       | Значение | Среднее |  |
| С       | 0,4309 | 430,9      | As–C                       | 2,953    |         |  |
| О       | 0,5362 | 536,2      | As-O                       | 3,014    | 2.007   |  |
| Si      | 0,7036 | 703,6      | As–Si                      | 3,207    | 2,996   |  |
| As      | 0,8768 | 876,8      | Si–C                       | 2,811    |         |  |

Используя это значение и привязку к каналу, соответствующему какому-то из элементов (например, кислороду), произведем по методике, изложенной в примерах 16 и 17, калибровку энергетической шкалы спектрометра (верхняя шкала на рис. 24).

Построим шкалу глубин для обоих элементов, входящих в состав анализируемого слоя. Сначала рассчитаем по формуле (66) значения фактора тормозного сечения ионов <sup>4</sup>Не в среде при рассеянии на ядрах кремния и кислорода, а затем определим соответствующие значения  $\delta t$ .

Значения фактора тормозного сечения при рассеянии на ядрах кремния и кислорода:

$$\begin{split} \left[\epsilon\right]_{\text{Si}}^{\text{Si}} &= \left[\frac{0,7036}{\cos 0^{\circ}} \cdot 66,30 + \frac{1}{\cos 76^{\circ}} \cdot 70,24\right] \cdot 10^{-15} = \\ &= 336,99 \cdot 10^{-15} \ \text{3B/(atom/cm}^2), \\ \left[\epsilon\right]_{\text{O}}^{\text{Si}} &= \left[\frac{0,5362}{\cos 0^{\circ}} \cdot 66,30 + \frac{1}{\cos 76^{\circ}} \cdot 70,79\right] \cdot 10^{-15} = \\ &= 328,17 \cdot 10^{-15} \ \text{3B/(atom/cm}^2). \end{split}$$

Значения глубин, соответствующих одному каналу спектрометра:

$$\delta t_{\text{Si}} = \frac{2996}{5 \cdot 10^{22} \cdot 336.99 \cdot 10^{-15}} = 1,78 \cdot 10^{-7} \text{ см/канал} = 1,78 \text{ нм/канал};$$

$$\delta t_{\rm O} = \frac{2996}{5 \cdot 10^{22} \cdot 328.17 \cdot 10^{-15}} = 1,83 \cdot 10^{-7} \, \text{см/канал} = 1,83 \, \text{нм/канал}.$$

Сопоставляя полученные значения со значениями  $\delta t$  в предыдущих примерах, видим, что снятие спектра при угле рассеяния  $\theta = 104^{\circ}$  при-

водит к существенному изменению шкалы глубин, что позволяет более детально исследовать тонкие приповерхностные слои.

Нанесем шкалы глубин на спектр (рис. 24). По шкалам определим толщину оксидной пленки. По сигналу кислорода

$$t_{\rm O} = (182 - 166) \, 1,83 = 29,28 \, \text{HM};$$

по сигналу кремния

$$t_{Si} = (241 - 224) \, 1.78 = 30.26 \, \text{HM}.$$

Среднее значение толщины пленки t = 29.8 нм.

Определим слоевое содержание кислорода и кремния в оксидной пленке (см. формулу (67)). Высота сигнала от кремниевой подложки, определенная по спектру (рис. 24), составляет 2060 имп. Площадь пика, соответствующего рассеянию анализирующих ионов на ядрах атомов кислорода, определенная по спектру за вычетом фона, равна 11 036 имп. канал. Слоевое содержание кислорода

$$(Nt)_{o} = \frac{11\,036 \cdot 3,301 \cdot 2996}{2060 \cdot 1,050 \cdot 336,99 \cdot 10^{-15}} = 1,50 \cdot 10^{17} \,\text{atom/cm}^{2}.$$

Площадь сигнала в интервале с 224-го по 243-й канал, соответствующего рассеянию ионов <sup>4</sup>Не на ядрах атомов кремния, входящих в состав оксида, определенная по спектру за вычетом фона, равна 14 930 имп. канал. Слоевое содержание кремния в оксидном слое

$$(Nt)_{Si} = \frac{14.930 \cdot 3,301 \cdot 2996}{2060 \cdot 3,301 \cdot 336,99 \cdot 10^{-15}} = 0,64 \cdot 10^{17} \text{ atom/cm}^2.$$

Отношение слоевых содержаний

$$\frac{(Nt)_{0}}{(Nt)_{si}} = \frac{1,50 \cdot 10^{17}}{0,64 \cdot 10^{17}} \approx 2,34.$$

Следовательно, в результате анодного окисления поверхности кремния образуется оксидный слой, обогащенный кислородом по сравнению со стехиометрическим оксидом кремния  $SiO_2$ .

#### 3. КОНТРОЛЬНЫЕ ЗАДАНИЯ

Успешное усвоение учебного материала дисциплины может быть обеспечено систематической работой студентов, включающей изучение теоретического материала и выполнение индивидуальных контрольных заданий.

Выполнение заданий способствует практическому закреплению и более глубокому пониманию теоретического материала. Перед выполнением контрольных заданий необходимо, руководствуясь программой дисциплины (см. с. 4–10), изучить соответствующий материал по учебному пособию [1], а также проработать и усвоить методику выполнения заданий, изложенную в данном пособии-практикуме. Степень усвоения учебного материала следует проверять, выполняя задания и отвечая на вопросы для самоконтроля, содержащиеся в пособии [1].

Контрольные задания должны быть выполнены самостоятельно, с учетом требований, предъявляемых к каждому из заданий. Отчет о выполнении каждого задания включает его аккуратное оформление в рабочей тетради в письменном виде и последующее собеседование по теме задания с преподавателем. Расчеты должны сопровождаться краткими, но исчерпывающими пояснениями. Результаты вычислений, как правило, необходимо представлять в виде таблиц (см. примеры, рассмотренные в данном пособии). Графические зависимости должны быть построены на миллиметровой бумаге либо с применением компьютера. Значения физических величин, полученные при вычислениях, необходимо записывать с указанием единиц их измерения.

Студенты, обучающиеся по заочной форме, выполняют задания контрольной работы по варианту, выбор которого осуществляется по табл. 25 в соответствии с первыми буквами фамилии, имени и отчества. Например, студент Степанов Валерий Евгеньевич в контрольной работе должен выполнить следующие задания: А16, А43, А71 (что соответствует букве С), В3, С17 (соответствие букве В), D10, Е6 (соответствие букве Е). Контрольная работа должна быть выполнена в отдельной тетради с полями для записи вопросов, замечаний и пометок преподавателя, рецензирующего работу. В конце работы следует сделать ссылку на литературу, использованную студентом при выполнении заданий. Контроль степени усвоения материала осуществляется путем проверки выполненных заданий и последующей их защиты.

Студенты, обучающиеся по дневной форме, выполняют на протяжении учебного семестра индивидуальные задания, включающие задачи, приведенные в разделе 3.2 под рубриками **B**, **C**, **D**, **E**, **F** и **G**.

Таблица 25 **Таблица выбора варианта задания контрольной работы** 

| Первые<br>буквы<br>ФИО |     | Фамилия |     | Имя |     | Отчество  |     |
|------------------------|-----|---------|-----|-----|-----|-----------|-----|
| A                      | A5  | A36     | A73 | B1  | C15 | D5        | E1  |
| Б                      | A8  | A42     | A82 | B27 | C2  | D6        | E2  |
| В                      | A18 | A31     | A69 | В3  | C17 | <b>D7</b> | E3  |
| Γ                      | A6  | A34     | A84 | B28 | C4  | D8        | E4  |
| Д                      | A2  | A52     | A61 | B5  | C19 | D9        | E5  |
| Е                      | A11 | A51     | A74 | B30 | C6  | D10       | E6  |
| Ж                      | A3  | A38     | A68 | В7  | C21 | D1        | E7  |
| 3                      | A7  | A48     | A83 | B26 | C8  | D2        | E8  |
| И                      | A13 | A39     | A80 | В9  | C23 | D3        | E9  |
| К                      | A14 | A32     | A79 | B24 | C10 | D4        | E10 |
| Л                      | A22 | A54     | A66 | B11 | C25 | D13       | E11 |
| M                      | A20 | A41     | A58 | B19 | C12 | D17       | E12 |
| Н                      | A15 | A33     | A70 | B13 | C27 | D14       | E13 |
| О                      | A21 | A44     | A59 | B17 | C14 | D16       | E14 |
| П                      | A24 | A45     | A64 | B15 | C28 | D18       | E15 |
| P                      | A10 | A46     | A60 | B22 | C30 | D15       | E31 |
| С                      | A16 | A43     | A71 | B16 | C13 | D11       | E32 |
| T                      | A9  | A35     | A57 | B14 | C29 | D12       | E33 |
| У                      | A12 | A37     | A49 | B18 | C11 | D3        | E34 |
| Φ                      | A17 | A57     | A62 | B12 | C26 | D24       | E35 |
| X                      | A25 | A55     | A72 | B20 | С9  | D23       | E36 |
| Ц                      | A19 | A50     | A75 | B10 | C24 | D20       | E37 |
| Ч                      | A26 | A63     | A78 | B21 | C7  | D22       | E38 |
| Ш                      | A29 | A53     | A81 | B8  | C22 | D8        | E39 |
| Щ                      | A23 | A40     | A67 | B23 | C5  | D9        | E40 |
| Э                      | A27 | A47     | A77 | В6  | C20 | D19       | E41 |
| Ю                      | A30 | A56     | A65 | B25 | С3  | D25       | E42 |
| Я                      | A28 | A66     | A76 | B4  | C18 | D2        | E43 |

## 3.1. Вопросы контрольных заданий

Изложите материал, дающий ответы на следующие вопросы программы:

**А1.** Предмет и базовые понятия дисциплины. Физическая величина и ее значения. Классификация физических величин. Основное

- уравнение измерений. Единицы измерения физических величин.
- **А2.** Принципы и методы измерений. Классификация методов измерений. Компенсационный и мостовой методы измерений.
- **А3.** Общая характеристика средств измерений. Меры. Измерительные приборы. Измерительные системы.
- **А4.** Сигналы измерительной информации. Информативные параметры сигнала измерительной информации. Классификация сигналов.
- **А5.** Измерительный преобразователь. Измерительное преобразование. Функция преобразования. Передаточная характеристика.
- **А6.** Статические характеристики измерительных преобразователей: передаточный коэффициент, чувствительность преобразователя, порог чувствительности.
- А7. Построение физико-математических моделей и расчет статических характеристик измерительных преобразователей.
- **А8.** Блок-схемы преобразования сигналов в средствах измерений. Правила построения блок-схем. Основные элементы передачи и преобразования сигналов.
- **А9.** Преобразования блок-схем сигналов. Передаточные коэффициенты последовательных и параллельных соединений, соединений с положительной и отрицательной обратной связью.
- **А10.** Построение физико-математических моделей и блок-схем сигналов измерительных устройств.
- **А11.** Расчет передаточных коэффициентов средств измерений на основе блок-схем сигналов. Алгоритм расчета передаточных коэффициентов.
- **А12.** Динамические измерения физических величин. Динамические характеристики средств измерений. Классификация динамических характеристик.
- **А13.** Частные динамические характеристики измерительных преобразователей: порядок задержки, время задержки, время установления, время успокоения, постоянная времени.
- **А14.** Перехо́дная и импульсная перехо́дная динамические характеристики измерительного преобразователя с задержкой сигнала первого порядка.
- **А15.** Перехо́дная динамическая характеристика измерительного преобразователя с задержкой сигнала второго порядка.
- **А16.** Определение временных динамических характеристик средств измерений с использованием детерминированных непериодических тестовых сигналов.
- **А17.** Амплитудно-частотная и фазово-частотная полные динамические характеристики измерительных преобразователей.

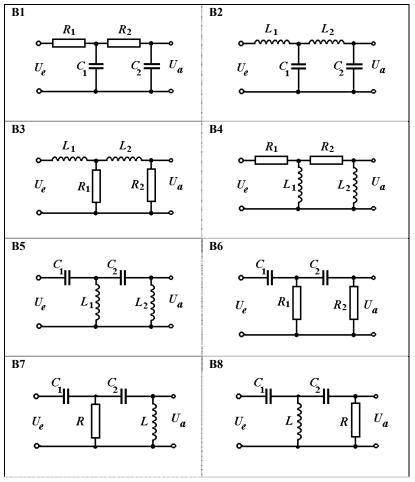
- **А18.** Динамические характеристики измерительных преобразователей: передаточная функция, комплексный коэффициент передачи, собственная частота, добротность.
- **А19.** Определение частотных динамических характеристик средств измерений с использованием периодических тестовых сигналов.
- **A20.** Передаточные функции последовательных и параллельных измерительных систем, систем с обратной связью.
- **А21.** Обобщенная функциональная схема измерительной системы. Преобразование видов энергии в измерительных системах.
- **А22.** Первичные и вторичные измерительные преобразователи. Генераторные и параметрические преобразователи. Эффективность преобразования входной мощности в выходную.
- **А23.** Зависимость характеристик измерительного прибора от чувствительностей и эффективностей преобразования отдельных измерительных звеньев. Входной и выходной импеданс преобразователя.
- **А24.** Согласование последовательных измерительных звеньев по импедансу при наличии генераторных преобразователей.
- **А25.** Зависимость эффективности преобразования генераторных измерительных преобразователей от значения и характера сопротивления нагрузки.
- **A26.** Согласование последовательных измерительных звеньев по импедансу при наличии параметрических преобразователей.
- **А27.** Принцип действия электронных усилителей электрических сигналов на основе вакуумного триода и транзистора.
- **А28.** Усилители сигналов измерительной информации с отрицательной обратной связью, их основные характеристики.
- **А29.** Операционные усилители. Эквивалентная схема и основные характеристики операционного усилителя.
- **А30.** Применение операционных усилителей для аналогового преобразования сигналов измерительной информации.
- **А31.** Функциональная схема измерения состава вещества с применением излучений. Электромагнитное, корпускулярное и акустическое излучения.
- **А32.** Необходимость вакуумных условий при реализации измерений с применением корпускулярного излучения. Степени вакуума.
- **А33.** Природа и основные характеристики электромагнитного излучения. Шкала электромагнитных волн.
- **А34.** Источники СВЧ электромагнитного излучения. Принцип действия лампового генератора. Генераторные лампы.
- **А35.** Особенности работы генераторных ламп СВЧ-диапазона. Конструкция и принцип действия металлокерамического генератор-

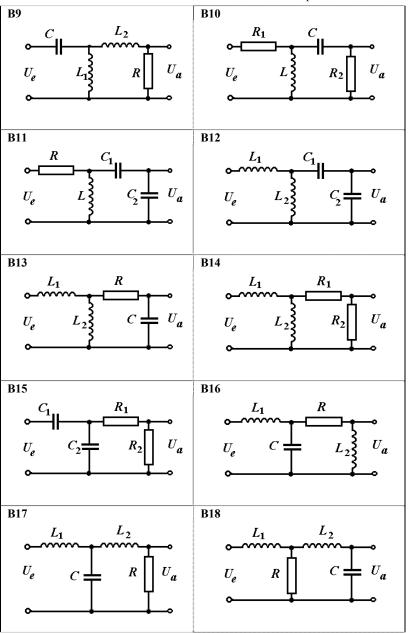
- ного триода.
- **А36.** Магнетронные генераторы СВЧ-излучения. Схема и принцип действия многорезонаторного магнетронного генератора.
- А37. Принцип действия объемного СВЧ-резонатора.
- **А38.** Принцип действия лампы обратной волны магнетронного типа. Условие синхронизма электронов и волн. Замедляющая система.
- **А39.** Задание частоты, отбор, вывод и передача генерируемого СВЧ-излучения. Волноводы.
- **А40.** Волноводы. Механизм распространения СВЧ-излучения в волноводе. Основные характеристики волноводов.
- **А41.** Источники электромагнитного излучения оптического диапазона. Основные характеристики источников света и потоков оптического электромагнитного излучения. Энергетические и световые фотометрические величины.
- **А42.** Принцип действия лазеров. Инверсия населенностей. Вынужденное излучение электромагнитной энергии. Полупроводниковые инжекционные лазеры.
- **А43.** Формирование потоков оптического излучения. Световоды. Принцип действия волоконного световода. Волоконно-оптические линии.
- **А44.** Источники рентгеновского излучения. Принцип действия рентгеновской трубки. Монохроматизация рентгеновского излучения. Источники γ-излучения.
- **А45.** Приемно-усилительные системы СВЧ-излучения. Принцип действия лампы бегущей волны.
- **А46.** Приемники оптического излучения. Принципы действия фотоэлектронного умножителя, электронно-оптического преобразователя и фотодиода. Основные характеристики приемников оптического излучения.
- **А47.** Спектрометрия оптического излучения. Принципы действия спектральных приборов: дисперсионных призм и дифракционных решеток. Основные характеристики оптических спектральных приборов.
- **А48.** Регистрация рентгеновского и γ-излучений. Детекторы излучений. Спектрометрия рентгеновского излучения.
- **А49.** Измерение энергии  $\gamma$ -излучения с применением черенковских счетчиков полного поглощения, счетчиков, действие которых основано на перехо́дном излучении.
- **А50.** Природа и основные характеристики корпускулярного излучения. Характеристики корпускулярного излучения как потока частиц: эмиттанс, первеанс. Акцептанс.
- А51. Принцип действия электронных источников. Электронная эмис-

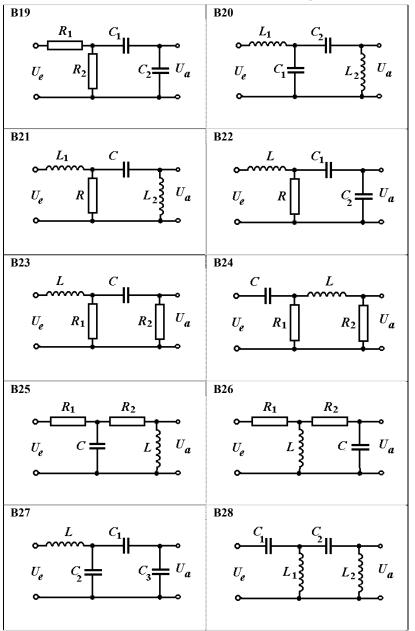
- сия. Электронная пушка.
- **А52.** Принцип действия ионных источников. Ионизация молекул газов. Газовые разряды. Схема высокочастотного ионного источника.
- **А53.** Формирование потоков и монохроматизация корпускулярного излучения.
- **А54.** Фокусировка корпускулярного излучения. Электростатические и магнитные линзы.
- **А55.** Регистрация корпускулярного излучения. Детекторы и счетчики корпускулярного излучения.
- **А56.** Спектральный анализ корпускулярного излучения. Массспектрометры.
- **А57.** Спектральный анализ корпускулярного излучения. Электростатические бездисперсионные и дисперсионные энергоанализаторы.
- **А58.** Спектральный анализ корпускулярного излучения. Полупроводниковые детекторы-энергоанализаторы.
- **А59.** Временно́е уравнение Шрёдингера. Уравнение Шрёдингера для стационарных состояний квантовой системы.
- **А60.** Особенности решения уравнения Шрёдингера для атома водорода. Собственные значения энергии атома. Схема энергетических уровней и излучательных переходов атома водорода.
- **А61.** Собственные волновые функции атома. Атомные электронные орбитали. Квантовые числа.
- **А62.** Квантовые числа. Спин и собственный магнитный момент электрона. Принцип Паули. Последовательность заполнения электронных оболочек в многоэлектронных атомах.
- **А63.** Спин и собственный магнитный момент электрона. Спинорбитальное взаимодействие. Полный момент электрона в атоме.
- **А64.** Физические основы оптической спектроскопии. Эмиссионный и атомно-абсорбционный спектральный анализ.
- **А65.** Ширина атомных энергетических уровней и естественная ширина спектральных линий.
- **Абб.** Спектры щелочных металлов. Схема энергетических уровней и излучательных переходов атома лития. Правила отбора.
- **А67.** Дублетная структура спектров щелочных металлов. Спинорбитальное взаимодействие.
- **А68.** Спин-орбитальное взаимодействие. Мультиплетность энергетических уровней атомов и атомных спектров.
- **А69.** Расщепление энергетических уровней атомов в магнитном поле. Эффект Зе́емана. Эффект Па́шена Бака.
- **А70.** Магнитный резонанс. Электронный парамагнитный резонанс. Принцип действия радиоспектрометра.
- А71. Эффект Штарка. Вырождение энергетических уровней атомов.

- Кратность вырождения. Снятие вырождения.
- А72. Природа характеристического рентгеновского электромагнитного излучения. Спектральные серии рентгеновского излучения атомов.
- **А73.** Физические основы рентгеновского спектрального микроанализа. Прицельный параметр. Эффективное сечение взаимодействия.
- А74. Физические основы рентгеновской фотоэлектронной спектроскопии. Принцип действия фотоэлектронного спектрометра.
- **А75.** Фотоэлектронные спектры. Обработка спектров. Качественный и количественный анализ состава веществ методом рентгеновской фотоэлектронной спектроскопии.
- А76. Оже-эффект. Физические основы оже-электронной спектроскопии.
- А77. Типы ядерных взаимодействий и соответствующие ядернофизические методы измерения состава веществ.
- **А78.** Физические основы спектроскопии резерфордовского обратного рассеяния.
- **А79.** Измерение состава веществ методом резерфордовского обратного рассеяния. Спектры резерфордовского обратного рассеяния. Обработка спектров.
- А80. Основы ядерного активационного микроанализа.
- А81. Природа и основные характеристики акустического излучения.
- **А82.** Источники и приемники акустического излучения. Электроакустические преобразователи и их характеристики.
- **А83.** Формирование акустических полей и потоков акустического излучения. Акустические линзы, зеркала, волноводы и концентраторы.
- **А84.** Акустическое волновое сопротивление среды. Принципы измерений с применением акустического излучения.

#### 3.2. Задачи контрольных заданий


# 3.2.1. Построение физико-математических моделей и блок-схем преобразования сигналов; расчет характеристик измерительных преобразователей на основе блок-схем


Постройте физико-математические модели и блок-схемы преобразования сигналов в измерительных преобразователях напряжения на основе цепей переменного тока, электрические схемы которых приведены в табл. 26 и 27 (соответственно задания  ${\bf B}$  и  ${\bf C}$ ). На вход преобразователей подается входное напряжение  $U_e$ , которое преобразуется в выходное напряжение  $U_a$ . При построении блок-схем сигналов изобразите измерительные преобразования на каждом из элементов электрической цепи. На основе блок-схем получите матема-


тические выражения для расчета передаточных функций G(p) и комплексных коэффициентов передачи  $G(i\omega)$  преобразователей.

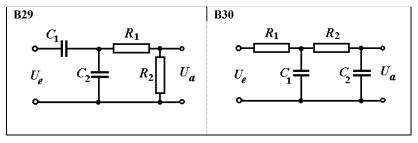
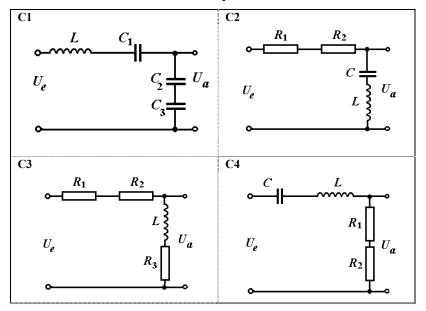
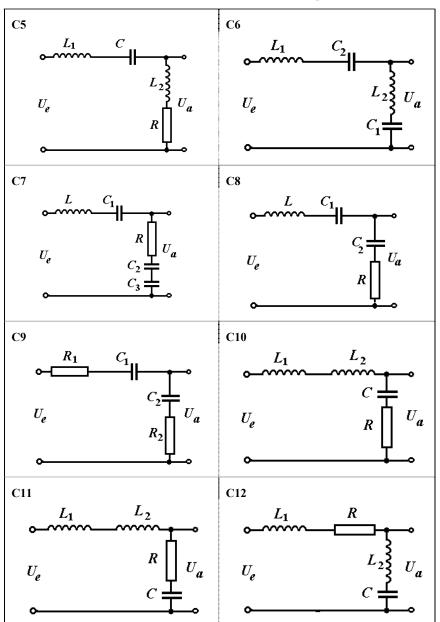
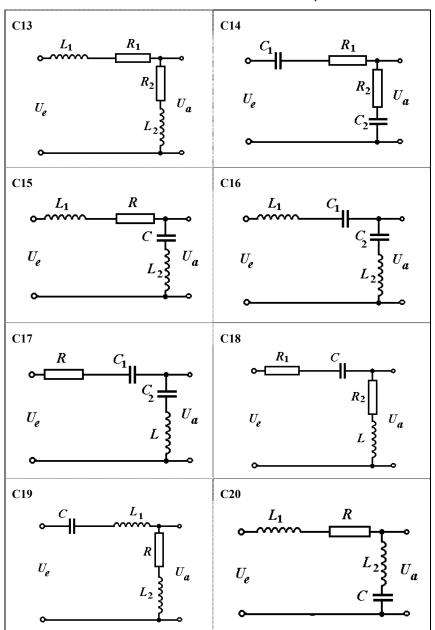

При выполнении заданий **B** и **C** следует использовать методику, изложенную на с. 24–27 настоящего пособия. Выражения для определения передаточных функций G(p) выводятся в соответствии с формулой (24). Формулы для вычисления значений комплексных коэффициентов передачи  $G(i\omega)$  преобразователей получаются из выражений G(p) заменой  $p=i\omega$ .

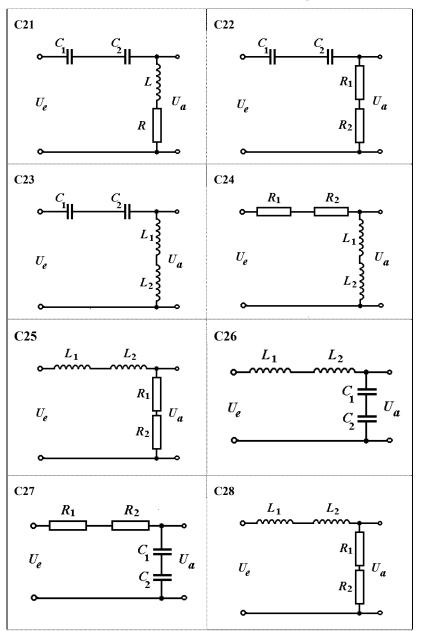
Таблица 26 Электрические схемы преобразователей напряжения на основе цепей переменного тока

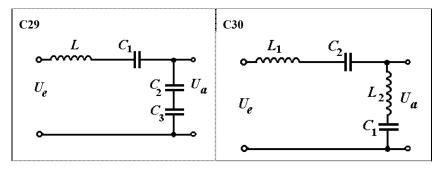






При построении физико-математических моделей преобразователей, электрические схемы которых приведены в табл. 27, (задания  ${\bf C}$ ) необходимо принять во внимание, что все элементы электрической цепи соединены последовательно. Входное напряжение  $U_e$  приложено ко всем элементам цепи; разветвлений электрического тока в цепи нет. При построении блок-схем преобразования сигналов требуется изобразить измерительные преобразования на каждом из элементов электрической цепи без предварительного преобразования цепи и замены ее на эквивалентную.


Таблица 27 Электрические схемы преобразователей напряжения на основе цепей переменного тока











## 3.2.2. Определение характеристик оптических спектральных приборов

Основными характеристиками способности дисперсионных призм и дифракционных решеток к пространственному разделению спектральных линий с близкими значениями длин волн в оптических спектрах являются угловая дисперсия и разрешающая способность (см. п. 2.4; пример 12). При выполнении данного задания необходимо решить задачу, общее условие которой приведено ниже, и определить ряд параметров, характеризующих дифракционную решетку при ее использовании в качестве оптического спектрального прибора.

#### Задача

Имеется прозрачная дифракционная решетка, ширина заштрихованной области которой W. Период решетки d, ширина каждой из ее прозрачных щелей b. m — порядок спектра. Максимально возможный порядок спектра, в котором с применением решетки можно наблюдать достаточно интенсивную спектральную линию с длиной волны  $\lambda$ , равен  $m_{\text{max}}$ .  $\beta$  — угол отклонения света, под которым наблюдается спектральная линия с длиной волны  $\lambda$  в спектре максимального порядка. D — угловая дисперсия решетки в спектре m-го порядка; R — ее разрешающая способность;  $R_{\text{max}}$  — максимальное значение разрешающей способности решетки для света с заданной длиной волны  $\lambda$ ;  $\Delta\lambda$  — минимальная разность длин волн соседних спектральных линий с длиной волны, близкой к значению  $\lambda$ , которые могут быть разрешены дифракционной решеткой.

В соответствии с вариантом задания **D** определите значения неизвестных величин (табл. 28).

 Таблица 28

 Варианты задания по определению характеристик дифракционной решетки

| Вари-<br>ант | W, см | d, мкм | <i>b</i> , мкм | λ, нм | m | $D$ , ${ m HM}^{-1}$  | $m_{ m max}$ | β,<br>град. | $R_{\rm max}$ | Δλ, нм |
|--------------|-------|--------|----------------|-------|---|-----------------------|--------------|-------------|---------------|--------|
| D1           | 2,70  | 4,5    | 1,2            | 540   | 3 | ?                     | ?            | ?           | ?             | ?      |
| D2           | 2,50  | ?      | 1,5            | 500   | 2 | 4,08·10 <sup>-4</sup> | ?            | ?           | ?             | ?      |
| D3           | 2,34  | 3,6    | 1,1            | 680   | 2 | ?                     | ?            | ?           | ?             | ?      |
| D4           | 2,00  | 4,0    | 1,2            | ?     | 3 | 8,59·10 <sup>-4</sup> | ?            | ?           | ?             | ?      |
| D5           | 2,73  | ?      | 1,0            | 440   | 3 | $7,52 \cdot 10^{-4}$  | ?            | ?           | ?             | ?      |
| D6           | 2,64  | 4,8    | 1,1            | 620   | 3 | ?                     | ?            | ?           | ?             | ?      |
| <b>D7</b>    | 2,75  | 5,5    | 1,5            | ?     | 2 | $3,75 \cdot 10^{-4}$  | ?            | ?           | ?             | ?      |
| D8           | 2,86  | ?      | 1,2            | 480   | 4 | 8,28.10 <sup>-4</sup> | ?            | ?           | ?             | ?      |
| D9           | 2,66  | 3,8    | 1,2            | 520   | 2 | ?                     | ?            | ?           | ?             | ?      |
| D10          | 2,97  | 5,4    | 1,3            | ?     | 3 | 5,89·10 <sup>-4</sup> | ?            | ?           | ?             | ?      |

Продолжение табл. 28

| Вари- | <i>W</i> , см | d, мкм | <i>b</i> , мкм | λ, нм | m | $D$ , нм $^{-1}$      | $m_{ m max}$ | β,<br>град. | $R_{\rm max}$ | Δλ, нм |
|-------|---------------|--------|----------------|-------|---|-----------------------|--------------|-------------|---------------|--------|
| D11   | 2,40          | 3,7    | 1,1            | ?     | 3 | 8,62·10 <sup>-4</sup> | ?            | ?           | ?             | ?      |
| D12   | 3,00          | 5,3    | 1,3            | 690   | 4 | ?                     | ?            | ?           | ?             | ?      |
| D13   | 2,56          | 4,1    | 1,5            | ?     | 2 | 5,01·10 <sup>-4</sup> | ?            | ?           | ?             | ?      |
| D14   | 2,74          | 4,9    | 1,4            | 660   | 3 | ?                     | ?            | ?           | ?             | ?      |
| D15   | 1,88          | 3,5    | 1,5            | 430   | 2 | ?                     | ?            | ?           | ?             | ?      |
| D16   | 3,20          | 5,4    | 1,2            | ?     | 4 | 8,49·10 <sup>-4</sup> | ?            | ?           | ?             | ?      |
| D17   | 2,65          | ?      | 1,1            | 450   | 3 | 8,20.10 <sup>-4</sup> | ?            | ?           | ?             | ?      |
| D18   | 2,90          | 5,1    | 1,6            | 640   | 3 | ?                     | ?            | ?           | ?             | ?      |
| D19   | 2,85          | ?      | 1,4            | 475   | 2 | 4,66·10 <sup>-4</sup> | ?            | ?           | ?             | ?      |
| D20   | 3,25          | 6,0    | 1,2            | ?     | 4 | 7,54·10 <sup>-4</sup> | ?            | ?           | ?             | ?      |

### Окончание табл. 28

| Вари- | <i>W</i> , см | d, мкм | <i>b</i> , мкм | λ, нм | m | $D$ , $\text{HM}^{-1}$ | $m_{ m max}$ | β,<br>град. | $R_{ m max}$ | Δλ, нм |
|-------|---------------|--------|----------------|-------|---|------------------------|--------------|-------------|--------------|--------|
| D21   | 2,40          | ?      | 1,2            | 460   | 3 | 8,47·10 <sup>-4</sup>  | ?            | ?           | ?            | ?      |
| D22   | 3,00          | 5,8    | 1,1            | 625   | 4 | ?                      | ?            | ?           | ?            | ?      |
| D23   | 2,56          | 3,2    | 0,9            | ?     | 2 | $6,59 \cdot 10^{-4}$   | ?            | ?           | ?            | ?      |
| D24   | 2,74          | ?      | 1,3            | 580   | 3 | 5,64·10 <sup>-4</sup>  | ?            | ?           | ?            | ?      |
| D25   | 2,88          | 4,6    | 1,1            | 575   | 3 | ?                      | ?            | ?           | ?            | ?      |

# 3.2.3. Моделирование распределений интенсивности рентгеновских спектральных линий

Постройте распределение по длинам волн интенсивности рентгеновских спектральных линий  $K_{\alpha}$ -излучения атомов элемента, соответствующего номеру задания (табл. 29). Максимальное значение интенсивности  $K_{\alpha 1}$ -линии примите равным единице ( $I_{1\max}=1$  отн. ед.); значение стандартного отклонения  $\sigma=0,0015$  Å. Отношение максимальных значений интенсивностей спектральных линий  $K_{\alpha 1}$  и  $K_{\alpha 2}$  примите равным 2:1.

Таблица 29 Варианты задания по моделированию распределений интенсивности рентгеновских спектральных линий  $K_{\alpha}$ -излучения атомов элементов

| Задание | Элемент | Задание | Элемент | Задание | Элемент |  |
|---------|---------|---------|---------|---------|---------|--|
| E1      | Si      | E16     | Rb      | E31     | Ce      |  |
| E2      | K       | E17     | Sr      | E32     | Nd      |  |
| E3      | Ca      | E18     | Y       | E33     | Gd      |  |
| E4      | Sc      | E19     | Zr      | E34     | Tb      |  |
| E5      | Ti      | E20     | Nb      | E35     | Dy      |  |
| E6      | V       | E21     | Mo      | E36     | Но      |  |
| E7      | Cr      | E22     | Ru      | E37     | Er      |  |
| E8      | Mn      | E23     | Rh      | E38     | Yb      |  |
| E9      | Fe      | E24     | Pd      | E39     | Hf      |  |
| E10     | Co      | E25     | Ag      | E40     | W       |  |
| E11     | Ni      | E26     | Cd      | E41     | Os      |  |
| E12     | Cu      | E27     | In      | E42     | Ir      |  |
| E13     | Zn      | E28     | Sn      | E43     | Au      |  |
| E14     | Ga      | E29     | Ва      | E44     | Pb      |  |
| E15     | Ge      | E30     | La      | E45     | Bi      |  |

# 3.2.4. Определение элементного состава поверхности образцов по фотоэлектронным спектрам

На рис. 25-54 приведены обзорные фотоэлектронные спектры, снятые при исследовании различных веществ. При выполнении каждого из заданий  $\mathbf{F}$  требуется определить элементный состав анализируемого слоя исследуемого вещества, а также оценить относительное содержание атомов элементов в этом слое.

Методика обработки обзорных фотоэлектронных спектров изложена в примере 15. Необходимо идентифицировать элементы, входящие в состав приповерхностного слоя исследуемого образца, и соответствующие спектральным линиям энергетические уровни атомов. Идентификация осуществляется сравнением экспериментальных значений энергий связи с табличными (см. [1], прил. 8). Как и в примере 15, в состав всех анализируемых слоев входят атомы углерода и кислорода, которым соответствуют спектральные линии со значениями энергий связи, близкими к значениям 284 и 532 эВ соответственно.

При идентификации спектральных линий следует иметь ввиду, что в некоторых спектрах из-за недостаточной разрешающей способности энергоанализатора спектральные дублеты, обусловленные расщеплением энергетических уровней атомов на подуровни вследствие спин-орбитального взаимодействия, не разрешены.

Обратите внимание на наличие дополнительных спектральных линий, обусловленных химическими сдвигами, а также на линии значительной ширины. Широкая спектральная линия, скорее всего, представляет собой набор не разрешаемых спектрометром нескольких близких по энергиям линий, наблюдаемых при наличии в анализируемом слое атомов одного и того же элемента в различных валентных состояниях.

Кроме того, следует выписать из прил. 9 [1] значения сечений фотоионизации всех идентифицированных энергетических уровней атомов, а также определить интенсивности наиболее интенсивных спектральных линий, характерных для каждого из элементов.

По формуле (64) рассчитайте оценочные значения относительного содержания атомов каждого из элементов, входящих в состав анализируемого слоя, по отношению к углероду.

Ход обработки спектров должен сопровождаться краткими, но исчерпывающими пояснениями. Результаты обработки нужно представить по форме табл. 4, 5. В заключение следует сделать вывод об элементном составе анализируемого поверхностного слоя исследуемого вещества и самого вещества.

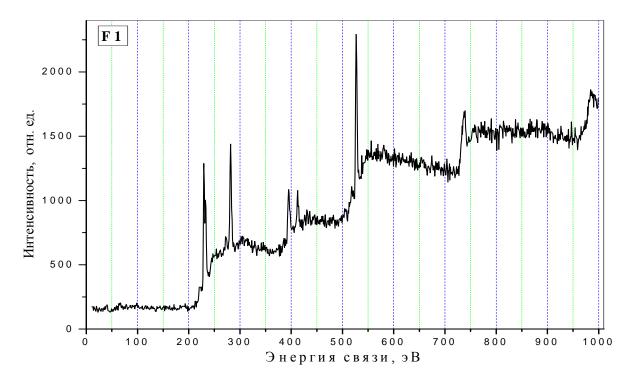



Рис. 25. Фотоэлектронный спектр к заданию **F1** 

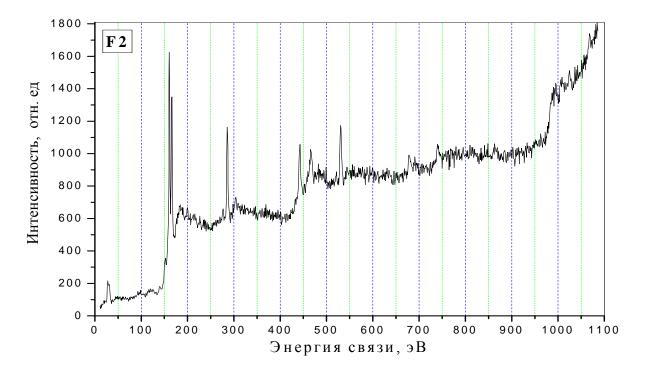



Рис. 26. Фотоэлектронный спектр к заданию **F2** 

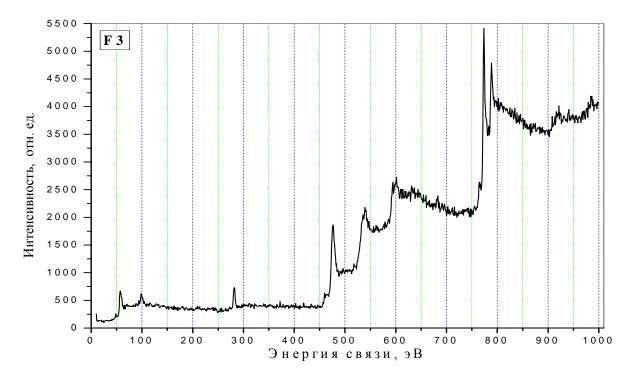



Рис. 27. Фотоэлектронный спектр к заданию **F3** 

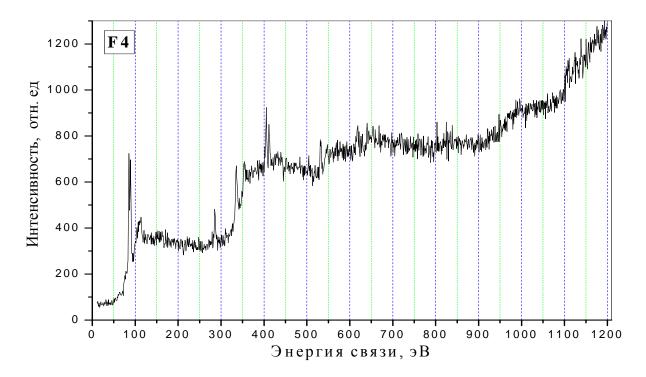



Рис. 28. Фотоэлектронный спектр к заданию **F4** 

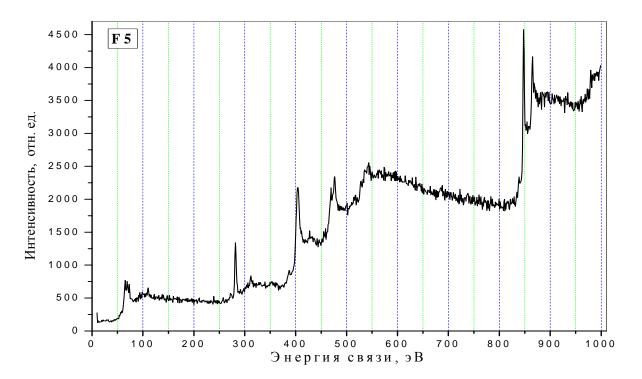



Рис. 29. Фотоэлектронный спектр к заданию **F5** 

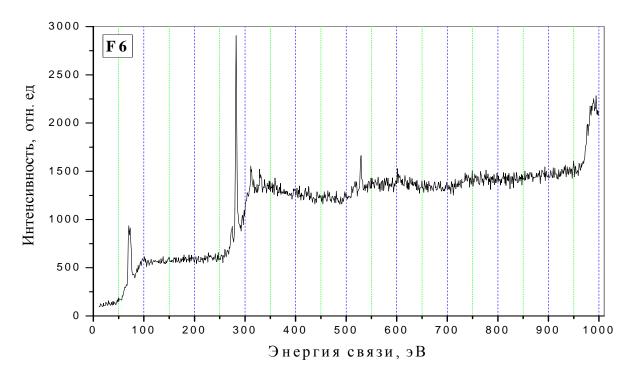



Рис. 30. Фотоэлектронный спектр к заданию **F6** 

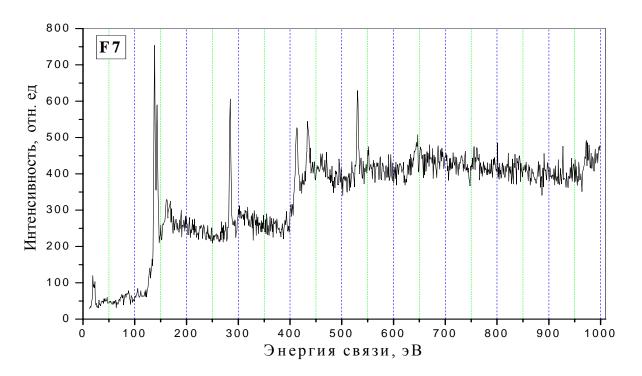



Рис. 31. Фотоэлектронный спектр к заданию F7

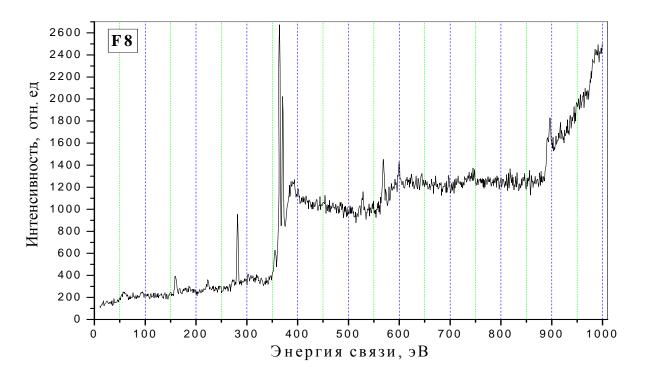



Рис. 32. Фотоэлектронный спектр к заданию **F8** 

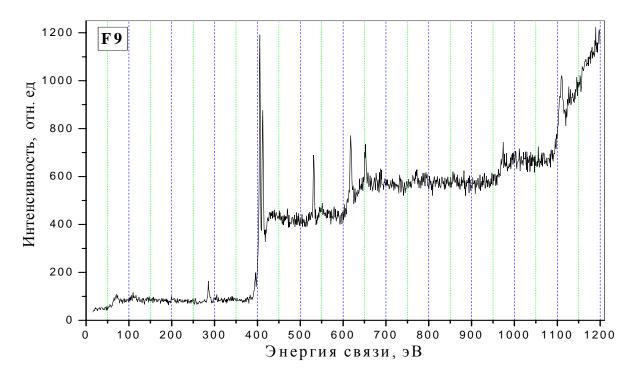



Рис. 33. Фотоэлектронный спектр к заданию F9

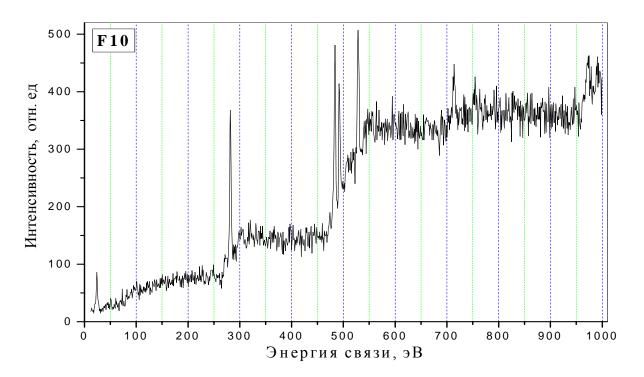



Рис. 34. Фотоэлектронный спектр к заданию **F10** 

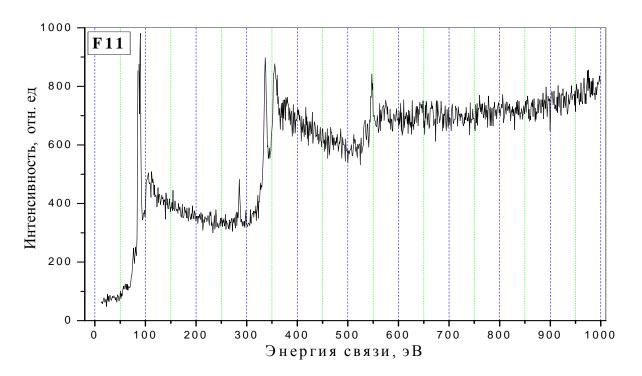



Рис. 35. Фотоэлектронный спектр к заданию **F11** 

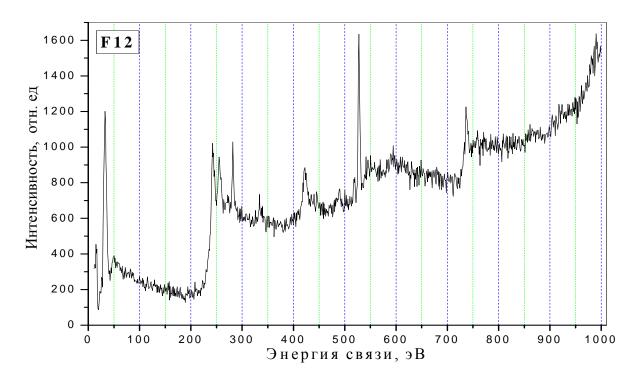



Рис. 36. Фотоэлектронный спектр к заданию **F12** 

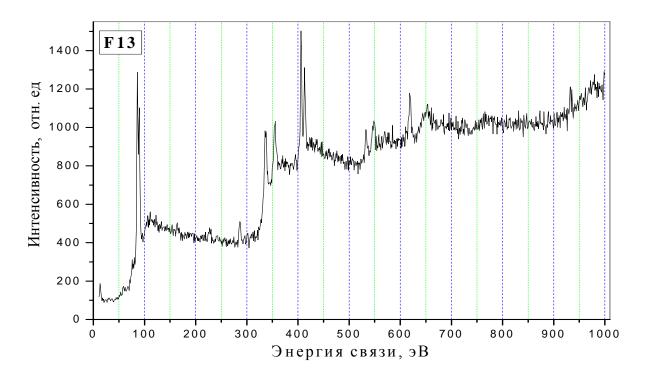



Рис. 37. Фотоэлектронный спектр к заданию **F13** 

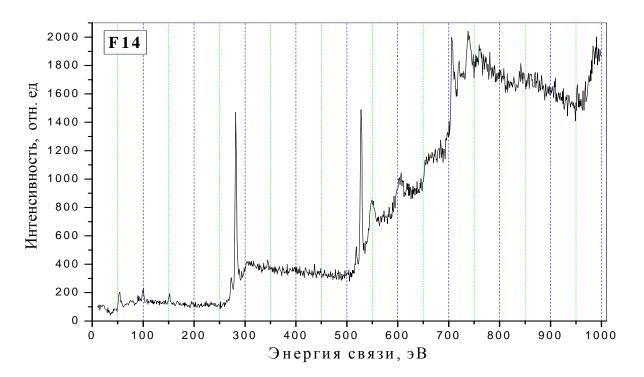



Рис. 38. Фотоэлектронный спектр к заданию **F14** 

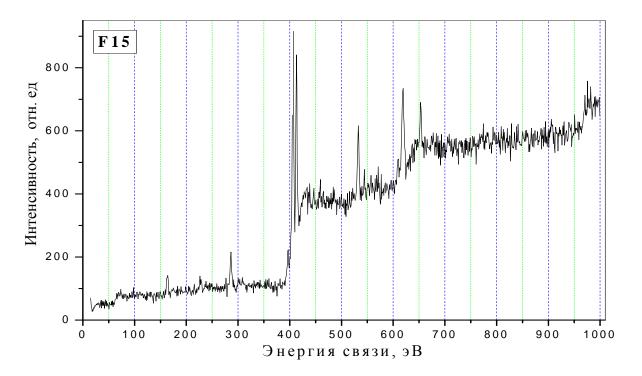



Рис. 39. Фотоэлектронный спектр к заданию **F15** 



Рис. 40. Фотоэлектронный спектр к заданию **F16** 

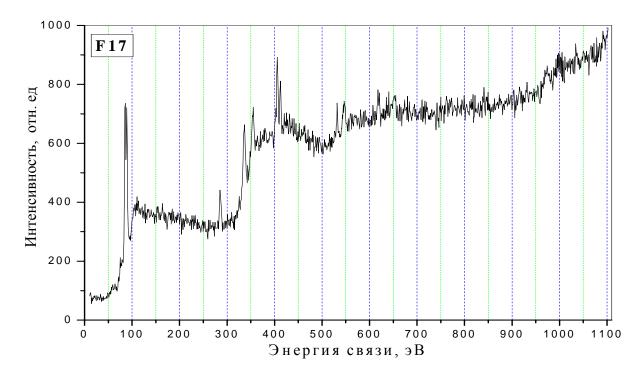



Рис. 41. Фотоэлектронный спектр к заданию **F17** 

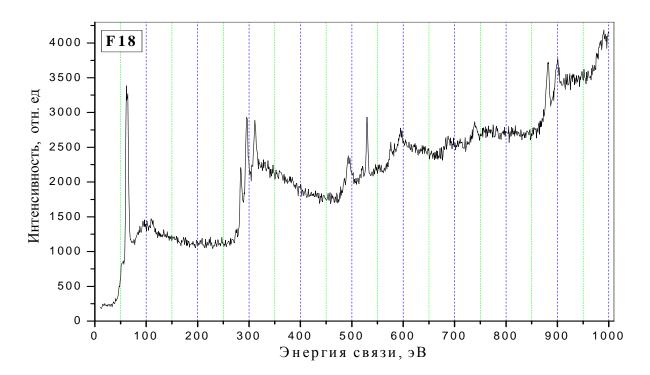



Рис. 42. Фотоэлектронный спектр к заданию **F18** 

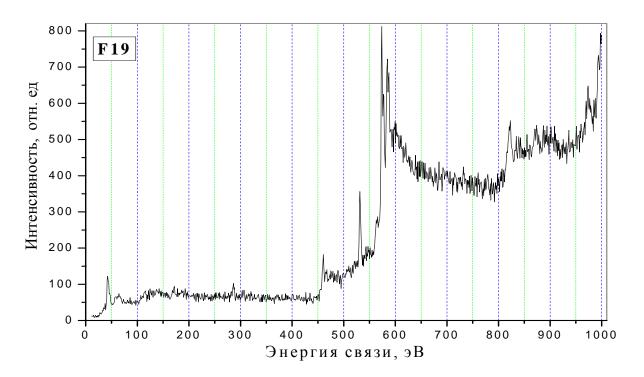



Рис. 43. Фотоэлектронный спектр к заданию **F19** 

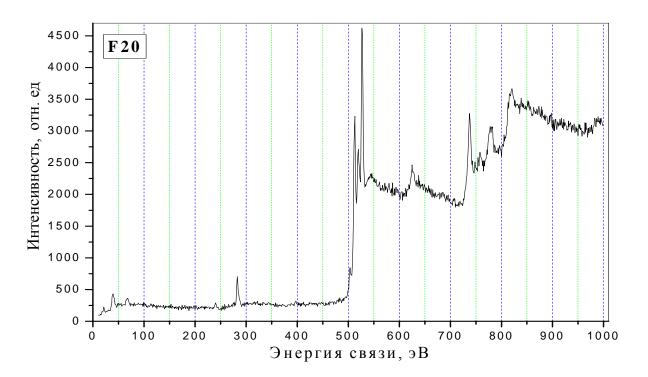



Рис. 44. Фотоэлектронный спектр к заданию **F20** 

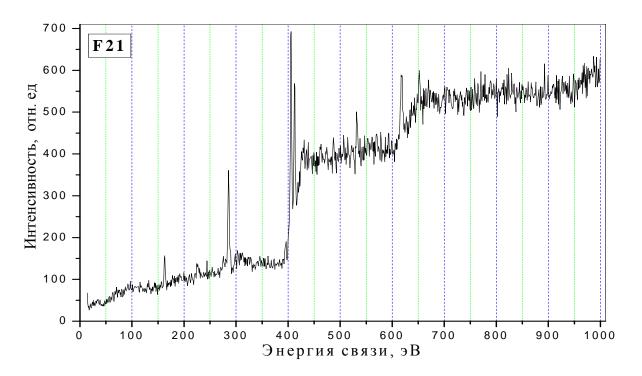



Рис. 45. Фотоэлектронный спектр к заданию **F21** 

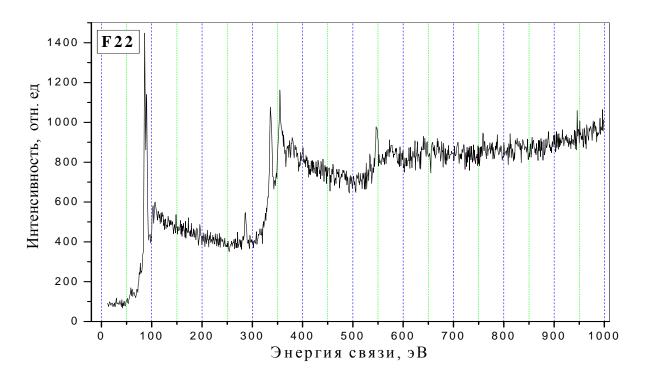



Рис. 46. Фотоэлектронный спектр к заданию **F22** 

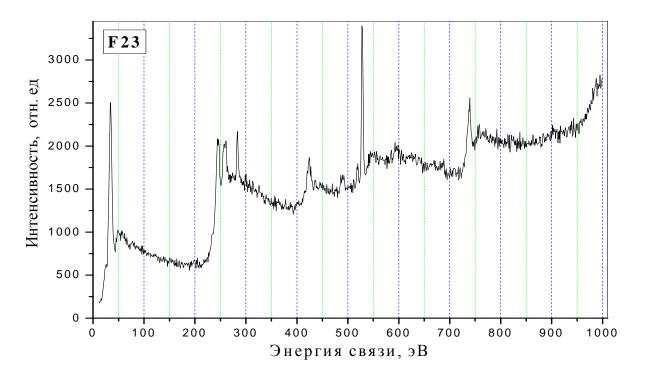



Рис. 47. Фотоэлектронный спектр к заданию **F23** 

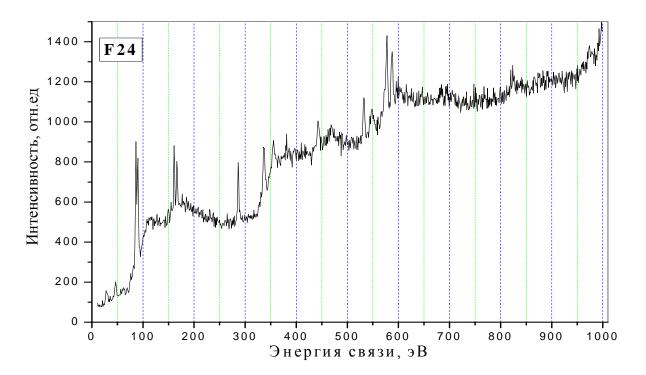



Рис. 48. Фотоэлектронный спектр к заданию **F24** 

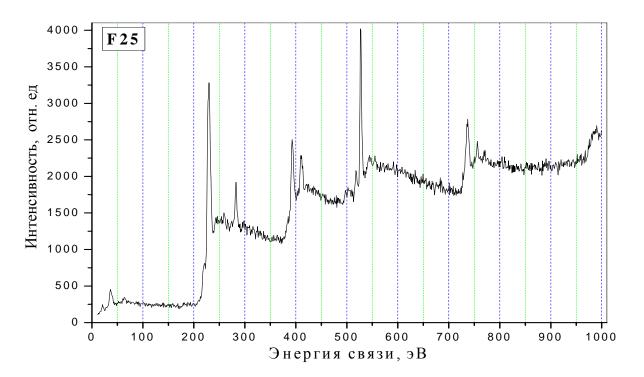



Рис. 49. Фотоэлектронный спектр к заданию **F25** 

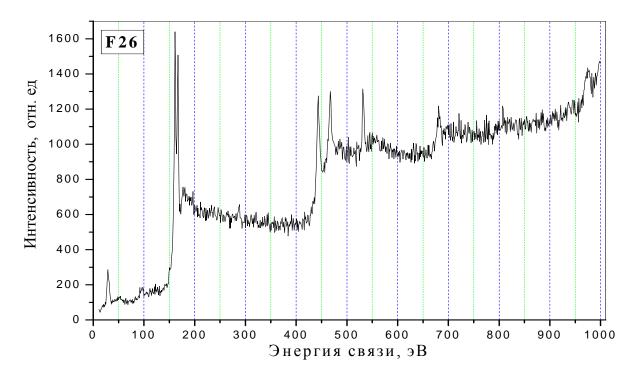



Рис. 50. Фотоэлектронный спектр к заданию **F26** 

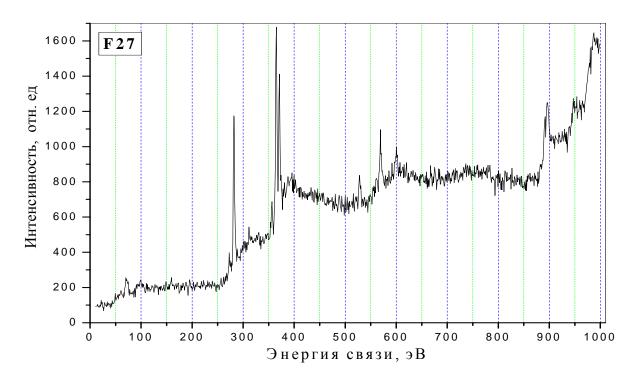



Рис. 51. Фотоэлектронный спектр к заданию **F27** 

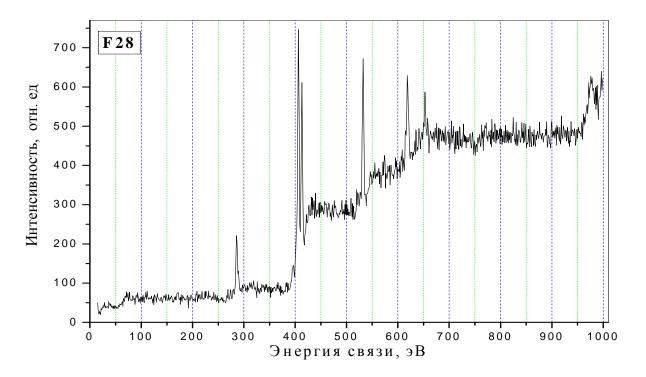



Рис. 52. Фотоэлектронный спектр к заданию **F28** 

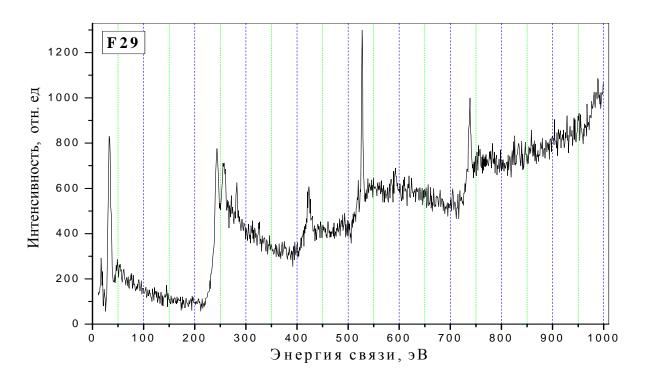



Рис. 53. Фотоэлектронный спектр к заданию **F29** 

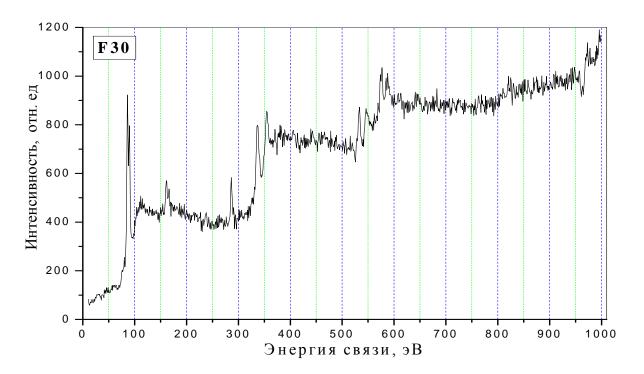



Рис. 54. Фотоэлектронный спектр к заданию **F30** 

# 3.2.5. Определение состава поверхности образцов по спектрам резерфордовского обратного рассеяния

Спектры резерфордовского обратного рассеяния ионов <sup>4</sup>Не от поверхности исследуемых веществ представлены в заданиях **G** данного подраздела в виде распечаток. Все спектры сняты при угле рассеяния  $\theta = 170^\circ$ ; углы между направлением анализирующего ионного пучка и нормалью к поверхности образцов  $\theta_1 = 0^\circ$  и  $\theta_2 = 10^\circ$ .

Перед выполнением заданий **G** требуется изучить п. 2.5.1 учебного пособия [1], а также проработать примеры 17–21, приведенные в настоящем пособии. Обработку спектров резерфордовского обратного рассеяния следует проводить по схеме, использованной в примерах 17–21, представляя результаты расчетов в виде аналогичных таблиц и графических зависимостей.

При выполнении задания вначале необходимо построить спектр обратного рассеяния, откладывая по оси абсцисс номер канала многоканального анализатора, а по оси ординат — выход рассеяния. Затем с использованием данных для калибровки энергетической шкалы спектрометра, значений энергии  $E_0$  ионов <sup>4</sup>Не и кинематического фактора рассеяния определяется энергетическая ширина канала  $\delta E$  и идентифицируются сигналы, соответствующие каждому из элементов, входящих в состав исследуемого образца. Далее по значению  $\delta E$  с использованием привязки к сигналу одного из элементов осуществляется калибровка шкалы спектрометра по энергиям. По формуле (66) рассчитываются значения фактора тормозного сечения ионов <sup>4</sup>Не в тормозящей среде при их рассеянии на ядрах атомов элементов, входящих в состав образца, а затем определяются значения  $\delta t$  и строятся шкалы глубин для каждого из элементов, входящих в состав анализируемого слоя.

В каждом задании приведен перечень элементов, входящих в состав исследуемого образца, а также указан основной материал, являющийся средой, тормозящей анализирующее корпускулярное излучение (ионы <sup>4</sup>He) на пути в глубь образца и обратно к поверхности.

Кроме того, содержатся конкретные требования, которые необходимо выполнить. В заключение следует обобщить информацию, полученную при обработке спектра, и сделать выводы о составе анализируемого вещества.

#### Задание G1

Элементы, входящие в состав анализируемого образца:

кислород, кремний, титан.

Тормозящая среда: кремний.

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | 0   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 85 | 123 | 192 | 326 |

## Распечатка спектра обратного рассеяния:

| №      |      |      |      | Bir  | VOII Dace | edillia i | DATE. |      |      |      |
|--------|------|------|------|------|-----------|-----------|-------|------|------|------|
| канала |      |      |      | Бы.  | ход расс  | сяния, и  | IMII. |      |      |      |
| 60.    | 6290 | 6347 | 6031 | 6128 | 6077      | 5865      | 5990  | 5915 | 5793 | 5720 |
| 70.    | 5828 | 5768 | 5635 | 5669 | 5726      | 5496      | 5601  | 5514 | 5508 | 5473 |
| 80.    | 5270 | 5321 | 5367 | 5266 | 5261      | 5308      | 5153  | 5036 | 5116 | 5095 |
| 90.    | 5169 | 5048 | 5005 | 4909 | 5018      | 4892      | 4939  | 5013 | 4769 | 4878 |
| 100.   | 4805 | 4798 | 4707 | 4830 | 4756      | 4760      | 4802  | 4718 | 4677 | 4719 |
| 110.   | 4568 | 4729 | 4752 | 4664 | 4845      | 4819      | 4635  | 4629 | 4503 | 4601 |
| 120.   | 4656 | 4691 | 4658 | 4540 | 4716      | 4514      | 4461  | 4368 | 4353 | 4407 |
| 130.   | 4410 | 4288 | 4304 | 4300 | 4394      | 4422      | 4377  | 4402 | 4227 | 4211 |
| 140.   | 4217 | 4210 | 4213 | 4180 | 4236      | 4142      | 4198  | 4276 | 4184 | 4113 |
| 150.   | 4100 | 4131 | 4047 | 4087 | 3966      | 4044      | 4054  | 3923 | 3999 | 4185 |
| 160.   | 4073 | 4044 | 3896 | 3937 | 3949      | 4068      | 3913  | 3967 | 3861 | 3814 |
| 170.   | 3859 | 3943 | 3931 | 3922 | 3783      | 3841      | 3778  | 3660 | 3750 | 3770 |
| 180.   | 3659 | 3684 | 3607 | 3613 | 3236      | 3120      | 2425  | 1887 | 1282 | 854  |
| 190.   | 479  | 348  | 260  | 185  | 98        | 95        | 57    | 35   | 27   | 23   |
| 200.   | 19   | 16   | 15   | 21   | 20        | 7         | 13    | 9    | 13   | 13   |
| 210.   | 14   | 10   | 17   | 6    | 18        | 13        | 14    | 17   | 13   | 12   |
| 220.   | 25   | 14   | 14   | 17   | 25        | 30        | 29    | 18   | 35   | 35   |
| 230.   | 43   | 33   | 51   | 76   | 106       | 131       | 197   | 331  | 566  | 793  |
| 240.   | 1273 | 2050 | 2789 | 3422 | 4233      | 4696      | 4754  | 5044 | 4703 | 4163 |
| 250.   | 3357 | 2561 | 1685 | 1057 | 570       | 268       | 174   | 82   | 50   | 34   |
| 260.   | 28   | 16   | 17   | 17   | 8         | 4         | 5     | 9    | 4    | 4    |
| 270.   | 2    | 3    | 6    | 5    | 7         | 3         | 5     | 4    | 4    | 6    |
| 280.   | 2    | 3    | 2    | 2    | 1         | 4         | 4     | 3    | 1    |      |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для титана и кремния. Определите толщину слоя, содержащего титан. Рассчитайте слоевые содержания титана и кислорода в титансодержащем слое и оцените его стехиометрический состав.

Задание **G2** Элементы, входящие в состав анализируемого образца: кислород, кремний, тантал.

Тормозящая среда: кремний.

## Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 87 | 126 | 194 | 329 |

# Распечатка спектра обратного рассеяния:

| №      |       |       |       | Dri   | VOT BOOO | 2011110 111 | m    |       |       |       |
|--------|-------|-------|-------|-------|----------|-------------|------|-------|-------|-------|
| канала |       |       |       |       | ход расс |             |      |       |       |       |
| 50     | 7601  | 7614  | 7426  | 7420  | 7195     | 7050        | 7142 | 6961  | 6941  | 6761  |
| 60.    | 6762  | 6788  | 6667  | 6735  | 6512     | 6397        | 6417 | 6306  | 6378  | 6295  |
| 70.    | 6101  | 6129  | 6116  | 6065  | 6014     | 5979        | 5961 | 5960  | 5898  | 5789  |
| 80.    | 5681  | 5678  | 5488  | 5506  | 5692     | 5502        | 5570 | 5453  | 5612  | 5556  |
| 90.    | 5369  | 5437  | 5410  | 5460  | 5278     | 5289        | 5286 | 5250  | 5247  | 5262  |
| 100.   | 5228  | 5276  | 5233  | 5072  | 5155     | 5219        | 5056 | 5142  | 5066  | 5057  |
| 110.   | 4903  | 5156  | 4936  | 4997  | 4963     | 4970        | 4979 | 4847  | 5064  | 5044  |
| 120.   | 5173  | 5177  | 4972  | 5136  | 4977     | 4976        | 4818 | 4742  | 4743  | 4854  |
| 130.   | 4866  | 4708  | 4769  | 4764  | 4720     | 4748        | 4751 | 4641  | 4550  | 4704  |
| 140.   | 4573  | 4668  | 4664  | 4761  | 4762     | 4687        | 4640 | 4584  | 4469  | 4568  |
| 150.   | 4587  | 4625  | 4471  | 4489  | 4544     | 4548        | 4511 | 4575  | 4402  | 4442  |
| 160.   | 4530  | 4644  | 4324  | 4515  | 4527     | 4475        | 4470 | 4440  | 4447  | 4495  |
| 170.   | 4115  | 4265  | 4341  | 4262  | 4331     | 4212        | 4362 | 4238  | 4247  | 4297  |
| 180.   | 4217  | 4319  | 4164  | 4121  | 4135     | 4065        | 3955 | 3899  | 3592  | 3365  |
| 190.   | 2677  | 1933  | 1320  | 852   | 472      | 305         | 229  | 162   | 126   | 86    |
| 200.   | 63    | 42    | 24    | 26    | 21       | 27          | 33   | 21    | 18    | 27    |
| 210.   | 28    | 23    | 28    | 20    | 21       | 19          | 21   | 26    | 16    | 19    |
| 220.   | 22    | 17    | 17    | 23    | 23       | 27          | 25   | 47    | 46    | 77    |
| 230.   | 82    | 108   | 122   | 108   | 103      | 70          | 53   | 35    | 27    | 22    |
| 240.   | 16    | 29    | 17    | 13    | 16       | 11          | 14   | 16    | 24    | 17    |
| 250.   | 17    | 17    | 18    | 25    | 18       | 23          | 18   | 30    | 43    | 59    |
| 260.   | 62    | 72    | 86    | 77    | 63       | 62          | 43   | 26    | 30    | 27    |
| 270.   | 16    | 17    | 17    | 17    | 17       | 12          | 15   | 26    | 21    | 21    |
| 280.   | 14    | 15    | 25    | 29    | 26       | 23          | 20   | 31    | 25    | 26    |
| 290.   | 28    | 35    | 48    | 40    | 47       | 46          | 55   | 58    | 64    | 62    |
| 300.   | 48    | 75    | 96    | 127   | 145      | 184         | 191  | 262   | 344   | 466   |
| 310.   | 561   | 753   | 1129  | 1769  | 3042     | 5444        | 9528 | 15198 | 21599 | 26663 |
| 320.   | 30197 | 31232 | 29710 | 26256 | 20745    | 13965       | 7702 | 3757  | 1626  | 697   |
| 330.   | 385   | 201   | 145   | 86    | 58       | 57          | 39   | 27    | 22    | 13    |
| 340.   | 13    | 7     | 13    | 15    | 10       | 10          | 7    | 6     | 9     | 4     |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для тантала и кремния. Определите толщину слоя, содержащего тантал. Рассчитайте слоевые содержания тантала и кислорода в танталсодержащем слое и оцените его стехиометрический состав.

Задание **G3** Элементы, входящие в состав анализируемого образца:

кремний, мышьяк.

Тормозящая среда: кремний.

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Si  | In  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 91 | 129 | 201 | 310 |

### Распечатка спектра обратного рассеяния:

| No     |      |      |      |      |          |          |      |      |      |      |
|--------|------|------|------|------|----------|----------|------|------|------|------|
| канала |      |      |      | Вы   | ход расс | еяния, и | ІМП. |      |      |      |
| 60.    | 8993 | 8787 | 8669 | 8538 | 8436     | 8308     | 8199 | 8039 | 7895 | 7767 |
| 70.    | 7870 | 7635 | 7515 | 7545 | 7380     | 7370     | 7327 | 7171 | 7216 | 7045 |
|        |      |      |      |      |          |          |      |      |      |      |
| 80.    | 7039 | 6796 | 6774 | 6747 | 6701     | 6549     | 6490 | 6422 | 6352 | 6398 |
| 90.    | 6183 | 6262 | 6276 | 6282 | 6167     | 6115     | 6210 | 6012 | 6072 | 5938 |
| 100.   | 5987 | 5818 | 6035 | 5792 | 5994     | 5700     | 5806 | 5765 | 5687 | 5794 |
| 110.   | 5560 | 5609 | 5551 | 5691 | 5456     | 5500     | 5304 | 5573 | 5479 | 5409 |
| 120.   | 5312 | 5367 | 5395 | 5220 | 5325     | 5207     | 5372 | 5100 | 5407 | 5202 |
| 130.   | 5029 | 5160 | 5185 | 5170 | 5042     | 5168     | 5037 | 5090 | 5076 | 4852 |
| 140.   | 5030 | 4936 | 5077 | 4882 | 4855     | 4964     | 4903 | 4896 | 4883 | 4911 |
| 150.   | 4775 | 4864 | 4793 | 4819 | 4820     | 4821     | 4795 | 4740 | 4685 | 4670 |
| 160.   | 4627 | 4747 | 4766 | 4539 | 4684     | 4599     | 4369 | 4450 | 4573 | 4546 |
| 170.   | 4406 | 4478 | 4529 | 4322 | 4475     | 4470     | 4436 | 4375 | 4385 | 4404 |
| 180.   | 4365 | 4383 | 4319 | 4225 | 4416     | 4258     | 4255 | 4248 | 4132 | 4245 |
| 190.   | 4100 | 4013 | 4116 | 4152 | 4002     | 4072     | 4131 | 4104 | 3929 | 3797 |
| 200.   | 3182 | 2257 | 1137 | 591  | 308      | 258      | 198  | 151  | 100  | 86   |
| 210.   | 46   | 35   | 20   | 18   | 8        | 19       | 17   | 9    | 9    | 19   |
| 220.   | 11   | 9    | 7    | 6    | 8        | 8        | 9    | 12   | 11   | 9    |
| 230.   | 15   | 6    | 7    | 3    | 2        | 4        | 9    | 5    | 3    | 6    |
| 240.   | 11   | 6    | 4    | 4    | 7        | 2        | 3    | 4    | 3    | 3    |
| 250.   | 2    | 3    | 2    | 2    | 3        | 3        | 10   | 6    | 3    | 3    |
| 260.   | 4    | 4    | 3    | 7    | 9        | 4        | 3    | 6    | 14   | 20   |
| 270.   | 22   | 40   | 37   | 72   | 74       | 104      | 119  | 154  | 166  | 190  |
| 280.   | 190  | 181  | 173  | 146  | 79       | 53       | 48   | 19   | 11   | 6    |
| 290.   | 9    | 3    | 2    | 4    | 4        | 3        | 2    | 2    |      |      |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для мышьяка и кремния. Рассчитайте слоевое содержание примеси мышьяка в кремнии. Постройте профиль распределения атомов мышьяка в кремнии по глубине.

#### Задание **G4**

Элементы, входящие в состав анализируемого образца:

углерод, кислород, ванадий, медь.

## Тормозящая среда:

углерод (атомная плотность  $N=7,52\cdot 10^{22}$  атом/см<sup>3</sup>). Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

#### Распечатка спектра обратного рассеяния:

| $\mathcal{N}_{2}$ |      |      |      |      |          |          |      |      |      |      |
|-------------------|------|------|------|------|----------|----------|------|------|------|------|
| кана-             |      |      |      | Вы   | ход расс | еяния, и | ИМП. |      |      |      |
| ла                |      |      |      |      |          |          |      |      |      |      |
| 40.               | 4656 | 4527 | 4363 | 4363 | 4386     | 4161     | 4192 | 4110 | 3855 | 3876 |
| 50.               | 3811 | 3729 | 3627 | 3607 | 3451     | 3414     | 3353 | 3331 | 3342 | 3324 |
| 60.               | 3263 | 3147 | 3057 | 2975 | 2971     | 2945     | 2884 | 2818 | 2811 | 2719 |
| 70.               | 2645 | 2565 | 2570 | 2424 | 2491     | 2382     | 2167 | 2123 | 1957 | 1604 |
| 80.               | 1341 | 980  | 746  | 678  | 558      | 549      | 483  | 435  | 363  | 400  |
| 90.               | 371  | 370  | 386  | 360  | 366      | 364      | 374  | 396  | 384  | 399  |
| 100.              | 378  | 346  | 353  | 395  | 388      | 392      | 391  | 436  | 410  | 478  |
| 110.              | 441  | 466  | 437  | 503  | 557      | 611      | 676  | 725  | 916  | 1051 |
| 120.              | 1203 | 1275 | 1174 | 1022 | 771      | 518      | 361  | 221  | 178  | 156  |
| 130.              | 156  | 150  | 149  | 134  | 150      | 150      | 175  | 153  | 166  | 165  |
| 140.              | 157  | 150  | 157  | 177  | 144      | 177      | 159  | 166  | 133  | 174  |
| 150.              | 157  | 154  | 142  | 150  | 137      | 140      | 149  | 176  | 168  | 138  |
| 160.              | 161  | 160  | 147  | 148  | 179      | 156      | 149  | 160  | 164  | 174  |
| 170.              | 178  | 156  | 179  | 156  | 157      | 188      | 190  | 218  | 208  | 177  |
| 180.              | 224  | 203  | 230  | 220  | 211      | 206      | 254  | 252  | 260  | 279  |
| 190.              | 306  | 317  | 321  | 302  | 269      | 222      | 229  | 238  | 242  | 215  |
| 200.              | 231  | 231  | 204  | 223  | 241      | 200      | 188  | 181  | 228  | 242  |
| 210.              | 209  | 255  | 226  | 259  | 258      | 276      | 266  | 281  | 266  | 307  |
| 220.              | 319  | 329  | 373  | 330  | 332      | 321      | 352  | 316  | 269  | 212  |
| 230.              | 167  | 210  | 209  | 178  | 171      | 195      | 220  | 216  | 224  | 267  |
| 240.              | 255  | 298  | 313  | 354  | 399      | 477      | 577  | 791  | 1139 | 1851 |
| 250.              | 2998 | 4394 | 5740 | 6974 | 7391     | 7402     | 6293 | 4749 | 2980 | 1687 |
| 260.              | 1015 | 799  | 894  | 1301 | 1836     | 2461     | 2953 | 3024 | 2630 | 2140 |
| 270.              | 1285 | 758  | 394  | 185  | 101      | 53       | 40   | 19   | 17   | 15   |
| 280.              | 13   | 8    | 5    | 4    | 7        | 10       | 7    | 14   | 8    | 12   |
| 290.              | 10   | 17   | 25   | 18   | 21       | 22       | 23   | 17   | 22   | 20   |
| 300.              | 21   | 22   | 18   | 21   | 26       | 24       | 25   | 30   | 29   | 30   |
| 310.              | 35   | 35   | 46   | 31   | 37       | 27       | 43   | 31   | 33   | 23   |
| 320.              | 21   | 27   | 10   | 11   | 2        | 2        | 0    | 1    |      |      |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, ванадия, меди и кислорода. Рассчитайте слоевые содержания ванадия, меди и кислорода. Постройте профили распределения по глубине атомов меди и ванадия.

Задание **G5** Элементы, входящие в состав анализируемого образца:

углерод, кислород, ванадий, ниобий.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

# Распечатка спектра обратного рассеяния:

| No     |      |      |      |      |          |          |       |       |       |      |
|--------|------|------|------|------|----------|----------|-------|-------|-------|------|
| канала |      |      |      | В    | выход ра | ссеяния, | имп.  |       |       |      |
| 40.    | 4296 | 4067 | 3866 | 3844 | 3644     | 3795     | 3625  | 3677  | 3487  | 3493 |
| 50.    | 3383 | 3331 | 3387 | 3202 | 3265     | 3152     | 3128  | 3075  | 2970  | 2999 |
| 60.    | 2995 | 2814 | 2786 | 2853 | 2859     | 2934     | 2721  | 2785  | 2688  | 2589 |
| 70.    | 2600 | 2567 | 2557 | 2533 | 2499     | 2274     | 2213  | 2114  | 1865  | 1618 |
| 80.    | 1275 | 1013 | 905  | 807  | 784      | 723      | 717   | 689   | 655   | 654  |
| 90.    | 646  | 592  | 625  | 561  | 629      | 538      | 576   | 583   | 594   | 570  |
| 100.   | 559  | 547  | 520  | 483  | 522      | 531      | 554   | 534   | 516   | 530  |
| 110.   | 516  | 529  | 525  | 604  | 670      | 754      | 879   | 1083  | 1202  | 1215 |
| 120.   | 1233 | 1174 | 1080 | 910  | 754      | 553      | 326   | 261   | 195   | 157  |
| 130.   | 147  | 155  | 142  | 140  | 143      | 149      | 140   | 130   | 140   | 149  |
| 140.   | 120  | 156  | 115  | 140  | 128      | 125      | 108   | 115   | 117   | 105  |
| 150.   | 123  | 121  | 123  | 121  | 132      | 103      | 118   | 102   | 92    | 126  |
| 160.   | 134  | 108  | 113  | 116  | 115      | 96       | 110   | 121   | 129   | 104  |
| 170.   | 116  | 101  | 114  | 112  | 93       | 127      | 108   | 115   | 103   | 110  |
| 180.   | 116  | 106  | 115  | 107  | 122      | 104      | 130   | 119   | 132   | 137  |
| 190.   | 139  | 152  | 159  | 176  | 136      | 140      | 121   | 111   | 137   | 139  |
| 200.   | 111  | 104  | 98   | 115  | 97       | 112      | 89    | 95    | 107   | 86   |
| 210.   | 98   | 115  | 114  | 114  | 133      | 113      | 111   | 90    | 93    | 70   |
| 220.   | 62   | 62   | 62   | 50   | 49       | 47       | 52    | 55    | 40    | 44   |
| 230.   | 51   | 36   | 41   | 36   | 27       | 42       | 42    | 42    | 45    | 53   |
| 240.   | 57   | 65   | 85   | 92   | 145      | 222      | 318   | 569   | 921   | 1465 |
| 250.   | 1925 | 2334 | 2494 | 2193 | 1573     | 1029     | 590   | 261   | 146   | 102  |
| 260.   | 70   | 49   | 50   | 54   | 34       | 37       | 34    | 39    | 47    | 66   |
| 270.   | 65   | 72   | 93   | 89   | 75       | 58       | 53    | 64    | 54    | 52   |
| 280.   | 69   | 100  | 108  | 135  | 162      | 210      | 280   | 437   | 649   | 1067 |
| 290.   | 1770 | 2965 | 4899 | 7300 | 9840     | 12033    | 12718 | 12341 | 10043 | 7251 |
| 300.   | 4561 | 2412 | 1191 | 474  | 237      | 123      | 88    | 49    | 41    | 36   |
| 310.   | 32   | 18   | 18   | 9    | 17       | 9        | 19    | 16    | 27    | 34   |
| 320.   | 42   | 48   | 41   | 32   | 28       | 14       | 11    | 7     | 1     | 2    |
| 330.   | 4    | 3    | 1    | 2    | 0        | 1        | 0     | 2     | 0     | 1    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, ванадия, ниобия и кислорода. Рассчитайте слоевые содержания ванадия, ниобия и кислорода. Постройте профили распределения по глубине атомов ванадия и ниобия.

Задание **G6** 

Элементы, входящие в состав анализируемого образца:

углерод, кислород, цирконий, тантал.

Тормозящая среда:

углерод (атомная плотность  $N=7,52\cdot 10^{22}$  атом/см<sup>3</sup>). Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | 0   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

#### Распечатка спектра обратного рассеяния:

| №      |            |       |       |       |           |             |       |       |       |       |
|--------|------------|-------|-------|-------|-----------|-------------|-------|-------|-------|-------|
| канала |            |       |       | Вы    | ход расс  | еяния, им   | ИΠ.   |       |       |       |
| 40.    | 4440       | 4575  | 4302  | 4346  | 4328      | 4137        | 3842  | 4040  | 3886  | 3793  |
| 50.    | 3683       | 3842  | 3658  | 3565  | 3459      | 3536        | 3529  | 3327  | 3358  | 3203  |
| 60.    | 3299       | 3168  | 3236  | 3136  | 3027      | 3098        | 2977  | 2995  | 2988  | 2917  |
| 70.    | 2867       | 2825  | 2845  | 2709  | 2602      | 2312        | 2102  | 1781  | 1291  | 945   |
| 80.    | 768        | 600   | 557   | 506   | 501       | 471         | 511   | 449   | 402   | 408   |
| 90.    | 391        | 413   | 387   | 368   | 384       | 352         | 389   | 383   | 391   | 349   |
| 100.   | 335<br>412 | 369   | 343   | 346   | 350       | 344         | 366   | 366   | 407   | 381   |
| 110.   | 412        | 449   | 533   | 613   | 832       | 1075        | 1298  | 1494  | 1647  | 1650  |
| 120.   | 1710       | 1663  | 1581  | 1321  | 1123      | 832         | 572   | 450   | 396   | 351   |
| 130.   | 362        | 328   | 309   | 317   | 332       | 309         | 304   | 311   | 267   | 338   |
| 140.   | 304        | 321   | 301   | 295   | 322       | 300         | 303   | 330   | 344   | 296   |
| 150.   | 289        | 335   | 316   | 334   | 289       | 307         | 286   | 302   | 284   | 283   |
| 160.   | 326        | 342   | 298   | 314   | 357       | 339         | 339   | 306   | 324   | 290   |
| 170.   | 309        | 284   | 322   | 330   | 299       | 308         | 278   | 325   | 292   | 302   |
| 180.   | 307        | 324   | 327   | 346   | 340       | 342         | 365   | 339   | 367   | 357   |
| 190.   | 360        | 327   | 365   | 386   | 352       | 345         | 370   | 373   | 362   | 338   |
| 200.   | 317        | 333   | 325   | 322   | 289       | 324         | 345   | 352□  | 348   | 383   |
| 210.   | 357        | 298   | 344   | 351   | 337       | 333         | 332   | 332   | 354   | 340   |
| 220.   | 338        | 338   | 317   | 359   | 352       | 329         | 332   | 322   | 329   | 321   |
| 230.   | 334        | 299   | 329   | 329   | 339       | 354         | 301   | 359   | 345   | 313   |
| 240.   | 359        | 320   | 318   | 363   | 344       | 374         | 349   | 350   | 351   | 358   |
| 250.   | 349        | 349   | 351   | 335   | 369       | 363         | 403   | 356   | 361   | 396   |
| 260.   | 407        | 393   | 408   | 451   | 435       | 436         | 461   | 458   | 500   | 507   |
| 270.   | 487        | 541   | 515   | 569   | 583       | 581         | 599   | 628   | 589   | 781   |
| 280.   | 1020       | 1268  | 1959  | 3107  | 4600      | 6679        | 8922  | 11208 | 12965 | 14095 |
| 290.   | 14547      | 14354 | 13612 | 11996 | 9900      | 7387        | 5276  | 3206  | 1915  | 953   |
| 300.   | 523        | 311   | 172   | 116   | 105       | 83          | 96    | 106   | 124   | 160   |
| №      |            |       |       |       |           |             |       |       |       |       |
| канала |            |       |       | P.    | VOII DOCC | AGIII.G 111 | an .  |       |       |       |
|        |            |       |       | Ъы    | 140       | еяния, и    | /III. |       |       |       |

| I | 310. | 173  | 225   | 303   | 353   | 497   | 729   | 1108  | 1727 | 2904 | 4908 |
|---|------|------|-------|-------|-------|-------|-------|-------|------|------|------|
| [ | 320. | 8006 | 12188 | 16206 | 18718 | 18688 | 15258 | 10527 | 6338 | 3030 | 1381 |
| [ | 330. | 608  | 281   | 132   | 93    | 53    | 34    | 30    | 19   | 18   | 12   |
| ſ | 340. | 13   | 5     | 2     | 4     | 2     | 3     | 1     | 5    | 1    | 2    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, циркония, тантала и кислорода. Рассчитайте слоевые содержания циркония, тантала и кислорода. Постройте профили распределения по глубине атомов циркония и тантала.

#### Задание **G7**

Элементы, входящие в состав анализируемого образца:

углерод, кислород, титан, ниобий.

## Тормозящая среда:

углерод (атомная плотность  $N=7,52\cdot 10^{22}$  атом/см<sup>3</sup>). Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | 0   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| №      |      |      |      |      |           |          |      |      |      |      |
|--------|------|------|------|------|-----------|----------|------|------|------|------|
| канала |      |      |      | Вь   | іход расс | еяния, и | МП.  |      |      |      |
| 40.    | 4765 | 4712 | 4409 | 4344 | 4266      | 4179     | 4132 | 4097 | 3875 | 3934 |
| 50.    | 3755 | 3725 | 3547 | 3650 | 3468      | 3388     | 3485 | 3350 | 3386 | 3318 |
| 60.    | 3276 | 3143 | 3033 | 3073 | 2980      | 2918     | 2858 | 2864 | 2787 | 2723 |
| 70.    | 2640 | 2727 | 2600 | 2534 | 2420      | 2300     | 2133 | 1850 | 1471 | 1121 |
| 80.    | 850  | 597  | 498  | 480  | 471       | 482      | 424  | 334  | 326  | 270  |
| 90.    | 248  | 268  | 257  | 255  | 229       | 238      | 246  | 212  | 229  | 229  |
| 100.   | 239  | 233  | 224  | 221  | 230       | 251      | 262  | 277  | 255  | 338  |
| 110.   | 399  | 439  | 472  | 571  | 719       | 863      | 1072 | 1299 | 1448 | 1461 |
| 120.   | 1369 | 1285 | 1116 | 933  | 748       | 465      | 286  | 172  | 115  | 104  |
| 130.   | 87   | 83   | 70   | 82   | 86        | 86       | 67   | 75   | 68   | 70   |
| 140.   | 66   | 72   | 68   | 69   | 68        | 90       | 76   | 64   | 73   | 73   |
| 150.   | 59   | 60   | 93   | 69   | 73        | 81       | 63   | 63   | 63   | 86   |
| 160.   | 81   | 86   | 97   | 78   | 90        | 72       | 61   | 66   | 58   | 57   |
| 170.   | 56   | 60   | 45   | 59   | 54        | 61       | 48   | 49   | 51   | 70   |
| 180.   | 50   | 57   | 48   | 49   | 74        | 54       | 58   | 90   | 106  | 131  |
| 190.   | 126  | 148  | 115  | 136  | 110       | 98       | 85   | 78   | 81   | 86   |
| 200.   | 65   | 58   | 66   | 53   | 50        | 48       | 56   | 44   | 47   | 47   |

| <b>№</b><br>канала |      | Выход рассеяния, имп.         |      |       |       |       |       |       |      |      |  |  |  |  |
|--------------------|------|-------------------------------|------|-------|-------|-------|-------|-------|------|------|--|--|--|--|
| 210.               | 41   | 41 62 51 60 46 50 50 44 51 37 |      |       |       |       |       |       |      |      |  |  |  |  |
| 220.               | 57   | 59                            | 51   | 67    | 74    | 67    | 54    | 72    | 72   | 61   |  |  |  |  |
| 230.               | 58   | 77                            | 72   | 70    | 109   | 124   | 169   | 225   | 392  | 576  |  |  |  |  |
| 240.               | 910  | 1419                          | 1970 | 2651  | 3191  | 3649  | 3368  | 2969  | 2167 | 1510 |  |  |  |  |
| 250.               | 835  | 441                           | 247  | 135   | 109   | 79    | 57    | 73    | 82   | 71   |  |  |  |  |
| 260.               | 73   | 65                            | 42   | 62    | 72    | 65    | 64    | 89    | 103  | 113  |  |  |  |  |
| 270.               | 113  | 102                           | 99   | 84    | 60    | 67    | 52    | 42    | 71   | 67   |  |  |  |  |
| 280.               | 101  | 124                           | 148  | 173   | 221   | 321   | 396   | 546   | 842  | 1398 |  |  |  |  |
| 290.               | 2455 | 4226                          | 6865 | 10235 | 12806 | 14370 | 14042 | 11681 | 7900 | 4710 |  |  |  |  |
| 300.               | 2291 | 992                           | 428  | 222   | 134   | 98    | 57    | 40    | 41   | 12   |  |  |  |  |
| 310.               | 21   | 16                            | 18   | 23    | 15    | 28    | 31    | 47    | 64   | 56   |  |  |  |  |
| 320.               | 56   | 61                            | 35   | 23    | 15    | 18    | 4     | 12    | 1    | 1    |  |  |  |  |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, титана, ниобия и кислорода. Рассчитайте слоевые содержания титана, ниобия и кислорода. Постройте профили распределения по глубине атомов титана и ниобия.

#### Задание **G8**

Элементы, входящие в состав анализируемого образца:

углерод, кислород, медь, ниобий.

Тормозящая среда:

углерод (атомная плотность  $N=7,52\cdot 10^{22}$  атом/см<sup>3</sup>). Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | 1эВ Элемент       |    | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| <b>№</b><br>канала |      |      |      | В    | ыход ра | ссеяния, | имп. |      |      |      |
|--------------------|------|------|------|------|---------|----------|------|------|------|------|
| 40.                | 3981 | 3864 | 3832 | 3739 | 3668    | 3635     | 3493 | 3426 | 3342 | 3350 |
| 50.                | 3290 | 3331 | 3193 | 3103 | 3026    | 3128     | 2966 | 2942 | 2917 | 2990 |
| 60.                | 2882 | 2797 | 2847 | 2738 | 2749    | 2734     | 2679 | 2564 | 2609 | 2595 |
| 70.                | 2596 | 2516 | 2498 | 2448 | 2360    | 2370     | 2159 | 2262 | 2045 | 1857 |
| 80.                | 1548 | 1199 | 876  | 601  | 440     | 350      | 313  | 260  | 210  | 181  |
| 90.                | 184  | 148  | 153  | 124  | 115     | 121      | 99   | 105  | 109  | 87   |
| 100.               | 113  | 101  | 113  | 111  | 104     | 108      | 106  | 97   | 92   | 96   |
| 110.               | 113  | 97   | 110  | 120  | 129     | 151      | 182  | 271  | 372  | 483  |

| <b>№</b><br>канала |      |      |      | I    | Зыход р | ассеяния | , имп. |       |       |       |
|--------------------|------|------|------|------|---------|----------|--------|-------|-------|-------|
| 120.               | 616  | 847  | 874  | 886  | 738     | 557      | 355    | 244   | 157   | 108   |
| 130.               | 65   | 76   | 92   | 102  | 93      | 74       | 97     | 75    | 94    | 84    |
| 140.               | 84   | 94   | 95   | 101  | 83      | 90       | 72     | 74    | 76    | 73    |
| 150.               | 58   | 61   | 77   | 62   | 83      | 78       | 62     | 80    | 65    | 50    |
| 160.               | 65   | 76   | 80   | 78   | 67      | 81       | 82     | 63    | 87    | 80    |
| 170.               | 66   | 71   | 60   | 69   | 82      | 72       | 76     | 82    | 56    | 56    |
| 180.               | 65   | 81   | 50   | 69   | 78      | 82       | 54     | 76    | 88    | 89    |
| 190.               | 112  | 152  | 169  | 157  | 140     | 162      | 111    | 96    | 85    | 91    |
| 200.               | 72   | 75   | 83   | 76   | 83      | 77       | 74     | 79    | 85    | 71    |
| 210.               | 79   | 77   | 77   | 81   | 83      | 85       | 88     | 83    | 70    | 79    |
| 220.               | 74   | 78   | 80   | 67   | 96      | 75       | 85     | 81    | 86    | 92    |
| 230.               | 84   | 96   | 70   | 83   | 81      | 97       | 82     | 88    | 82    | 77    |
| 240.               | 75   | 79   | 81   | 89   | 108     | 100      | 124    | 114   | 110   | 107   |
| 250.               | 123  | 142  | 127  | 133  | 165     | 174      | 159    | 193   | 160   | 204   |
| 260.               | 259  | 271  | 288  | 374  | 543     | 782      | 1166   | 1784  | 2287  | 2522  |
| 270.               | 2374 | 1865 | 1377 | 803  | 483     | 249      | 155    | 112   | 98    | 105   |
| 280.               | 123  | 122  | 134  | 173  | 229     | 236      | 314    | 409   | 573   | 893   |
| 290.               | 1472 | 2491 | 4173 | 6828 | 9625    | 12647    | 14162  | 14622 | 13122 | 10174 |
| 300.               | 6789 | 3514 | 1707 | 779  | 350     | 207      | 123    | 101   | 72    | 50    |
| 310.               | 25   | 27   | 19   | 22   | 8       | 4        | 13     | 24    | 26    | 33    |
| 320.               | 45   | 53   | 51   | 52   | 39      | 25       | 13     | 9     | 6     | 2     |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, меди, ниобия и кислорода. Рассчитайте слоевые содержания меди, ниобия и кислорода. Постройте профили распределения по глубине атомов меди и ниобия.

## Задание G9

Элементы, входящие в состав анализируемого образца:

углерод, кислород, ниобий.

Тормозящая среда:

углерод (атомная плотность  $N=7,52\cdot 10^{22}$  атом/см<sup>3</sup>). Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | 0   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| ĺ | №      |      |                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |
|---|--------|------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| l | канала |      | Выход рассеяния, имп.                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| ĺ | 40.    | 4446 | 1446         4359         4251         4055         4081         3891         3860         3852         3800         3782 |  |  |  |  |  |  |  |  |  |  |  |

| $N_{\overline{2}}$ |      |      |      |      |          |          |       |       |       |      |
|--------------------|------|------|------|------|----------|----------|-------|-------|-------|------|
| канала             |      |      |      | I    | Зыход ра | ссеяния, | имп.  |       |       |      |
| 50.                | 3663 | 3578 | 3582 | 3435 | 3446     | 3390     | 3325  | 3314  | 3166  | 3211 |
| 60.                | 3027 | 3095 | 3061 | 2922 | 2921     | 2977     | 2839  | 2830  | 2778  | 2759 |
| 70.                | 2740 | 2698 | 2675 | 2639 | 2620     | 2505     | 2510  | 2350  | 2253  | 2000 |
| 80.                | 1715 | 1482 | 1137 | 865  | 578      | 527      | 476   | 391   | 317   | 292  |
| 90.                | 278  | 291  | 305  | 283  | 265      | 265      | 266   | 270   | 252   | 260  |
| 100.               | 210  | 283  | 241  | 247  | 247      | 237      | 231   | 248   | 236   | 236  |
| 110.               | 236  | 259  | 262  | 278  | 274      | 354      | 440   | 444   | 638   | 794  |
| 120.               | 1015 | 1126 | 1106 | 979  | 885      | 640      | 473   | 270   | 186   | 160  |
| 130.               | 132  | 116  | 122  | 120  | 114      | 126      | 115   | 117   | 146   | 136  |
| 140.               | 112  | 121  | 145  | 109  | 121      | 103      | 120   | 114   | 109   | 119  |
| 150.               | 101  | 107  | 108  | 118  | 110      | 96       | 132   | 114   | 135   | 99   |
| 160.               | 108  | 134  | 118  | 119  | 111      | 112      | 93    | 115   | 100   | 125  |
| 170.               | 127  | 113  | 113  | 112  | 127      | 135      | 123   | 113   | 115   | 123  |
| 180.               | 152  | 99   | 119  | 141  | 131      | 141      | 143   | 177   | 161   | 169  |
| 190.               | 197  | 177  | 191  | 196  | 187      | 166      | 159   | 147   | 132   | 133  |
| 200.               | 139  | 103  | 104  | 104  | 104      | 102      | 99    | 96    | 79    | 108  |
| 210.               | 94   | 102  | 76   | 80   | 77       | 104      | 91    | 80    | 88    | 72   |
| 220.               | 57   | 60   | 34   | 51   | 57       | 60       | 55    | 77    | 73    | 74   |
| 230.               | 91   | 87   | 76   | 65   | 39       | 48       | 25    | 38    | 33    | 35   |
| 240.               | 37   | 36   | 24   | 25   | 27       | 36       | 45    | 44    | 42    | 47   |
| 250.               | 33   | 26   | 42   | 42   | 47       | 35       | 53    | 53    | 67    | 71   |
| 260.               | 72   | 70   | 61   | 58   | 64       | 70       | 72    | 86    | 120   | 115  |
| 270.               | 129  | 118  | 138  | 115  | 99       | 85       | 76    | 79    | 60    | 81   |
| 280.               | 106  | 129  | 170  | 208  | 203      | 316      | 363   | 533   | 832   | 1337 |
| 290.               | 2150 | 3653 | 5881 | 8806 | 11759    | 14088    | 14948 | 14014 | 11546 | 8116 |
| 300.               | 4963 | 2536 | 1169 | 563  | 280      | 165      | 101   | 78    | 69    | 41   |
| 310.               | 43   | 49   | 39   | 46   | 32       | 42       | 37    | 47    | 63    | 83   |
| 320.               | 92   | 112  | 97   | 85   | 93       | 68       | 27    | 15    | 6     | 4    |
| 330.               | 2    | 2    | 2    | 2    | 0        | 1        | 3     | 0     | 2     | 1    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, ниобия и кислорода. Рассчитайте слоевые содержания ниобия и кислорода. Постройте профили распределения по глубине атомов ниобия и кислорода.

#### Задание G10

Элементы, входящие в состав анализируемого образца:

углерод, кислород, титан, хром.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

## Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

## Распечатка спектра обратного рассеяния:

| №      |      |      |      | Выс  | код расс | еяния и | тмп  |      |      |      |
|--------|------|------|------|------|----------|---------|------|------|------|------|
| канала |      |      |      | Бы   | год расс | сини, п |      |      |      |      |
| 40.    | 4320 | 4286 | 3935 | 3993 | 3939     | 3698    | 3584 | 3667 | 3659 | 3542 |
| 50.    | 3383 | 3412 | 3303 | 3366 | 3177     | 3242    | 3171 | 3073 | 3008 | 2914 |
| 60.    | 2951 | 2876 | 2863 | 2897 | 2780     | 2822    | 2656 | 2711 | 2613 | 2540 |
| 70.    | 2491 | 2487 | 2378 | 2219 | 2107     | 1836    | 1553 | 1278 | 876  | 649  |
| 80.    | 480  | 418  | 341  | 337  | 345      | 340     | 318  | 268  | 263  | 247  |
| 90.    | 208  | 210  | 218  | 229  | 222      | 216     | 194  | 211  | 224  | 174  |
| 100.   | 211  | 191  | 201  | 213  | 228      | 224     | 255  | 317  | 306  | 408  |
| 110.   | 420  | 442  | 602  | 681  | 825      | 1044    | 1227 | 1395 | 1456 | 1511 |
| 120.   | 1378 | 1333 | 1284 | 1118 | 855      | 573     | 376  | 229  | 186  | 126  |
| 130.   | 89   | 89   | 78   | 90   | 91       | 90      | 79   | 58   | 76   | 83   |
| 140.   | 79   | 82   | 89   | 98   | 65       | 84      | 75   | 92   | 80   | 80   |
| 150.   | 75   | 96   | 88   | 70   | 97       | 79      | 89   | 87   | 93   | 93   |
| 160.   | 101  | 106  | 77   | 76   | 72       | 57      | 82   | 75□  | 61   | 73   |
| 170.   | 64   | 79   | 67   | 68   | 59       | 73      | 66   | 57   | 63   | 64   |
| 180.   | 68   | 71   | 81   | 76   | 86       | 92      | 128  | 129  | 144  | 128  |
| 190.   | 121  | 116  | 98   | 100  | 115      | 101     | 96   | 85   | 79   | 87   |
| 200.   | 87   | 78   | 74   | 87   | 75       | 82      | 82   | 83   | 91   | 95   |
| 210.   | 73   | 78   | 96   | 95   | 96       | 90      | 87   | 96   | 81   | 98   |
| 220.   | 97   | 105  | 105  | 99   | 115      | 107     | 112  | 106  | 112  | 128  |
| 230.   | 117  | 142  | 165  | 201  | 273      | 336     | 471  | 692  | 1031 | 1370 |
| 240.   | 1981 | 2668 | 3054 | 3316 | 3291     | 2953    | 2412 | 1815 | 1576 | 1590 |
| 250.   | 1848 | 2649 | 3766 | 5003 | 6154     | 6796    | 7076 | 6984 | 6247 | 5292 |
| 260.   | 3944 | 2693 | 1519 | 839  | 456      | 244     | 154  | 114  | 78   | 50   |
| 270.   | 39   | 20   | 18   | 15   | 8        | 3       | 5    | 6    | 3    | 5    |
| 280.   | 4    | 3    | 6    | 4    | 4        | 2       | 1    | 2    | 2    | 5    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, титана, хрома и кислорода. Рассчитайте слоевые содержания титана и хрома. Постройте профили распределения по глубине атомов титана и хрома.

#### Задание G11

Элементы, входящие в состав анализируемого образца:

углерод, кислород, цирконий.

Тормозящая среда:

углерод (атомная плотность  $N = 7.52 \cdot 10^{22}$  атом/см<sup>3</sup>).

## Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

# Распечатка спектра обратного рассеяния:

| №      |      |      |      |       |          |           |       |       |      |      |
|--------|------|------|------|-------|----------|-----------|-------|-------|------|------|
| канала |      |      |      | В     | ыход рас | сеяния, и | МП.   |       |      |      |
| 40.    | 4051 | 4095 | 3957 | 3651  | 3710     | 3691      | 3484  | 3508  | 3438 | 3507 |
| 50.    | 3233 | 3179 | 3218 | 3242  | 3092     | 3098      | 3046  | 2875  | 2956 | 2909 |
| 60.    | 2944 | 2809 | 2754 | 2712  | 2701     | 2667      | 2615  | 2591  | 2639 | 2610 |
| 70.    | 2545 | 2516 | 2394 | 2446  | 2420     | 2406      | 2236  | 2274  | 2038 | 1793 |
| 80.    | 1520 | 1209 | 854  | 657   | 530      | 499       | 441   | 426   | 339  | 309  |
| 90.    | 341  | 317  | 304  | 284   | 298      | 322       | 304   | 308   | 321  | 309  |
| 100.   | 301  | 317  | 284  | 280   | 303      | 278       | 233   | 287   | 263  | 301  |
| 110.   | 309  | 341  | 275  | 319   | 329      | 413       | 501   | 626   | 763  | 1011 |
| 120.   | 1257 | 1391 | 1374 | 1283  | 1040     | 812       | 525   | 340   | 250  | 204  |
| 130.   | 191  | 162  | 184  | 166   | 177      | 176       | 195   | 194   | 172  | 151  |
| 140.   | 180  | 162  | 160  | 191   | 181      | 153       | 176   | 165   | 190  | 168  |
| 150.   | 160  | 166  | 183  | 185   | 179      | 159       | 166   | 194   | 173  | 179  |
| 160.   | 193  | 174  | 187  | 209   | 177      | 214       | 188   | 169   | 211  | 201  |
| 170.   | 196  | 214  | 190  | 181   | 196      | 179       | 197   | 183   | 174  | 216  |
| 180.   | 183  | 197  | 196  | 229   | 222      | 203       | 205   | 223   | 230  | 218  |
| 190.   | 262  | 275  | 275  | 285   | 272      | 272       | 227   | 228   | 224  | 202  |
| 200.   | 204  | 224  | 161  | 206   | 192      | 190       | 189   | 195   | 186  | 161  |
| 210.   | 204  | 188  | 175  | 186   | 189      | 195       | 158   | 147   | 172  | 160  |
| 220.   | 146  | 192  | 152  | 174   | 138      | 163       | 162   | 155   | 138  | 151  |
| 230.   | 139  | 100  | 103  | 97    | 98       | 102       | 92    | 81    | 108  | 86   |
| 240.   | 98   | 88   | 109  | 83    | 97       | 94        | 90    | 114   | 87   | 103  |
| 250.   | 101  | 98   | 112  | 110   | 96       | 109       | 129   | 124   | 121  | 122  |
| 260.   | 133  | 116  | 131  | 111   | 110      | 129       | 112   | 109   | 130  | 147  |
| 270.   | 144  | 153  | 159  | 150   | 171      | 162       | 152   | 176   | 170  | 176  |
| 280.   | 198  | 219  | 284  | 311   | 464      | 581       | 826   | 1248  | 2039 | 3399 |
| 290.   | 5168 | 7407 | 9799 | 11981 | 13206    | 13697     | 12731 | 11060 | 8399 | 5698 |
| 300.   | 3290 | 1774 | 879  | 398   | 185      | 107       | 67    | 39    | 36   | 38   |
| 310.   | 30   | 24   | 23   | 22    | 33       | 24        | 25    | 32    | 36   | 30   |
| 320.   | 34   | 38   | 35   | 25    | 28       | 18        | 7     | 4     | 3    | 3    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, циркония и кислорода. Рассчитайте слоевые содержания циркония и кислорода. Постройте профили распределения по глубине атомов циркония и кислорода.

Задание **G12** 

Элементы, входящие в состав анализируемого образца:

углерод, кислород, медь, тантал.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | C  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| №      |       |       |       |       |           |           |      |      |      |      |
|--------|-------|-------|-------|-------|-----------|-----------|------|------|------|------|
| канала |       |       |       | Выхо  | од рассея | ния, имп. |      |      |      |      |
| 40.    | 4746  | 4767  | 4562  | 4545  | 4495      | 4196      | 4105 | 4060 | 4133 | 3864 |
| 50.    | 3845  | 3757  | 3732  | 3694  | 3568      | 3576      | 3560 | 3428 | 3340 | 3325 |
| 60.    | 3363  | 3288  | 3171  | 3171  | 3125      | 3025      | 3045 | 2959 | 2926 | 2859 |
| 70.    | 2934  | 2865  | 2803  | 2760  | 2748      | 2679      | 2656 | 2548 | 2424 | 2353 |
| 80.    | 2139  | 1965  | 1567  | 1212  | 898       | 753       | 553  | 522  | 414  | 377  |
| 90.    | 362   | 332   | 310   | 344   | 274       | 311       | 297  | 315  | 332  | 278  |
| 100.   | 297   | 290   | 286   | 296   | 279       | 282       | 277  | 288  | 291  | 288  |
| 110.   | 261   | 286   | 288   | 301   | 269       | 301       | 325  | 382  | 436  | 613  |
| 120.   | 723   | 928   | 1021  | 1053  | 942       | 612       | 401  | 267  | 183  | 171  |
| 130.   | 121   | 138   | 114   | 138   | 130       | 89        | 113  | 129  | 125  | 129  |
| 140.   | 116   | 118   | 113   | 115   | 109       | 114       | 103  | 117  | 114  | 111  |
| 150.   | 118   | 124   | 101   | 127   | 116       | 120       | 100  | 109  | 102  | 132  |
| 160.   | 130   | 110   | 121   | 111   | 104       | 116       | 127  | 125  | 118  | 120  |
| 170.   | 121   | 128   | 103   | 107   | 112       | 119       | 118  | 121  | 128  | 89   |
| 180.   | 119   | 122   | 131   | 139   | 125       | 125       | 144  | 128  | 143  | 149  |
| 190.   | 176   | 180   | 188   | 226   | 220       | 231       | 216  | 174  | 162  | 140  |
| 200.   | 128   | 108   | 116   | 116   | 123       | 99        | 124  | 139  | 115  | 127  |
| 210.   | 130   | 108   | 94    | 104   | 117       | 119       | 121  | 126  | 136  | 109  |
| 220.   | 114   | 110   | 94    | 121   | 104       | 103       | 82   | 119  | 99   | 99   |
| 230.   | 89    | 75    | 86    | 58    | 66        | 54        | 42   | 57   | 42   | 52   |
| 240.   | 63    | 66    | 69    | 44    | 52        | 51        | 78   | 68   | 59   | 68   |
| 250.   | 83    | 69    | 100   | 108   | 100       | 79        | 107  | 118  | 137  | 141  |
| 260.   | 146   | 183   | 214   | 248   | 297       | 397       | 558  | 949  | 1301 | 1943 |
| 270.   | 2467  | 2427  | 2164  | 1843  | 1206      | 767       | 428  | 238  | 131  | 101  |
| 280.   | 68    | 45    | 19    | 18    | 30        | 23        | 28   | 23   | 31   | 23   |
| 290.   | 21    | 36    | 44    | 36    | 61        | 56        | 65   | 52   | 61   | 47   |
| 300.   | 52    | 65    | 60    | 69    | 78        | 78        | 113  | 145  | 164  | 200  |
| 310.   | 291   | 335   | 416   | 579   | 767       | 1062      | 1637 | 2678 | 4501 | 7655 |
| 320.   | 12190 | 18078 | 22761 | 24543 | 22198     | 16323     | 9729 | 4986 | 2230 | 908  |
| 330.   | 435   | 216   | 154   | 72    | 44        | 31        | 29   | 20   | 19   | 12   |
| 340.   | 10    | 5     | 5     | 5     | 1         | 1         | 2    | 1    | 2    | 0    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, меди, тантала и кислорода. Рассчитайте слоевые содержания меди, тантала и кислорода. Постройте профили распределения по глубине атомов меди и тантала.

#### Задание G13

Элементы, входящие в состав анализируемого образца:

углерод, кислород, титан, тантал.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| №      |      |      |      | Rı.  | іход расс | едпид им | лπ   |      |       |      |
|--------|------|------|------|------|-----------|----------|------|------|-------|------|
| канала | 4004 | 2052 | 2772 |      |           |          |      | 2670 | 2.472 | 2520 |
| 40.    | 4094 | 3953 | 3772 | 3703 | 3841      | 3623     | 3687 | 3678 | 3473  | 3530 |
| 50.    | 3334 | 3337 | 3186 | 3278 | 3233      | 3171     | 3031 | 2993 | 2936  | 3098 |
| 60.    | 2926 | 2854 | 2827 | 2884 | 2741      | 2702     | 2731 | 2658 | 2663  | 2505 |
| 70.    | 2604 | 2526 | 2398 | 2466 | 2398      | 2308     | 2213 | 2129 | 1947  | 1637 |
| 80.    | 1285 | 962  | 716  | 504  | 382       | 312      | 331  | 254  | 211   | 191  |
| 90.    | 173  | 153  | 172  | 158  | 136       | 125      | 128  | 137  | 159   | 166  |
| 100.   | 156  | 175  | 155  | 174  | 136       | 158      | 148  | 138  | 156   | 194  |
| 110.   | 168  | 158  | 169  | 197  | 236       | 276      | 377  | 485  | 719   | 906  |
| 120.   | 1070 | 1301 | 1287 | 1209 | 995       | 710      | 436  | 238  | 142   | 118  |
| 130.   | 85   | 83   | 84   | 98   | 91        | 75       | 78   | 90   | 89    | 88   |
| 140.   | 72   | 81   | 70   | 79   | 79        | 96       | 92   | 85   | 78    | 72   |
| 150.   | 78   | 69   | 62   | 71   | 89        | 78       | 80   | 99   | 102   | 96   |
| 160.   | 99   | 106  | 104  | 111  | 107       | 99       | 102  | 113  | 90    | 77   |
| 170.   | 86   | 82   | 98   | 86   | 99        | 82       | 74   | 80   | 70    | 69   |
| 180.   | 92   | 84   | 83   | 85   | 88        | 112      | 89   | 123  | 100   | 137  |
| 190.   | 121  | 131  | 156  | 180  | 158       | 139      | 142  | 143  | 116   | 134  |
| 200.   | 120  | 114  | 148  | 139  | 118       | 125      | 118  | 125  | 115   | 134  |
| 210.   | 125  | 131  | 139  | 119  | 131       | 137      | 142  | 121  | 122   | 105  |
| 220.   | 110  | 131  | 112  | 132  | 115       | 123      | 115  | 112  | 132   | 133  |
| 230.   | 120  | 101  | 110  | 105  | 115       | 120      | 140  | 138  | 182   | 245  |
| 240.   | 291  | 393  | 546  | 790  | 1227      | 1697     | 2358 | 2958 | 3401  | 3410 |
| 250.   | 3181 | 2633 | 1868 | 1207 | 690       | 408      | 250  | 186  | 147   | 112  |
| 260.   | 104  | 123  | 115  | 116  | 140       | 168      | 171  | 159  | 185   | 148  |
| 270.   | 149  | 168  | 153  | 160  | 141       | 126      | 167  | 116  | 101   | 75   |
| 280.   | 57   | 33   | 25   | 18   | 22        | 21       | 14   | 25   | 24    | 16   |
| 290.   | 25   | 39   | 40   | 39   | 50        | 44       | 59   | 68   | 47    | 64   |

| №<br>канала |      | Выход рассеяния, имп.                     |       |       |       |       |       |       |      |      |  |  |
|-------------|------|-------------------------------------------|-------|-------|-------|-------|-------|-------|------|------|--|--|
| 300.        | 69   | 61                                        | 65    | 56    | 88    | 74    | 87    | 104   | 147  | 130  |  |  |
| 310.        | 174  | 74 235 236 349 421 600 740 1147 1765 2986 |       |       |       |       |       |       |      |      |  |  |
| 320.        | 5095 | 8364                                      | 12819 | 17805 | 20987 | 20732 | 16906 | 11219 | 6059 | 2810 |  |  |
| 330.        | 1110 | 496                                       | 237   | 134   | 88    | 53    | 43    | 17    | 22   | 18   |  |  |
| 340.        | 13   | 7                                         | 5     | 0     | 0     | 1     | 2     | 2     | 2    | 1    |  |  |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, титана, тантала и кислорода. Рассчитайте слоевые содержания титана, тантала и кислорода. Постройте профили распределения по глубине атомов титана и тантала.

#### Задание G14

Элементы, входящие в состав анализируемого образца:

углерод, кислород, хром.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| №<br>кана- |      | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |  |  |  |
|------------|------|-----------------------|------|------|------|------|------|------|------|------|--|--|--|
| ла         |      |                       |      |      |      |      |      |      |      |      |  |  |  |
| 40.        | 4806 | 4854                  | 4511 | 4636 | 4447 | 4476 | 4291 | 4170 | 4142 | 4027 |  |  |  |
| 50.        | 3992 | 3827                  | 3909 | 3890 | 3729 | 3667 | 3813 | 3583 | 3512 | 3532 |  |  |  |
| 60.        | 3549 | 3515                  | 3435 | 3433 | 3329 | 3336 | 3354 | 3214 | 3238 | 3207 |  |  |  |
| 70.        | 3185 | 3131                  | 3080 | 2915 | 2845 | 2695 | 2565 | 2241 | 1927 | 1435 |  |  |  |
| 80.        | 1030 | 724                   | 446  | 432  | 434  | 396  | 391  | 317  | 264  | 277  |  |  |  |
| 90.        | 243  | 217                   | 233  | 201  | 186  | 200  | 211  | 209  | 182  | 204  |  |  |  |
| 100.       | 167  | 218                   | 165  | 168  | 181  | 191  | 201  | 199  | 191  | 246  |  |  |  |
| 110.       | 280  | 327                   | 337  | 455  | 549  | 666  | 877  | 1150 | 1325 | 1481 |  |  |  |
| 120.       | 1517 | 1459                  | 1291 | 999  | 682  | 388  | 226  | 124  | 103  | 83   |  |  |  |
| 130.       | 78   | 65                    | 78   | 76   | 76   | 66   | 66   | 69   | 64   | 71   |  |  |  |
| 140.       | 76   | 74                    | 64   | 74   | 74   | 61   | 60   | 62   | 68   | 74   |  |  |  |
| 150.       | 55   | 61                    | 65   | 62   | 60   | 53   | 87   | 68   | 67   | 84   |  |  |  |
| 160.       | 92   | 90                    | 81   | 65   | 66   | 71   | 65   | 62   | 59   | 58   |  |  |  |
| 170.       | 44   | 55                    | 45   | 48   | 55   | 47   | 52   | 60   | 50   | 62   |  |  |  |
| 180.       | 53   | 53                    | 61   | 87   | 63   | 67   | 65   | 74   | 79   | 70   |  |  |  |
| 190.       | 102  | 89                    | 64   | 78   | 92   | 63   | 72   | 57   | 52   | 62   |  |  |  |

| №<br>кана-<br>ла | Выход рассеяния, имп. |                                            |      |      |      |      |      |      |      |      |  |  |
|------------------|-----------------------|--------------------------------------------|------|------|------|------|------|------|------|------|--|--|
| 200.             | 61                    | 61 64 59 59 59 62 64 72 59 83              |      |      |      |      |      |      |      |      |  |  |
| 210.             | 97                    | 85                                         | 95   | 87   | 95   | 102  | 74   | 102  | 81   | 86   |  |  |
| 220.             | 92                    | 76                                         | 89   | 68   | 71   | 100  | 82   | 77   | 68   | 87   |  |  |
| 230.             | 61                    | 73                                         | 91   | 86   | 90   | 95   | 126  | 143  | 130  | 158  |  |  |
| 240.             | 203                   | 03 222 279 330 498 608 1003 1634 2649 4057 |      |      |      |      |      |      |      |      |  |  |
| 250.             | 5664                  | 7135                                       | 8493 | 8979 | 9055 | 8653 | 7692 | 6196 | 4325 | 2707 |  |  |
| 260.             | 1423                  | 718                                        | 344  | 211  | 154  | 115  | 100  | 87   | 66   | 60   |  |  |
| 270.             | 50                    | 36                                         | 28   | 22   | 21   | 24   | 11   | 22   | 17   | 19   |  |  |
| 280.             | 16                    | 18                                         | 19   | 23   | 25   | 12   | 19   | 24   | 20   | 17   |  |  |
| 290.             | 25                    | 25                                         | 26   | 20   | 28   | 18   | 21   | 19   | 15   | 9    |  |  |
| 300.             | 17                    | 14                                         | 10   | 17   | 10   | 4    | 10   | 8    | 10   | 3    |  |  |
| 310.             | 7                     | 6                                          | 7    | 13   | 10   | 17   | 18   | 24   | 21   | 8    |  |  |
| 320.             | 14                    | 7                                          | 7    | 3    | 2    | 2    | 1    | 0    |      |      |  |  |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, хрома и кислорода. Рассчитайте слоевые содержания хрома и кислорода. Постройте профили распределения по глубине атомов хрома и кислорода.

#### Задание G15

Элементы, входящие в состав анализируемого образца:

углерод, кислород, ванадий, хром.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| №<br>канала |      | Выход рассеяния, имп.                          |      |      |      |      |      |      |      |      |  |  |
|-------------|------|------------------------------------------------|------|------|------|------|------|------|------|------|--|--|
| 40.         | 4794 | 4 4609 4484 4380 4402 4238 4111 3983 3968 3866 |      |      |      |      |      |      |      |      |  |  |
| 50.         | 3897 | 3789                                           | 3864 | 3724 | 3490 | 3561 | 3459 | 3535 | 3318 | 3237 |  |  |
| 60.         | 3268 | 3172                                           | 3228 | 3090 | 3025 | 3061 | 3017 | 2853 | 2746 | 2741 |  |  |
| 70.         | 2772 | 2675                                           | 2638 | 2420 | 2275 | 2063 | 1675 | 1171 | 883  | 666  |  |  |
| 80.         | 539  | 466                                            | 450  | 468  | 435  | 427  | 415  | 340  | 327  | 294  |  |  |
| 90.         | 269  | 257                                            | 272  | 296  | 264  | 276  | 272  | 285  | 293  | 258  |  |  |
| 100.        | 263  | 268                                            | 277  | 278  | 286  | 336  | 336  | 389  | 383  | 429  |  |  |
| 110.        | 479  | 558                                            | 692  | 826  | 1032 | 1237 | 1337 | 1453 | 1484 | 1455 |  |  |

| №<br>канала |      |      |       | Вь    | іход расс | еяния, им | ιπ.  |       |      |      |
|-------------|------|------|-------|-------|-----------|-----------|------|-------|------|------|
| 120.        | 1411 | 1302 | 1237  | 990   | 787       | 567       | 393  | 182   | 120  | 79   |
| 130.        | 91   | 71   | 80    | 67    | 86        | 71        | 78   | 81    | 79   | 76   |
| 140.        | 67   | 74   | 59    | 75    | 85        | 85        | 56   | 76    | 68   | 74   |
| 150.        | 87   | 66   | 70    | 57    | 78        | 64        | 69   | 86    | 88   | 80   |
| 160.        | 72   | 61   | 66    | 62    | 53        | 52        | 53   | 57    | 46   | 42   |
| 170.        | 56   | 49   | 66    | 49    | 52        | 63        | 58   | 49    | 39   | 55   |
| 180.        | 70   | 61   | 61    | 62    | 69        | 92        | 104  | 93    | 100  | 103  |
| 190.        | 81   | 104  | 125   | 116   | 85        | 107       | 92   | 103   | 101  | 98   |
| 200.        | 101  | 83   | 84    | 75    | 78        | 64        | 72   | 73    | 64   | 65   |
| 210.        | 64   | 78   | 69    | 72    | 72        | 77        | 71   | 87    | 75   | 92   |
| 220.        | 80   | 93   | 100   | 94    | 88        | 84        | 88   | 83    | 77   | 88   |
| 230.        | 120  | 89   | 119   | 139   | 150       | 159       | 170  | 209   | 259  | 358  |
| 240.        | 381  | 520  | 686   | 919   | 1463      | 2197      | 3318 | 4704□ | 6127 | 7607 |
| 250.        | 8474 | 9529 | 10352 | 11042 | 11248     | 10436     | 9022 | 6820  | 4557 | 2616 |
| 260.        | 1348 | 599  | 280   | 177   | 112       | 79        | 58   | 28    | 29   | 28   |
| 270.        | 26   | 15   | 31    | 24    | 29        | 19        | 13   | 10    | 20   | 18   |
| 280.        | 9    | 12   | 19    | 19    | 18        | 14        | 15   | 15    | 13   | 27   |
| 290.        | 25   | 25   | 25    | 32    | 34        | 33        | 36   | 27    | 29   | 26   |
| 300.        | 17   | 22   | 22    | 15    | 18        | 20        | 16   | 35    | 30   | 46   |
| 310.        | 47   | 71   | 86    | 109   | 105       | 112       | 78   | 68    | 35   | 20   |
| 320.        | 18   | 17   | 15    | 6     | 9         | 3         | 1    | 0     | 2    | 0    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, ванадия, хрома и кислорода. Рассчитайте слоевые содержания ванадия, хрома и кислорода. Постройте профили распределения по глубине атомов ванадия и хрома.

## Задание G16

Элементы, входящие в состав анализируемого образца:

углерод, кислород, медь.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| $E_0$ , МэВ | Элемент           | C  | О   | Al  | Pb  |
|-------------|-------------------|----|-----|-----|-----|
| 1,5         | Канал анализатора | 86 | 123 | 195 | 330 |

## Распечатка спектра обратного рассеяния:

| №      |      |      |      | Dry  | VOT PROG | ogung r  | n err |      |      |      |
|--------|------|------|------|------|----------|----------|-------|------|------|------|
| канала |      |      |      | Вы   | ход расс | сяния, и | IMII. |      |      |      |
| 40.    | 4696 | 4659 | 4437 | 4471 | 4276     | 4240     | 4203  | 4130 | 4035 | 4049 |
| 50.    | 3898 | 3805 | 3738 | 3619 | 3511     | 3593     | 3319  | 3313 | 3330 | 3240 |
| 60.    | 3282 | 3242 | 3061 | 3113 | 3065     | 2953     | 3026  | 2939 | 2981 | 2925 |
| 70.    | 2792 | 2739 | 2784 | 2748 | 2659     | 2666     | 2561  | 2564 | 2441 | 2430 |
| 80.    | 2366 | 2208 | 2045 | 1861 | 1557     | 1236     | 805   | 584  | 435  | 350  |
| 90.    | 379  | 295  | 284  | 313  | 277      | 309      | 305   | 292  | 259  | 300  |
| 100.   | 275  | 274  | 285  | 260  | 295      | 304      | 281   | 255  | 275  | 271  |
| 110.   | 277  | 251  | 263  | 250  | 287      | 277      | 303   | 302  | 336  | 361  |
| 120.   | 356  | 382  | 391  | 337  | 301      | 222      | 181   | 166  | 162  | 149  |
| 130.   | 152  | 143  | 143  | 150  | 143      | 138      | 134   | 149  | 147  | 144  |
| 140.   | 128  | 128  | 138  | 134  | 136      | 143      | 158   | 114  | 157  | 151  |
| 150.   | 153  | 113  | 137  | 136  | 124      | 140      | 143   | 136  | 145  | 153  |
| 160.   | 115  | 144  | 144  | 121  | 136      | 160      | 149   | 153  | 138  | 160  |
| 170.   | 127  | 125  | 145  | 140  | 107      | 143      | 130   | 148  | 130  | 131  |
| 180.   | 113  | 119  | 135  | 147  | 127      | 143      | 144   | 136  | 136  | 129  |
| 190.   | 166  | 133  | 183  | 168  | 188      | 201      | 179   | 181  | 195  | 171  |
| 200.   | 159  | 148  | 174  | 168  | 178      | 171      | 169   | 145  | 151  | 139  |
| 210.   | 116  | 109  | 132  | 101  | 117      | 90       | 122   | 117  | 132  | 126  |
| 220.   | 129  | 133  | 126  | 138  | 133      | 157      | 157   | 186  | 163  | 180  |
| 230.   | 178  | 156  | 164  | 118  | 109      | 85       | 63    | 55   | 76   | 59   |
| 240.   | 82   | 71   | 83   | 81   | 85       | 89       | 107   | 74   | 98   | 101  |
| 250.   | 95   | 89   | 123  | 111  | 95       | 118      | 121   | 144  | 160  | 149  |
| 260.   | 177  | 185  | 196  | 209  | 242      | 296      | 361   | 541  | 786  | 1173 |
| 270.   | 1817 | 2323 | 2623 | 2317 | 1838     | 1277     | 710   | 366  | 142  | 63   |
| 280.   | 44   | 24   | 15   | 15   | 15       | 15       | 17    | 9    | 8    | 13   |
| 290.   | 15   | 13   | 8    | 17   | 18       | 19       | 9     | 22   | 22   | 12   |
| 300.   | 14   | 19   | 27   | 28   | 23       | 17       | 25    | 30   | 18   | 22   |
| 310.   | 25   | 31   | 16   | 32   | 26       | 37       | 30    | 38   | 33   | 51   |
| 320.   | 51   | 58   | 50   | 49   | 42       | 24       | 20    | 13   | 6    | 2    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, меди и кислорода. Рассчитайте слоевые содержания меди и кислорода. Постройте профили распределения по глубине атомов меди и кислорода.

## Задание G17

Элементы, входящие в состав анализируемого образца:

углерод, кислород, ванадий, тантал.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

## Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

## Распечатка спектра обратного рассеяния:

| №      |      |      |       |       |           |           |      |      |      |      |
|--------|------|------|-------|-------|-----------|-----------|------|------|------|------|
| канала |      |      |       | Вых   | код рассе | яния, имі | I.   |      |      |      |
| 40.    | 4480 | 4577 | 4248  | 4178  | 4144      | 4131      | 3914 | 3907 | 3797 | 3850 |
| 50.    | 3661 | 3550 | 3585  | 3531  | 3489      | 3463      | 3389 | 3335 | 3224 | 3266 |
| 60.    | 3197 | 3228 | 3117  | 3164  | 3009      | 3084      | 2953 | 2932 | 2851 | 2818 |
| 70.    | 2791 | 2757 | 2745  | 2786  | 2644      | 2750      | 2567 | 2535 | 2408 | 2249 |
| 80.    | 2022 | 1703 | 1323  | 897   | 671       | 468       | 327  | 244  | 200  | 181  |
| 90.    | 168  | 137  | 143   | 125   | 123       | 131       | 101  | 107  | 102  | 85   |
| 100.   | 102  | 96   | 93    | 99    | 108       | 89        | 88   | 83   | 85   | 87   |
| 110.   | 72   | 84   | 77    | 97    | 103       | 115       | 119  | 174  | 248  | 414  |
| 120.   | 615  | 722  | 935   | 965   | 792       | 520       | 318  | 200  | 111  | 72   |
| 130.   | 69   | 61   | 67    | 56    | 47        | 72        | 58   | 58   | 58   | 50   |
| 140.   | 50   | 44   | 55    | 55    | 54        | 54        | 46   | 48   | 60   | 44   |
| 150.   | 57   | 74   | 53    | 51    | 42        | 49        | 41   | 49   | 53   | 66   |
| 160.   | 59   | 40   | 36    | 50    | 64        | 57        | 63   | 60   | 55   | 53   |
| 170.   | 45   | 44   | 49    | 49    | 47        | 49        | 54   | 59   | 46   | 48   |
| 180.   | 48   | 49   | 52    | 62    | 38        | 54        | 58   | 56   | 47   | 58   |
| 190.   | 64   | 81   | 63    | 79    | 102       | 88        | 80   | 80   | 71   | 47   |
| 200.   | 60   | 65   | 52    | 59    | 53        | 41        | 57   | 45   | 45   | 61   |
| 210.   | 51   | 41   | 41    | 55    | 43        | 57        | 59   | 59   | 50   | 51   |
| 220.   | 51   | 62   | 48    | 58    | 59        | 57        | 58   | 43   | 59   | 59   |
| 230.   | 71   | 59   | 52    | 54    | 45        | 65        | 54   | 52   | 76   | 58   |
| 240.   | 81   | 77   | 93    | 95    | 112       | 121       | 153  | 181  | 275  | 393  |
| 250.   | 626  | 1149 | 1972  | 2882  | 3614      | 3735      | 3243 | 2181 | 1258 | 606  |
| 260.   | 297  | 148  | 70    | 85    | 85        | 62        | 53   | 36   | 38   | 44   |
| 270.   | 32   | 60   | 97    | 101   | 133       | 165       | 162  | 133  | 113  | 64   |
| 280.   | 55   | 31   | 23    | 12    | 18        | 16        | 12   | 9    | 15   | 11   |
| 290.   | 14   | 19   | 15    | 28    | 21        | 33        | 34   | 27   | 26   | 18   |
| 300.   | 26   | 28   | 27    | 24    | 29        | 44        | 47   | 68   | 89   | 120  |
| 310.   | 126  | 186  | 211   | 278   | 342       | 494       | 782  | 1184 | 1872 | 3161 |
| 320.   | 5445 | 8923 | 12738 | 16166 | 16729     | 14237     | 9622 | 5373 | 2374 | 1009 |
| 330.   | 470  | 187  | 123   | 71    | 57        | 33        | 27   | 20   | 14   | 10   |
| 340.   | 5    | 4    | 3     | 5     | 1         | 2         | 1    | 1    | 1    | 1    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, ванадия, тантала и кислорода. Рассчитайте слоевые содержания ванадия, тантала и кислорода. Постройте профили распределения по глубине атомов ванадия и тантала.

# Задание G18

Элементы, входящие в состав анализируемого образца:

углерод, кислород, титан, цирконий.

Тормозящая среда:

углерод (атомная плотность  $N=7,52\cdot 10^{22}$  атом/см<sup>3</sup>). Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | 0   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

## Распечатка спектра обратного рассеяния:

| №      |       |       |       |       |          |           |       |      |       |       |
|--------|-------|-------|-------|-------|----------|-----------|-------|------|-------|-------|
| канала |       |       |       | Вы    | ход расс | еяния, им | ИΠ.   |      |       |       |
| 40.    | 4655  | 4651  | 4574  | 4324  | 4317     | 4219      | 4099  | 4026 | 3880  | 3956  |
| 50.    | 3792  | 3712  | 3682  | 3600  | 3573     | 3431      | 3436  | 3445 | 3356  | 3279  |
| 60.    | 3265  | 3137  | 3176  | 3102  | 3058     | 3090      | 3053  | 2912 | 2909  | 2823  |
| 70.    | 2796  | 2631  | 2542  | 2311  | 2037     | 1747      | 1447  | 1203 | 1033  | 915   |
| 80.    | 904   | 818   | 765   | 727   | 783      | 790       | 800   | 703  | 671   | 584   |
| 90.    | 656   | 698   | 635   | 667   | 699      | 665       | 716   | 678  | 677   | 674   |
| 100.   | 659   | 665   | 716   | 692   | 722      | 718       | 789   | 799  | 790   | 895   |
| 110.   | 945   | 1183  | 1301  | 1549  | 1748     | 1890      | 1935  | 1916 | 1910  | 1977  |
| 120.   | 1862  | 1876  | 1778  | 1473  | 1211     | 915       | 691   | 565  | 476   | 473   |
| 130.   | 486   | 485   | 477   | 462   | 481      | 473       | 504   | 515  | 477   | 495   |
| 140.   | 478   | 521   | 482   | 521   | 518      | 469       | 474   | 442  | 515   | 465   |
| 150.   | 488   | 487   | 500   | 564   | 506      | 503       | 525   | 563  | 527   | 543   |
| 160.   | 517   | 478   | 533   | 487   | 462      | 499       | 461   | 546  | 465   | 482   |
| 170.   | 504   | 522   | 481   | 523   | 500      | 506       | 533   | 546  | 558   | 497   |
| 180.   | 583   | 581   | 531   | 576   | 575      | 595       | 578   | 631  | 645   | 641   |
| 190.   | 582   | 621   | 593   | 584   | 527      | 534       | 561   | 563  | 545   | 593   |
| 200.   | 557   | 563   | 533   | 496   | 536      | 548       | 539   | 552  | 489   | 545   |
| 210.   | 492   | 521   | 527   | 511   | 556      | 578       | 542   | 585  | 530   | 529   |
| 220.   | 516   | 539   | 528   | 478   | 476      | 449       | 489   | 493  | 476   | 526   |
| 230.   | 542   | 576   | 650   | 814   | 1033     | 1260      | 1708  | 2226 | 2916  | 3470  |
| 240.   | 3798  | 3810  | 3218  | 2675  | 1907     | 1349      | 988   | 702  | 627   | 589   |
| 250.   | 522   | 515   | 514   | 465   | 496      | 473       | 536   | 518  | 530   | 555   |
| 260.   | 556   | 559   | 519   | 541   | 486      | 507       | 500   | 528  | 540   | 552   |
| 270.   | 614   | 626   | 606   | 598   | 581      | 594       | 540   | 673  | 623   | 706   |
| 280.   | 804   | 980   | 1208  | 1735  | 2490     | 3943      | 5713  | 7989 | 10573 | 12687 |
| 290.   | 14449 | 15264 | 15868 | 15931 | 14964    | 13505     | 11133 | 8233 | 5293  | 3068  |
| 300.   | 1618  | 825   | 399   | 218   | 166      | 111       | 95    | 80   | 73    | 86    |
| 310.   | 83    | 71    | 84    | 67    | 51       | 32        | 33    | 21   | 28    | 19    |
| 320.   | 26    | 23    | 24    | 16    | 10       | 9         | 8     | 5    | 2     | 2     |
| 330.   | 2     | 0     | 2     | 1     | 0        | 1         | 0     | 0    | 2     | 0     |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, титана, циркония и кислорода. Рассчитайте слоевые содер-

жания титана, циркония и кислорода. Постройте профили распределения по глубине атомов титана и циркония.

## Задание G19

Элементы, входящие в состав анализируемого образца:

углерод, кислород, цирконий, ниобий.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | 0   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| №      |       |       |       |       |          |          |       |       |       |       |
|--------|-------|-------|-------|-------|----------|----------|-------|-------|-------|-------|
| канала |       |       |       | Вы    | ход расс | еяния, и | мп.   |       |       |       |
| 40.    | 4297  | 4030  | 4058  | 3984  | 3900     | 3807     | 3655  | 3751  | 3661  | 3617  |
| 50.    | 3473  | 3484  | 3446  | 3340  | 3281     | 3317     | 3242  | 3089  | 3168  | 3101  |
| 60.    | 2905  | 2990  | 2922  | 3029  | 2798     | 2836     | 2770  | 2774  | 2679  | 2640  |
| 70.    | 2673  | 2535  | 2515  | 2434  | 2193     | 2150     | 1832  | 1432  | 1123  | 835   |
| 80.    | 584   | 469   | 462   | 425   | 477      | 428      | 413   | 372   | 337   | 320   |
| 90.    | 315   | 290   | 290   | 286   | 282      | 317      | 299   | 280   | 280   | 290   |
| 100.   | 302   | 280   | 281   | 318   | 315      | 292      | 320   | 362   | 399   | 423   |
| 110.   | 473   | 564   | 630   | 824   | 965      | 1202     | 1309  | 1498  | 1562  | 1527  |
| 120.   | 1351  | 1237  | 1210  | 1072  | 843      | 598      | 401   | 306   | 201   | 178   |
| 130.   | 171   | 151   | 160   | 160   | 153      | 153      | 158   | 148   | 121   | 144   |
| 140.   | 158   | 141   | 152   | 163   | 141      | 160      | 141   | 161   | 155   | 155   |
| 150.   | 153   | 155   | 152   | 173   | 165      | 162      | 160   | 160   | 142   | 190   |
| 160.   | 179   | 153   | 190   | 154   | 160      | 122      | 129   | 118   | 150   | 128   |
| 170.   | 116   | 137   | 132   | 130   | 131      | 136      | 134   | 143   | 134   | 150   |
| 180.   | 143   | 171   | 168   | 140   | 164      | 170      | 204   | 177   | 215   | 188   |
| 190.   | 184   | 204   | 190   | 189   | 231      | 201      | 224   | 200   | 196   | 176   |
| 200.   | 182   | 155   | 145   | 174   | 145      | 147      | 169   | 140   | 164   | 172   |
| 210.   | 174   | 168   | 139   | 157   | 137      | 148      | 134   | 156   | 157   | 188   |
| 220.   | 169   | 188   | 175   | 209   | 185      | 158      | 177   | 164   | 148   | 154   |
| 230.   | 123   | 146   | 161   | 130   | 125      | 123      | 127   | 140   | 147   | 114   |
| 240.   | 154   | 122   | 130   | 142   | 154      | 154      | 138   | 120   | 135   | 146   |
| 250.   | 133   | 170   | 162   | 150   | 160      | 175      | 155   | 183   | 141   | 209   |
| 260.   | 221   | 199   | 181   | 241   | 208      | 213      | 221   | 262   | 274   | 283   |
| 270.   | 282   | 299   | 302   | 311   | 291      | 296      | 342   | 388   | 481   | 578   |
| 280.   | 817   | 1134  | 1791  | 2847  | 4586     | 6652     | 8877  | 11221 | 13019 | 13834 |
| 290.   | 13908 | 14308 | 14543 | 15613 | 16130    | 16565    | 16346 | 14512 | 11369 | 7889  |

| №<br>канала |      |      |      | Вых | код расс | еяния, и | мп. |    |    |    |
|-------------|------|------|------|-----|----------|----------|-----|----|----|----|
| 300.        | 4524 | 2337 | 1105 | 493 | 264      | 146      | 100 | 68 | 48 | 58 |
| 310.        | 22   | 29   | 31   | 32  | 39       | 47       | 53  | 52 | 49 | 59 |
| 320.        | 53   | 53   | 56   | 29  | 20       | 24       | 12  | 11 | 2  | 2  |
| 330.        | 3    | 1    | 1    | 1   | 2        | 2        | 2   | 2  | 2  | 1  |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, циркония, ниобия и кислорода. Рассчитайте слоевое содержание кислорода, а также общее слоевое содержание атомов циркония и ниобия, принимая в качестве  $\sigma_j$  среднее значение сечений резерфордовского рассеяния на ядрах атомов этих элементов. Постройте профили распределения по глубине совместно атомов циркония и ниобия.

#### Задание G20

Элементы, входящие в состав анализируемого образца:

углерод, кислород, никель, иридий.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 195 | 330 |

| №    |      |      |      |      | `        |           |      |      |      |      |  |  |
|------|------|------|------|------|----------|-----------|------|------|------|------|--|--|
| ка-  |      |      |      | Ŀ    | выход ра | ассеяния, | имп. |      |      |      |  |  |
| нала |      |      |      |      |          |           |      |      |      |      |  |  |
| 20.  | 2962 | 3252 | 2962 | 2782 | 2635     | 2333      | 2382 | 2254 | 2190 | 2243 |  |  |
| 30.  | 2052 | 1959 | 1998 | 1864 | 1965     | 1874      | 1888 | 1794 | 1868 | 1730 |  |  |
| 40.  | 1716 | 1775 | 1715 | 1667 | 1682     | 1618      | 1544 | 1542 | 1560 | 1522 |  |  |
| 50.  | 1502 | 1474 | 1467 | 1501 | 1380     | 1407      | 1372 | 1347 | 1325 | 1400 |  |  |
| 60.  | 1323 | 1284 | 1293 | 1244 | 1268     | 1203      | 1219 | 1222 | 1202 | 1180 |  |  |
| 70.  | 1118 | 1132 | 1137 | 1053 | 1069     | 918       | 817  | 680  | 588  | 452  |  |  |
| 80.  | 379  | 349  | 278  | 211  | 177      | 146       | 127  | 103  | 113  | 104  |  |  |
| 90.  | 102  | 85   | 97   | 101  | 99       | 106       | 118  | 86   | 109  | 93   |  |  |
| 100. | 108  | 93   | 103  | 106  | 92       | 95        | 91   | 137  | 103  | 149  |  |  |
| 110. | 159  | 178  | 231  | 271  | 322      | 327       | 304  | 328  | 281  | 248  |  |  |
| 120. | 188  | 146  | 112  | 89   | 50       | 45        | 38   | 61   | 51   | 44   |  |  |
| 130. | 50   | 34   | 34   | 49   | 42       | 37        | 44   | 38   | 41   | 43   |  |  |

| №<br>ка- |      |      |      | F    | Выхол р | ассеяния, | имп   |       |      |            |
|----------|------|------|------|------|---------|-----------|-------|-------|------|------------|
| нала     |      |      |      | -    | жилод р | жеселии,  | min.  |       |      |            |
| 140.     | 40   | 46   | 39   | 39   | 47      | 54        | 45    | 45    | 42   | 37         |
| 150.     | 41   | 51   | 37   | 57   | 39      | 48        | 45    | 52    | 53   | 44         |
| 160.     | 60   | 60   | 57   | 69   | 63      | 48        | 29    | 34    | 29   | 49         |
| 170.     | 30   | 36   | 46   | 35   | 47      | 41        | 33    | 32    | 40   | 43         |
| 180.     | 47   | 55   | 51   | 48   | 71      | 58        | 71    | 84    | 89   | 55         |
| 190.     | 81   | 67   | 79   | 71   | 57      | 57        | 50    | 69    | 52   | 47         |
| 200.     | 39   | 37   | 41   | 48   | 44      | 40        | 40    | 42    | 28   | 49         |
| 210.     | 35   | 45   | 53   | 38   | 45      | 54        | 56    | 56    | 52   | 44         |
| 220.     | 58   | 49   | 61   | 66   | 48      | 36        | 37    | 46    | 42   | 48         |
| 230.     | 28□  | 45   | 45   | 40   | 43      | 41        | 54    | 42    | 50□  | 48         |
| 240.     | 56   | 69   | 54   | 69   | 96      | 116       | 126   | 129   | 166  | 227        |
| 250.     | 283  | 433  | 690  | 1035 | 1469    | 1803      | 1990  | 2059  | 1932 | 1585       |
| 260.     | 1177 | 893  | 606  | 403  | 282     | 202       | 145   | 117   | 103  | 1585<br>75 |
| 270.     | 56   | 39   | 39   | 24   | 17      | 19        | 22    | 14    | 26   | 26         |
| 280.     | 25   | 26   | 25   | 25   | 32      | 33        | 44    | 50    | 45   | 53         |
| 290.     | 53   | 63   | 71   | 79   | 74      | 90        | 96    | 93    | 119  | 138        |
| 300.     | 186  | 262  | 373  | 600  | 820     | 1142      | 1333  | 1528  | 1519 | 1565       |
| 310.     | 1947 | 2697 | 4120 | 6243 | 8459    | 10311     | 11059 | 10385 | 8460 | 6054       |
| 320.     | 3797 | 2156 | 1182 | 726  | 479     | 277       | 195   | 116   | 58   | 28         |
| 330.     | 21   | 16   | 11   | 11   | 5       | 3         | 6     | 5     | 3    | 3          |
| 340.     | 1    | 3    | 1    | 3    | 5       | 1         | 1     | 3     | 0    | 1          |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для углерода, никеля, иридия и кислорода. Рассчитайте слоевые содержания никеля, иридия и кислорода. Постройте профили распределения по глубине атомов никеля и иридия.

## Задание G21

Элементы, входящие в состав анализируемого образца:

кислород, алюминий, иридий.

Тормозящая среда: алюминий.

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С   | 0   | Al  | Pt  |
|----------------------|-------------------|-----|-----|-----|-----|
| 2,0                  | Канал анализатора | 114 | 168 | 258 | 437 |

| №<br>канала |      | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |  |  |
|-------------|------|-----------------------|------|------|------|------|------|------|------|------|--|--|
| 30.         |      |                       | 9262 | 9069 | 8955 | 8648 | 8485 | 8400 | 7772 | 8001 |  |  |
| 40.         | 7826 | 7506                  | 7446 | 7295 | 7430 | 7136 | 6866 | 6810 | 6697 | 6639 |  |  |

| №      |      |      |      | Drn  | ход расс | 0011110  | 0.07  |      |      |      |
|--------|------|------|------|------|----------|----------|-------|------|------|------|
| канала |      |      |      | Вы   | ход расс | сяния, г | IMII. |      |      |      |
| 50.    | 6660 | 6611 | 6524 | 6223 | 6102     | 6123     | 6118  | 5988 | 6055 | 5815 |
| 60.    | 5887 | 5734 | 5784 | 5612 | 5683     | 5665     | 5392  | 5558 | 5383 | 5427 |
| 70.    | 5339 | 5311 | 5376 | 5222 | 5182     | 5138     | 5161  | 5178 | 5058 | 5101 |
| 80.    | 5060 | 4857 | 4916 | 4870 | 4949     | 4891     | 4796  | 4850 | 4772 | 4719 |
| 90.    | 4693 | 4642 | 4550 | 4671 | 4657     | 4649     | 4560  | 4591 | 4565 | 4624 |
| 100.   | 4593 | 4673 | 4538 | 4429 | 4481     | 4640     | 4489  | 4484 | 4467 | 4561 |
| 110.   | 4397 | 4376 | 4355 | 4366 | 4389     | 4366     | 4376  | 4453 | 4284 | 4390 |
| 120.   | 4276 | 4410 | 4269 | 4240 | 4232     | 4097     | 4123  | 4129 | 4254 | 4190 |
| 130.   | 4072 | 4061 | 4015 | 4253 | 4107     | 4141     | 4122  | 4110 | 4051 | 4048 |
| 140.   | 4113 | 4006 | 3909 | 3912 | 3996     | 4084     | 3920  | 4058 | 4038 | 3976 |
| 150.   | 3929 | 3978 | 3962 | 3956 | 3802     | 3902     | 3956  | 3888 | 3930 | 3988 |
| 160.   | 3957 | 4127 | 4059 | 4289 | 4250     | 4355     | 4440  | 4164 | 4014 | 3926 |
| 170.   | 3839 | 3703 | 3800 | 3775 | 3790     | 3700     | 3738  | 3735 | 3712 | 3571 |
| 180.   | 3756 | 3644 | 3656 | 3723 | 3666     | 3650     | 3764  | 3580 | 3605 | 3760 |
| 190.   | 3497 | 3516 | 3599 | 3733 | 3535     | 3650     | 3525  | 3525 | 3566 | 3461 |
| 200.   | 3505 | 3570 | 3538 | 3491 | 3556     | 3557     | 3519  | 3518 | 3469 | 3535 |
| 210.   | 3428 | 3505 | 3458 | 3453 | 3394     | 3457     | 3500  | 3492 | 3420 | 3325 |
| 220.   | 3412 | 3331 | 3280 | 3433 | 3334     | 3462     | 3279  | 3256 | 3356 | 3340 |
| 230.   | 3231 | 3395 | 3340 | 3462 | 3289     | 3282     | 3360  | 3291 | 3255 | 3203 |
| 240.   | 3143 | 3160 | 3182 | 3221 | 3145     | 3122     | 3087  | 3107 | 3088 | 3081 |
| 250.   | 2876 | 2686 | 2673 | 2402 | 2013     | 1603     | 1126  | 897  | 599  | 445  |
| 260.   | 303  | 234  | 133  | 111  | 75       | 65       | 59    | 73   | 59   | 68   |
| 270.   | 48   | 52   | 59   | 58   | 46       | 62       | 63    | 52   | 64   | 67   |
| 280.   | 62   | 71   | 62   | 65   | 61       | 57       | 61    | 51   | 54   | 55   |
| 290.   | 66   | 57   | 71   | 74   | 58       | 67       | 74    | 71   | 58   | 70   |
| 300.   | 72   | 68   | 56   | 60   | 69       | 57       | 60    | 79   | 58   | 73   |
| 310.   | 57   | 79   | 60   | 86   | 70       | 81       | 66    | 58   | 49   | 55   |
| 320.   | 70   | 59   | 53   | 61   | 63       | 67       | 62    | 57   | 77   | 58   |
| 330.   | 61   | 57   | 75   | 71   | 58       | 54       | 70    | 70   | 72   | 73   |
| 340.   | 73   | 72   | 75   | 78   | 78       | 69       | 67    | 83   | 86   | 86   |
| 350.   | 99   | 93   | 106  | 104  | 123      | 95       | 95    | 88   | 78   | 76   |
| 360.   | 81   | 59   | 65   | 71   | 79       | 83       | 72    | 69   | 79   | 71   |
| 370.   | 78   | 63   | 96   | 71   | 81       | 92       | 82    | 80   | 90   | 95   |
| 380.   | 86   | 95   | 107  | 99   | 98       | 106      | 101   | 107  | 135  | 116  |
| 390.   | 141  | 122  | 129  | 116  | 133      | 134      | 153   | 159  | 151  | 140  |
| 400.   | 175  | 159  | 163  | 184  | 201      | 215      | 233   | 210  | 249  | 278  |
| 410.   | 276  | 309  | 355  | 401  | 425      | 493      | 670   | 984  | 1553 | 2658 |
| 420.   | 4199 | 5965 | 7422 | 8451 | 8207     | 6742     | 4579  | 2628 | 1032 | 412  |
| 430.   | 139  | 50   | 35   | 28   | 25       | 29       | 27    | 27   | 17   | 15   |
| 440.   | 9    | 8    | 8    | 4    | 3        | 4        | 1     | 2    | 2    | 1    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для алюминия и иридия. Рассчитайте слоевые содержания иридия и кислорода. Постройте профили распределения по глубине атомов иридия в алюминии.

Задание **G22** Элементы, входящие в состав анализируемого образца:

кислород, алюминий, платина.

Тормозящая среда: алюминий.

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С   | О   | Al  | Pt  |
|----------------------|-------------------|-----|-----|-----|-----|
| 2,0                  | Канал анализатора | 114 | 168 | 258 | 437 |

| No     |      |      |      | Drn         | VOT DOGG | ogung r  |       |      |      |      |
|--------|------|------|------|-------------|----------|----------|-------|------|------|------|
| канала |      |      |      | <b>Б</b> Ы2 | код расс | еяния, и | IMII. |      |      |      |
| 50.    |      | 7476 | 7468 | 7407        | 7092     | 7109     | 6796  | 6694 | 6745 | 6710 |
| 60.    | 6582 | 6573 | 6314 | 6375        | 6295     | 6064     | 6042  | 5990 | 5944 | 5887 |
| 70.    | 5719 | 5830 | 5586 | 5670        | 5471     | 5519     | 5673  | 5414 | 5388 | 5287 |
| 80.    | 5314 | 5220 | 5186 | 5153        | 5110     | 4979     | 5087  | 4993 | 4930 | 4993 |
| 90.    | 4956 | 4882 | 4761 | 4760        | 4746     | 4688     | 4732  | 4719 | 4717 | 4661 |
| 100.   | 4621 | 4434 | 4718 | 4623        | 4510     | 4571     | 4503  | 4503 | 4602 | 4416 |
| 110.   | 4468 | 4404 | 4442 | 4360        | 4288     | 4360     | 4273  | 4242 | 4222 | 4320 |
| 120.   | 4306 | 4245 | 4092 | 4189        | 4127     | 4170     | 4197  | 4253 | 4152 | 4165 |
| 130.   | 4163 | 4126 | 4144 | 4054        | 4034     | 3991     | 4116  | 4073 | 3910 | 3823 |
| 140.   | 3967 | 3906 | 3879 | 3904        | 3960     | 3929     | 3998  | 3855 | 3817 | 3855 |
| 150.   | 3800 | 3909 | 3894 | 3940        | 3715     | 3835     | 3878  | 3821 | 3770 | 3953 |
| 160.   | 3853 | 3811 | 3868 | 3911        | 3939     | 3946     | 4050  | 3813 | 3836 | 3697 |
| 170.   | 3749 | 3628 | 3572 | 3621        | 3636     | 3633     | 3661  | 3599 | 3456 | 3515 |
| 180.   | 3593 | 3637 | 3602 | 3436        | 3449     | 3470     | 3553  | 3430 | 3606 | 3454 |
| 190.   | 3433 | 3495 | 3377 | 3530        | 3376     | 3315     | 3447  | 3477 | 3487 | 3391 |
| 200.   | 3474 | 3430 | 3287 | 3417        | 3362     | 3350     | 3344  | 3305 | 3414 | 3319 |
| 210.   | 3283 | 3441 | 3288 | 3286        | 3257     | 3399     | 3284  | 3293 | 3259 | 3221 |
| 220.   | 3205 | 3264 | 3214 | 3153        | 3245     | 3243     | 3225  | 3131 | 3272 | 3217 |
| 230.   | 3227 | 3198 | 3173 | 3213        | 3195     | 3125     | 3090  | 3167 | 3200 | 3224 |
| 240.   | 3202 | 3112 | 3110 | 3027        | 3036     | 3107     | 2970  | 2966 | 2993 | 2939 |
| 250.   | 2945 | 2974 | 2762 | 2670        | 2451     | 2141     | 1718  | 1270 | 815  | 516  |
| 260.   | 388  | 241  | 272  | 261         | 211      | 202      | 204   | 236  | 207  | 208  |
| 270.   | 225  | 213  | 213  | 222         | 213      | 188      | 210   | 220  | 206  | 196  |
| 280.   | 227  | 235  | 218  | 222         | 218      | 201      | 215   | 220  | 185  | 220  |
| 290.   | 215  | 203  | 183  | 223         | 175      | 221      | 197   | 217  | 219  | 187  |
| 300.   | 208  | 213  | 200  | 211         | 171      | 216      | 202   | 185  | 184  | 185  |
| 310.   | 192  | 183  | 204  | 191         | 207      | 220      | 207   | 210  | 195  | 191  |
| 320.   | 201  | 202  | 163  | 188         | 205      | 206      | 180   | 196  | 207  | 183  |
| 330.   | 197  | 209  | 198  | 198         | 189      | 203      | 208   | 176  | 184  | 187  |
| 340.   | 198  | 178  | 171  | 176         | 190      | 174      | 177   | 193  | 206  | 181  |
| 350.   | 181  | 149  | 164  | 174         | 161      | 162      | 158   | 164  | 157  | 173  |
| 360.   | 168  | 157  | 172  | 170         | 159      | 150      | 159   | 167  | 191  | 170  |
| 370.   | 153  | 183  | 155  | 154         | 132      | 150      | 157   | 147  | 154  | 167  |
| 380.   | 158  | 157  | 144  | 162         | 185      | 149      | 162   | 180  | 163  | 156  |

| $\mathcal{N}_{2}$ |                       | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |  |  |  |
|-------------------|-----------------------|-----------------------|------|------|------|------|------|------|------|------|--|--|--|
| канала            | лыход рассеяния, имп. |                       |      |      |      |      |      |      |      |      |  |  |  |
| 390.              | 164                   | 17                    | 161  | 159  | 156  | 183  | 170  | 163  | 198  | 186  |  |  |  |
| 400.              | 178                   | 193                   | 157  | 178  | 198  | 184  | 202  | 203  | 181  | 180  |  |  |  |
| 410.              | 198                   | 223                   | 217  | 215  | 200  | 197  | 207  | 214  | 204  | 201  |  |  |  |
| 420.              | 199                   | 212                   | 225  | 265  | 232  | 289  | 319  | 343  | 412  | 527  |  |  |  |
| 430.              | 760                   | 1400                  | 2669 | 4540 | 7214 | 9305 | 9692 | 7728 | 4612 | 2038 |  |  |  |
| 440.              | 654                   | 190                   | 52   | 25   | 10   | 8    | 7    | 5    | 9    | 3    |  |  |  |
| 450.              | 0                     | 4                     | 2    | 3    | 3    | 3    | 3    | 0    | 0    | 6    |  |  |  |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для алюминия и платины. Рассчитайте слоевые содержания платины и кислорода. Постройте профили распределения по глубине атомов платины в алюминии.

Задание G23

Элементы, входящие в состав анализируемого образца:

кислород, алюминий, цирконий.

Тормозящая среда: алюминий.

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С   | О   | Al  | Pt  |
|----------------------|-------------------|-----|-----|-----|-----|
| 2,0                  | Канал анализатора | 114 | 168 | 258 | 437 |

| <b>№</b><br>канала |      | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |  |  |  |
|--------------------|------|-----------------------|------|------|------|------|------|------|------|------|--|--|--|
| 70.                | 5386 | 5438                  | 5293 | 5377 | 5177 | 5112 | 5203 | 5005 | 5012 | 5024 |  |  |  |
| 80.                | 5067 | 4855                  | 4868 | 4940 | 4915 | 4867 | 4857 | 4824 | 4915 | 4852 |  |  |  |
| 90.                | 4744 | 4748                  | 4669 | 4656 | 4628 | 4690 | 4691 | 4578 | 4625 | 4655 |  |  |  |
| 100.               | 4662 | 4473                  | 4498 | 4631 | 4473 | 4522 | 4522 | 4436 | 4453 | 4461 |  |  |  |
| 110.               | 4392 | 4360                  | 4376 | 4505 | 4462 | 4348 | 4437 | 4368 | 4311 | 4341 |  |  |  |
| 120.               | 4154 | 4346                  | 4198 | 4218 | 4256 | 4160 | 4136 | 4171 | 4184 | 4224 |  |  |  |
| 130.               | 4203 | 4272                  | 4056 | 4259 | 3936 | 4151 | 4130 | 4062 | 4033 | 4021 |  |  |  |
| 140.               | 3945 | 3952                  | 4163 | 4018 | 3957 | 4047 | 3952 | 3991 | 4047 | 3960 |  |  |  |
| 150.               | 3912 | 3961                  | 4016 | 3879 | 4115 | 3970 | 4008 | 4021 | 3960 | 3896 |  |  |  |
| 160.               | 3936 | 4023                  | 4106 | 4076 | 4260 | 4369 | 4433 | 4266 | 4110 | 3917 |  |  |  |
| 170.               | 3874 | 3748                  | 3800 | 3861 | 3723 | 3613 | 3833 | 3876 | 3805 | 3732 |  |  |  |
| 180.               | 3592 | 3735                  | 3700 | 3813 | 3680 | 3686 | 3730 | 3754 | 3586 | 3726 |  |  |  |
| 190.               | 3742 | 3700                  | 3617 | 3735 | 3607 | 3618 | 3646 | 3682 | 3616 | 3687 |  |  |  |
| 200.               | 3624 | 3554                  | 3586 | 3590 | 3555 | 3561 | 3544 | 3523 | 3472 | 3573 |  |  |  |
| 210.               | 3492 | 3420                  | 3417 | 3565 | 3532 | 3498 | 3521 | 3478 | 3405 | 3411 |  |  |  |
| 220.               | 3438 | 3462                  | 3375 | 3417 | 3391 | 3390 | 3441 | 3383 | 3425 | 3438 |  |  |  |

| <b>№</b><br>канала |      |      |      | Вых  | ход расс | еяния, и | ІМП. |      |      |      |
|--------------------|------|------|------|------|----------|----------|------|------|------|------|
| 230.               | 3432 | 3355 | 3428 | 3413 | 3263     | 3372     | 3470 | 3365 | 3204 | 3407 |
| 240.               | 3275 | 3247 | 3272 | 3263 | 3329     | 3314     | 3124 | 3247 | 3179 | 3100 |
| 250.               | 3093 | 2922 | 2838 | 2804 | 2379     | 1882     | 1384 | 910  | 521  | 300  |
| 260.               | 173  | 136  | 121  | 128  | 114      | 112      | 95   | 119  | 96   | 115  |
| 270.               | 101  | 110  | 114  | 125  | 95       | 104      | 100  | 109  | 108  | 131  |
| 280.               | 116  | 126  | 116  | 104  | 119      | 103      | 107  | 115  | 107  | 120  |
| 290.               | 95   | 95   | 120  | 123  | 125      | 109      | 114  | 113  | 93   | 101  |
| 300.               | 98   | 111  | 121  | 113  | 123      | 115      | 137  | 126  | 121  | 120  |
| 310.               | 119  | 135  | 138  | 124  | 116      | 123      | 112  | 112  | 128  | 118  |
| 320.               | 108  | 107  | 111  | 108  | 113      | 112      | 127  | 123  | 99   | 136  |
| 330.               | 117  | 133  | 121  | 119  | 105      | 108      | 128  | 114  | 125  | 116  |
| 340.               | 104  | 101  | 129  | 121  | 118      | 122      | 141  | 124  | 119  | 116  |
| 350.               | 131  | 116  | 108  | 142  | 121      | 120      | 100  | 118  | 106  | 133  |
| 360.               | 115  | 111  | 111  | 98   | 121      | 109      | 117  | 122  | 105  | 109  |
| 370.               | 124  | 113  | 120  | 95   | 106      | 84       | 112  | 122  | 115  | 113  |
| 380.               | 102  | 118  | 115  | 121  | 116      | 127      | 136  | 133  | 152  | 164  |
| 390.               | 227  | 325  | 516  | 981  | 1687     | 2699     | 3366 | 3723 | 3242 | 2585 |
| 400.               | 1615 | 918  | 423  | 208  | 84       | 25       | 8    | 6    | 14   | 6    |
| 410.               | 9    | 18   | 16   | 10   | 8        | 8        | 11   | 8    | 9    | 11   |
| 420.               | 2    | 9    | 3    | 10   | 11       | 6        | 10   | 10   | 14   | 7    |
| 430.               | 11   | 22   | 31   | 32   | 39       | 45       | 36   | 31   | 18   | 13   |
| 440.               | 3    | 3    | 0    | 0    | 0        | 2        | 1    | 1    | 3    | 1    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для алюминия и циркония. Рассчитайте слоевые содержания циркония и кислорода. Постройте профили распределения по глубине атомов циркония в алюминии.

#### Задание G24

Элементы, входящие в состав анализируемого образца:

кислород, медь, платина.

Тормозящая среда: медь.

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С   | 0   | Al  | Pt  |
|----------------------|-------------------|-----|-----|-----|-----|
| 2,0                  | Канал анализатора | 114 | 168 | 258 | 437 |

| К | №<br>анала |       |       |       | Вы    | ход расс | еяния, и | МП.   |       |       |       |
|---|------------|-------|-------|-------|-------|----------|----------|-------|-------|-------|-------|
|   | 50.        | 15074 | 14583 | 14564 | 14157 | 14110    | 13754    | 13607 | 13502 | 13154 | 13199 |
|   | 60.        | 13010 | 12794 | 12627 | 12345 | 12243    | 12227    | 11807 | 11801 | 11601 | 11278 |

| №<br>канала |       |       |       | Вы    | ход расс | еяния, и | МΠ.   |       |       |       |
|-------------|-------|-------|-------|-------|----------|----------|-------|-------|-------|-------|
| 70.         | 11248 | 11227 | 11141 | 10936 | 10953    | 10480    | 10553 | 10468 | 10361 | 10275 |
| 80.         | 10028 | 10236 | 9671  | 9929  | 9698     | 9877     | 9486  | 9461  | 9235  | 9279  |
| 90.         | 9170  | 9314  | 9187  | 9137  | 8870     | 8960     | 8706  | 8685  | 8719  | 8725  |
| 100.        | 8497  | 8714  | 8488  | 8428  | 8373     | 8438     | 8187  | 8208  | 8159  | 8048  |
| 110.        | 7894  | 8088  | 8003  | 7877  | 7761     | 7796     | 7741  | 7857  | 7708  | 7634  |
| 120.        | 7458  | 7402  | 7382  | 7272  | 7345     | 7273     | 7229  | 7075  | 7222  | 7132  |
| 130.        | 7190  | 7000  | 7151  | 6830  | 6883     | 6929     | 6779  | 6789  | 6721  | 6548  |
| 140.        | 6500  | 6574  | 6497  | 6765  | 6698     | 6629     | 6446  | 6590  | 6378  | 6365  |
| 150.        | 6181  | 6341  | 6185  | 6212  | 6350     | 6333     | 6249  | 6232  | 6273  | 6223  |
| 160.        | 6169  | 6054  | 6001  | 5870  | 5967     | 5957     | 5883  | 5996  | 5945  | 5890  |
| 170.        | 5789  | 5769  | 5778  | 5657  | 5746     | 5853     | 5811  | 5689  | 5835  | 5774  |
| 180.        | 5681  | 5664  | 5561  | 5609  | 5369     | 5515     | 5583  | 5585  | 5408  | 5641  |
| 190.        | 5413  | 5397  | 5216  | 5306  | 5332     | 5306     | 5282  | 5425  | 5158  | 5322  |
| 200.        | 5285  | 5333  | 5180  | 5156  | 5290     | 5207     | 5088  | 5124  | 4991  | 5062  |
| 210.        | 5037  | 5181  | 5049  | 5149  | 5039     | 4934     | 4987  | 5061  | 4833  | 4921  |
| 220.        | 4928  | 4887  | 4924  | 4881  | 4821     | 4782     | 4893  | 4809  | 4836  | 4812  |
| 230.        | 4795  | 4796  | 4768  | 4639  | 4670     | 4672     | 4772  | 4529  | 4518  | 4567  |
| 240.        | 4767  | 4635  | 4651  | 4637  | 4609     | 4604     | 4548  | 4511  | 4527  | 4401  |
| 250.        | 4482  | 4440  | 4431  | 4557  | 4516     | 4376     | 4411  | 4445  | 4428  | 4375  |
| 260.        | 4313  | 4441  | 4391  | 4454  | 4298     | 4312     | 4334  | 4389  | 4241  | 4213  |
| 270.        | 4295  | 4329  | 4187  | 4311  | 4196     | 4279     | 4226  | 4305  | 4179  | 4269  |
| 280.        | 4167  | 4078  | 4188  | 4129  | 4098     | 4035     | 4129  | 4044  | 4241  | 3983  |
| 290.        | 3976  | 4139  | 3973  | 4079  | 3998     | 4080     | 4113  | 4003  | 3893  | 3995  |
| 300.        | 3991  | 3865  | 3944  | 4050  | 3855     | 3853     | 3827  | 3869  | 3932  | 3931  |
| 310.        | 3835  | 3847  | 3870  | 3858  | 3898     | 3760     | 3807  | 3888  | 3693  | 3759  |
| 320.        | 3947  | 3769  | 3680  | 3685  | 3810     | 3743     | 3707  | 3688  | 3590  | 3666  |
| 330.        | 3726  | 3664  | 3726  | 3698  | 3607     | 3650     | 3616  | 3637  | 3556  | 3633  |
| 340.        | 3582  | 3563  | 3595  | 3521  | 3649     | 3455     | 3380  | 3582  | 3506  | 3520  |
| 350.        | 3449  | 3514  | 3474  | 3501  | 3412     | 3295     | 3309  | 3284  | 3242  | 3285  |
| 360.        | 3320  | 3264  | 3062  | 2817  | 2679     | 2412     | 1937  | 1543  | 1205  | 843   |
| 370.        | 544   | 332   | 221   | 160   | 105      | 85       | 90    | 72    | 65    | 63    |
| 380.        | 67    | 73    | 68    | 86    | 65       | 68       | 54    | 70    | 64    | 65    |
| 390.        | 59    | 74    | 55    | 59    | 69       | 57       | 71    | 57    | 71    | 58    |
| 400.        | 62    | 55    | 62    | 79    | 69       | 70       | 73    | 86    | 78    | 83    |
| 410.        | 58    | 79    | 75    | 72    | 79       | 69       | 84    | 95    | 91    | 100   |
| 420.        | 71    | 99    | 115   | 117   | 121      | 149      | 160   | 188   | 199   | 229   |
| 430.        | 296   | 381   | 607   | 788   | 1246     | 1836     | 2218  | 2275  | 2098  | 1485  |
| 440.        | 936   | 506   | 230   | 121   | 58       | 27       | 25    | 21    | 12    | 27    |
| 450.        | 13    | 8     | 14    | 13    | 14       | 13       | 8     | 7     | 13    | 6     |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для меди и платины. Рассчитайте слоевые содержания платины и кислорода. Постройте профили распределения по глубине атомов платины и кислорода.

#### Задание G25

Элементы, входящие в состав анализируемого образца:

кислород, кремний, титан, железо.

Тормозящая среда: кремний.

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 193 | 324 |

## Распечатка спектра обратного рассеяния:

| №      |       |       |      | Вых   | код расс | еяния, и | ІМП. |              |      |      |
|--------|-------|-------|------|-------|----------|----------|------|--------------|------|------|
| канала | (1.60 | (2.41 | (201 | 60.50 | 5056     | 5004     | 5050 | <b>50</b> 66 | 5.00 | 5015 |
| 60.    | 6169  | 6241  | 6204 | 6079  | 5976     | 5904     | 5858 | 5866         | 5692 | 5815 |
| 70.    | 5721  | 5747  | 5557 | 5604  | 5614     | 5538     | 5498 | 5431         | 5415 | 5258 |
| 80.    | 5349  | 5172  | 5336 | 5360  | 5338     | 5244     | 5052 | 5073         | 4855 | 5133 |
| 90.    | 4957  | 5098  | 5032 | 5013  | 4962     | 4976     | 4815 | 4860         | 4819 | 4801 |
| 100.   | 5007  | 4895  | 4893 | 4850  | 4838     | 4630     | 4795 | 4919         | 4836 | 4749 |
| 110.   | 4728  | 4722  | 4691 | 4842  | 4679     | 4903     | 4908 | 5047         | 4955 | 4992 |
| 120.   | 5013  | 5178  | 5074 | 4671  | 4760     | 4715     | 4437 | 4477         | 4452 | 4429 |
| 130.   | 4352  | 4445  | 4227 | 4328  | 4459     | 4311     | 4320 | 4156         | 4343 | 4247 |
| 140.   | 4254  | 4164  | 4149 | 4239  | 4256     | 4141     | 4202 | 4165         | 4167 | 4130 |
| 150.   | 4121  | 4200  | 4008 | 4087  | 4079     | 4146     | 4082 | 4099         | 3872 | 4011 |
| 160.   | 3969  | 3964  | 3851 | 3889  | 3908     | 3799     | 3852 | 3890         | 3863 | 3766 |
| 170.   | 3689  | 3761  | 3808 | 3677  | 3548     | 3461     | 3221 | 2863         | 2208 | 1674 |
| 180.   | 1146  | 827   | 575  | 430   | 370      | 286      | 256  | 237          | 252  | 218  |
| 190.   | 214   | 237   | 208  | 217   | 249      | 199      | 214  | 204          | 205  | 216  |
| 200.   | 205   | 214   | 162  | 219   | 209      | 190      | 209  | 187          | 223  | 228  |
| 210.   | 236   | 252   | 236  | 233   | 260      | 271      | 286  | 244          | 298  | 266  |
| 220.   | 323   | 282   | 314  | 330   | 307      | 355      | 405  | 508          | 651  | 856  |
| 230.   | 1111  | 1610  | 2253 | 2930  | 3700     | 4270     | 4667 | 4940         | 4883 | 4904 |
| 240.   | 4286  | 3820  | 3054 | 2324  | 1740     | 1245     | 889  | 769          | 639  | 656  |
| 250.   | 661   | 887   | 1079 | 1441  | 2078     | 2749     | 3452 | 3969         | 4332 | 4634 |
| 260.   | 4666  | 4569  | 4011 | 3322  | 2287     | 1462     | 764  | 386          | 206  | 105  |
| 270.   | 63    | 48    | 31   | 31    | 21       | 20       | 12   | 14           | 14   | 13   |
| 280.   | 18    | 12    | 10   | 11    | 13       | 21       | 17   | 23           | 21   | 25   |
| 290.   | 27    | 28    | 23   | 19    | 12       | 10       | 5    | 10           | 8    | 6    |
| 300.   | 6     | 4     | 12   | 5     | 5        | 2        | 7    | 10           | 5    | 3    |
| 310.   | 3     | 5     | 1    | 3     | 2        | 4        | 9    | 10           | 7    | 5    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для кремния, титана, железа и кислорода. Рассчитайте слоевые содержания титана, железа и кислорода. Определите толщину слоев, содержащих титан, железо и кислород.

# Задание G26

Элементы, входящие в состав анализируемого образца:

углерод, кислород, кобальт, платина.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 193 | 324 |

| №      |      | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |
|--------|------|-----------------------|------|------|------|------|------|------|------|------|
| канала |      | 1                     | 1    |      |      |      |      | 1    |      |      |
| 20.    |      |                       | 5053 | 4431 | 3747 | 3381 | 2960 | 2753 | 2555 | 2438 |
| 30.    | 2419 | 2218                  | 2206 | 2269 | 2175 | 2055 | 2071 | 2049 | 1932 | 1932 |
| 40.    | 1951 | 1790                  | 1834 | 1858 | 1746 | 1775 | 1754 | 1691 | 1665 | 1702 |
| 50.    | 1552 | 1543                  | 1498 | 1589 | 1465 | 1561 | 1469 | 1460 | 1472 | 1430 |
| 60.    | 1407 | 1448                  | 1382 | 1326 | 1364 | 1354 | 1289 | 1324 | 1311 | 1344 |
| 70.    | 1272 | 1258                  | 1252 | 1195 | 1142 | 989  | 904  | 805  | 704  | 630  |
| 80.    | 533  | 471                   | 350  | 294  | 300  | 242  | 263  | 220  | 190  | 199  |
| 90.    | 218  | 207                   | 206  | 201  | 194  | 201  | 212  | 179  | 187  | 176  |
| 100.   | 182  | 173                   | 194  | 183  | 182  | 192  | 192  | 198  | 205  | 206  |
| 110.   | 208  | 240                   | 263  | 271  | 289  | 299  | 326  | 266  | 291  | 268  |
| 120.   | 287  | 253                   | 239  | 224  | 221  | 160  | 167  | 160  | 164  | 158  |
| 130.   | 163  | 177                   | 193  | 182  | 166  | 177  | 156  | 150  | 178  | 166  |
| 140.   | 131  | 187                   | 164  | 182  | 204  | 169  | 179  | 154  | 170  | 160  |
| 150.   | 157  | 180                   | 172  | 192  | 169  | 196  | 180  | 208  | 193  | 184  |
| 160.   | 148  | 201                   | 206  | 202  | 210  | 173  | 184  | 178  | 208  | 188  |
| 170.   | 171  | 197                   | 181  | 187  | 200  | 194  | 180  | 214  | 180  | 216  |
| 180.   | 225  | 200                   | 232  | 234  | 243  | 241  | 254  | 251  | 230  | 257  |
| 190.   | 239  | 220                   | 194  | 223  | 243  | 240  | 237  | 227  | 272  | 233  |
| 200.   | 246  | 233                   | 241  | 223  | 216  | 229  | 287  | 259  | 266  | 256  |
| 210.   | 280  | 250                   | 262  | 242  | 249  | 278  | 269  | 293  | 285  | 304  |
| 220.   | 312  | 315                   | 298  | 306  | 301  | 328  | 317  | 303  | 332  | 325  |
| 230.   | 300  | 337                   | 324  | 350  | 336  | 342  | 370  | 411  | 350  | 366  |
| 240.   | 391  | 422                   | 399  | 384  | 403  | 466  | 509  | 468  | 526  | 575  |
| 250.   | 606  | 666                   | 728  | 875  | 1190 | 1688 | 2465 | 3507 | 4537 | 5318 |
| 260.   | 5852 | 5264                  | 4443 | 3184 | 2080 | 1224 | 666  | 405  | 250  | 205  |
| 270.   | 173  | 142                   | 150  | 131  | 139  | 126  | 117  | 133  | 132  | 120  |
| 280.   | 117  | 134                   | 131  | 142  | 131  | 145  | 136  | 146  | 168  | 147  |
| 290.   | 158  | 166                   | 177  | 192  | 178  | 220  | 226  | 227  | 258  | 341  |
| 300.   | 360  | 415                   | 579  | 800  | 1222 | 1702 | 2456 | 3336 | 4489 | 5536 |
| 310.   | 6227 | 6281                  | 5606 | 4692 | 3246 | 2030 | 1177 | 651  | 326  | 224  |
| 320.   | 124  | 69                    | 42   | 23   | 22   | 7    | 1    | 2    | 1    | 2    |
| 330.   | 1    | 1                     | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 1    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для кобальта, платины и кислорода. Рассчитайте слоевые содержания кобальта, платины и кислорода. Постройте профили распределения по глубине атомов кобальта и платины.

Задание **G27** 

Элементы, входящие в состав анализируемого образца:

углерод, кислород, кобальт, иридий.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 193 | 324 |

| N₂     |      |      |      |      |          |         |      |      |      |      |
|--------|------|------|------|------|----------|---------|------|------|------|------|
| канала |      |      |      | Вы   | ход расс | сеяния, | имп. |      |      |      |
| 30.    | 2142 | 2042 | 2024 | 1915 | 1944     | 1883    | 1828 | 1754 | 1750 | 1782 |
| 40.    | 1728 | 1783 | 1665 | 1581 | 1623     | 1602    | 1620 | 1535 | 1464 | 1473 |
| 50.    | 1464 | 1401 | 1411 | 1389 | 1378     | 1407    | 1350 | 1296 | 1333 | 1339 |
| 60.    | 1235 | 1315 | 1272 | 1220 | 1250     | 1239    | 1157 | 1238 | 1225 | 1158 |
| 70.    | 1155 | 1050 | 1099 | 1014 | 1021     | 867     | 722  | 677  | 521  | 437  |
| 80.    | 366  | 326  | 348  | 319  | 297      | 277     | 214  | 212  | 223  | 226  |
| 90.    | 185  | 171  | 168  | 186  | 184      | 177     | 177  | 153  | 163  | 182  |
| 100.   | 170  | 184  | 177  | 183  | 185      | 172     | 201  | 216  | 205  | 228  |
| 110.   | 269  | 296  | 330  | 387  | 430      | 379     | 405  | 342  | 289  | 228  |
| 120.   | 240  | 214  | 192  | 172  | 136      | 82      | 71   | 55   | 57   | 49   |
| 130.   | 49   | 51   | 39   | 33   | 53       | 45      | 58   | 45   | 74   | 57   |
| 140.   | 54   | 46   | 67   | 55   | 47       | 55      | 59   | 58   | 40   | 67   |
| 150.   | 57   | 55   | 46   | 56   | 58       | 59      | 58   | 53   | 82   | 62   |
| 160.   | 79   | 60   | 57   | 71   | 66       | 58      | 52   | 49   | 66   | 55   |
| 170.   | 44   | 43   | 57   | 55   | 63       | 55      | 57   | 54   | 61   | 67   |
| 180.   | 50   | 53   | 69   | 52   | 63       | 77      | 64   | 73   | 63   | 56   |
| 190.   | 83   | 73   | 84   | 86   | 94       | 75      | 74   | 73   | 74   | 71   |
| 200.   | 76   | 55   | 72   | 56   | 68       | 65      | 64   | 67   | 62   | 73   |
| 210.   | 60   | 80   | 75   | 68   | 78       | 86      | 87   | 97   | 93   | 118  |
| 220.   | 110  | 111  | 97   | 93   | 93       | 88      | 82   | 91   | 113  | 105  |
| 230.   | 81   | 95   | 105  | 118  | 95       | 121     | 104  | 115  | 131  | 125  |
| 240.   | 140  | 153  | 145  | 138  | 165      | 175     | 200  | 226  | 233  | 270  |
| 250.   | 333  | 450  | 602  | 840  | 1300     | 2075    | 2845 | 3764 | 4256 | 4750 |
| 260.   | 4806 | 4143 | 3092 | 2159 | 1302     | 691     | 330  | 165  | 90   | 58   |
| 270.   | 60   | 51   | 36   | 49   | 26       | 26      | 24   | 21   | 18   | 21   |
| 280.   | 24   | 11   | 19   | 19   | 16       | 27      | 28   | 21   | 28   | 41   |

| <b>№</b><br>канала |       | Выход рассеяния, имп. |      |      |      |      |      |      |       |       |
|--------------------|-------|-----------------------|------|------|------|------|------|------|-------|-------|
| 290.               | 51    | 45                    | 52   | 61   | 60   | 85   | 69   | 86   | 89    | 72    |
| 300.               | 83    | 87                    | 128  | 141  | 189  | 323  | 450  | 677  | 932   | 1071  |
| 310.               | 1249  | 1248                  | 1314 | 1577 | 2330 | 3732 | 5806 | 8264 | 10343 | 11027 |
| 320.               | 10464 | 8496                  | 5798 | 3466 | 1709 | 717  | 261  | 77   | 21    | 6     |
| 330.               | 2     | 1                     | 1    | 2    | 0    | 0    | 1    | 1    | 0     | 0     |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для кобальта, иридия и кислорода. Рассчитайте слоевые содержания кобальта, иридия и кислорода. Постройте профили распределения по глубине атомов кобальта и иридия.

#### Задание G28

Элементы, входящие в состав анализируемого образца:

углерод, кислород, никель, платина.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 193 | 324 |

| №<br>канала |      | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |  |
|-------------|------|-----------------------|------|------|------|------|------|------|------|------|--|
| 20.         |      |                       | 2662 | 2618 | 2432 | 2421 | 2277 | 2358 | 2191 | 2211 |  |
| 30.         | 2127 | 2119                  | 2044 | 1903 | 1904 | 1879 | 1829 | 1800 | 1756 | 1751 |  |
| 40.         | 1747 | 1618                  | 1638 | 1512 | 1658 | 1535 | 1565 | 1494 | 1490 | 1510 |  |
| 50.         | 1450 | 1435                  | 1404 | 1435 | 1340 | 1362 | 1359 | 1291 | 1280 | 1265 |  |
| 60.         | 1335 | 1213                  | 1248 | 1275 | 1234 | 1218 | 1216 | 1183 | 1183 | 1174 |  |
| 70.         | 1148 | 1148                  | 1183 | 1110 | 1061 | 971  | 967  | 834  | 777  | 641  |  |
| 80.         | 631  | 543                   | 482  | 389  | 340  | 270  | 216  | 225  | 203  | 166  |  |
| 90.         | 184  | 173                   | 179  | 159  | 157  | 176  | 158  | 155  | 164  | 180  |  |
| 100.        | 167  | 162                   | 153  | 156  | 159  | 153  | 162  | 153  | 151  | 144  |  |
| 110.        | 161  | 180                   | 209  | 230  | 229  | 255  | 253  | 222  | 231  | 216  |  |
| 120.        | 209  | 205                   | 194  | 140  | 148  | 127  | 149  | 123  | 141  | 120  |  |
| 130.        | 127  | 143                   | 136  | 129  | 108  | 132  | 131  | 142  | 112  | 138  |  |
| 140.        | 127  | 128                   | 136  | 100  | 136  | 120  | 124  | 108  | 135  | 114  |  |
| 150.        | 123  | 132                   | 140  | 140  | 124  | 130  | 129  | 126  | 125  | 117  |  |
| 160.        | 127  | 128                   | 117  | 118  | 134  | 124  | 132  | 144  | 129  | 131  |  |
| 170.        | 129  | 129                   | 113  | 119  | 138  | 127  | 118  | 142  | 139  | 141  |  |
| 180.        | 133  | 132                   | 142  | 168  | 164  | 179  | 191  | 170  | 187  | 171  |  |

| №<br>канала |      | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |  |
|-------------|------|-----------------------|------|------|------|------|------|------|------|------|--|
| 190.        | 194  | 162                   | 195  | 169  | 163  | 157  | 162  | 154  | 146  | 151  |  |
| 200.        | 152  | 154                   | 163  | 161  | 156  | 156  | 145  | 125  | 142  | 136  |  |
| 210.        | 147  | 167                   | 167  | 158  | 182  | 160  | 172  | 165  | 161  | 155  |  |
| 220.        | 166  | 166                   | 176  | 183  | 168  | 195  | 154  | 171  | 173  | 194  |  |
| 230.        | 146  | 176                   | 178  | 163  | 181  | 210  | 173  | 189  | 199  | 201  |  |
| 240.        | 204  | 213                   | 216  | 214  | 216  | 241  | 208  | 230  | 231  | 215  |  |
| 250.        | 242  | 269                   | 301  | 327  | 332  | 420  | 574  | 909  | 1284 | 1856 |  |
| 260.        | 2494 | 3047                  | 3254 | 3101 | 2515 | 2042 | 1439 | 962  | 604  | 395  |  |
| 270.        | 283  | 222                   | 151  | 164  | 140  | 114  | 128  | 131  | 125  | 141  |  |
| 280.        | 138  | 136                   | 145  | 154  | 135  | 143  | 153  | 142  | 136  | 142  |  |
| 290.        | 139  | 128                   | 180  | 142  | 171  | 157  | 163  | 196  | 190  | 203  |  |
| 300.        | 189  | 231                   | 271  | 292  | 368  | 490  | 691  | 1085 | 1607 | 2256 |  |
| 310.        | 3316 | 4474                  | 5705 | 6514 | 7080 | 7166 | 6421 | 5184 | 3752 | 2366 |  |
| 320.        | 1351 | 669                   | 257  | 108  | 40   | 21   | 4    | 2    | 1    | 0    |  |
| 330.        | 2    | 0                     | 0    | 0    | 0    | 1    | 2    | 3    | 0    | 0    |  |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для никеля, платины и кислорода. Рассчитайте слоевые содержания никеля, платины и кислорода. Постройте профили распределения по глубине атомов никеля и платины.

#### Задание G29

Элементы, входящие в состав анализируемого образца:

углерод, кислород, серебро, иридий.

Тормозящая среда:

углерод (атомная плотность  $N=7,52\cdot 10^{22}$  атом/см<sup>3</sup>). Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | 0   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 193 | 324 |

| №<br>канала | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |      |
|-------------|-----------------------|------|------|------|------|------|------|------|------|------|
| 20.         |                       |      |      | 3273 | 2906 | 2658 | 2553 | 2481 | 2424 | 2271 |
| 30.         | 2265                  | 2250 | 2183 | 2116 | 2138 | 1957 | 1999 | 1965 | 1882 | 1903 |
| 40.         | 1828                  | 1862 | 1777 | 1754 | 1698 | 1672 | 1658 | 1681 | 1648 | 1602 |
| 50.         | 1600                  | 1626 | 1537 | 1478 | 1496 | 1404 | 1402 | 1453 | 1417 | 1387 |
| 60.         | 1290                  | 1323 | 1370 | 1411 | 1269 | 1315 | 1326 | 1204 | 1291 | 1207 |
| 70.         | 1200                  | 1239 | 1194 | 1172 | 1106 | 1110 | 1048 | 936  | 819  | 640  |
| 80.         | 559                   | 443  | 394  | 302  | 247  | 209  | 150  | 154  | 140  | 130  |

| №      | Выход рассеяния, имп. |      |      |      |          |                                         |       |      |      |      |
|--------|-----------------------|------|------|------|----------|-----------------------------------------|-------|------|------|------|
| канала |                       |      |      |      | этод рас | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       |      |      |      |
| 90.    | 141                   | 110  | 142  | 97   | 113      | 114                                     | 120   | 100  | 102  | 134  |
| 100.   | 110                   | 130  | 112  | 126  | 101      | 107                                     | 119   | 117  | 123  | 138  |
| 110.   | 124                   | 147  | 166  | 192  | 200      | 255                                     | 303   | 306  | 305  | 267  |
| 120.   | 223                   | 152  | 166  | 109  | 83       | 70                                      | 67    | 72   | 71   | 65   |
| 130.   | 58                    | 63   | 55   | 64   | 61       | 69                                      | 61    | 55   | 51   | 75   |
| 140.   | 69                    | 66   | 57   | 54   | 58       | 46                                      | 63    | 65   | 75   | 58   |
| 150.   | 57                    | 49   | 50   | 60   | 57       | 60                                      | 52    | 59   | 58   | 86   |
| 160.   | 80                    | 70   | 86   | 87   | 92       | 85                                      | 77    | 84   | 61   | 59   |
| 170.   | 65                    | 66   | 56   | 60   | 53       | 56                                      | 50    | 59   | 46   | 63   |
| 180.   | 57                    | 67   | 58   | 67   | 69       | 57                                      | 56    | 90   | 92   | 97   |
| 190.   | 92                    | 89   | 65   | 75   | 74       | 66                                      | 61    | 42   | 66   | 61   |
| 200.   | 64                    | 74   | 57   | 73   | 62       | 54                                      | 61    | 55   | 47   | 54   |
| 210.   | 61                    | 55   | 86   | 85   | 101      | 118                                     | 120   | 143  | 99   | 85   |
| 220.   | 77                    | 95   | 94   | 75   | 86       | 79                                      | 74    | 49   | 64   | 48   |
| 230.   | 43                    | 60   | 43   | 34   | 40       | 36                                      | 46    | 41   | 34   | 39   |
| 240.   | 53                    | 45   | 56   | 44   | 50       | 48                                      | 40    | 59   | 50   | 37   |
| 250.   | 55                    | 56   | 66   | 58   | 58       | 58                                      | 71    | 88   | 60   | 76   |
| 260.   | 72                    | 57   | 75   | 70   | 95       | 100                                     | 97    | 75   | 95   | 73   |
| 270.   | 67                    | 55   | 61   | 63   | 53       | 61                                      | 55    | 71   | 59   | 71   |
| 280.   | 67                    | 80   | 83   | 110  | 127      | 134                                     | 181   | 221  | 254  | 280  |
| 290.   | 415                   | 548  | 870  | 1413 | 1943     | 2612                                    | 3055  | 3073 | 2676 | 2069 |
| 300.   | 1554                  | 1186 | 1055 | 1106 | 1262     | 1403                                    | 1453  | 1442 | 1619 | 1954 |
| 310.   | 2911                  | 4283 | 6390 | 8654 | 10355    | 10689                                   | 10046 | 7827 | 5449 | 3364 |
| 320.   | 1958                  | 995  | 657  | 382  | 281      | 174                                     | 98    | 68   | 22   | 8    |
| 330.   | 3                     | 5    | 1    | 0    | 0        | 0                                       | 1     | 1    | 2    | 0    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для серебра, иридия и кислорода. Рассчитайте слоевые содержания серебра, иридия и кислорода. Постройте профили распределения по глубине атомов серебра и иридия.

## Задание G30

Элементы, входящие в состав анализируемого образца:

углерод, кислород, серебро, платина.

Тормозящая среда:

углерод (атомная плотность  $N = 7,52 \cdot 10^{22}$  атом/см<sup>3</sup>).

Данные для калибровки шкалы спектрометра:

| Е <sub>0</sub> , МэВ | Элемент           | С  | О   | Al  | Pb  |
|----------------------|-------------------|----|-----|-----|-----|
| 1,5                  | Канал анализатора | 86 | 123 | 193 | 324 |

## Распечатка спектра обратного рассеяния:

| №      | Выход рассеяния, имп. |      |      |      |      |      |      |      |      |      |
|--------|-----------------------|------|------|------|------|------|------|------|------|------|
| канала |                       |      |      |      |      |      |      |      |      |      |
| 20.    |                       |      | 3268 | 3206 | 2911 | 2766 | 2560 | 2519 | 2431 | 2328 |
| 30.    | 2229                  | 2191 | 2125 | 2098 | 2031 | 2016 | 1976 | 1946 | 1895 | 1884 |
| 40.    | 1844                  | 1752 | 1782 | 1699 | 1688 | 1690 | 1665 | 1668 | 1609 | 1579 |
| 50.    | 1564                  | 1525 | 1449 | 1480 | 1454 | 1531 | 1449 | 1397 | 1369 | 1366 |
| 60.    | 1341                  | 1384 | 1285 | 1253 | 1259 | 1297 | 1283 | 1252 | 1280 | 1246 |
| 70.    | 1207                  | 1177 | 1163 | 1157 | 1125 | 1076 | 1075 | 994  | 934  | 825  |
| 80.    | 815                   | 629  | 534  | 415  | 324  | 217  | 172  | 133  | 133  | 137  |
| 90.    | 116                   | 98   | 102  | 104  | 112  | 114  | 100  | 115  | 107  | 109  |
| 100.   | 112                   | 98   | 113  | 91   | 90   | 90   | 105  | 85   | 85   | 99   |
| 110.   | 102                   | 116  | 145  | 143  | 186  | 205  | 219  | 206  | 210  | 174  |
| 120.   | 172                   | 125  | 113  | 90   | 72   | 57   | 52   | 41   | 52   | 39   |
| 130.   | 38                    | 39   | 37   | 47   | 38   | 49   | 41   | 45   | 41   | 46   |
| 140.   | 42                    | 55   | 43   | 54   | 53   | 32   | 48   | 44   | 43   | 48   |
| 150.   | 57                    | 38   | 50   | 36   | 49   | 52   | 40   | 38   | 46   | 45   |
| 160.   | 38                    | 53   | 45   | 53   | 62   | 62   | 55   | 66   | 40   | 62   |
| 170.   | 40                    | 59   | 37   | 44   | 53   | 39   | 50   | 48   | 47   | 35   |
| 180.   | 46                    | 59   | 48   | 67   | 68   | 70   | 76   | 86   | 95   | 94   |
| 190.   | 93                    | 89   | 77   | 80   | 60   | 54   | 60   | 58   | 54   | 55   |
| 200.   | 68                    | 65   | 60   | 61   | 73   | 73   | 85   | 75   | 74   | 64   |
| 210.   | 72                    | 61   | 86   | 97   | 110  | 133  | 132  | 147  | 115  | 107  |
| 220.   | 94                    | 74   | 89   | 65   | 53   | 52   | 48   | 42   | 27   | 25   |
| 230.   | 22                    | 19   | 16   | 14   | 23   | 20   | 14   | 11   | 17   | 13   |
| 240.   | 14                    | 16   | 21   | 14   | 19   | 20   | 16   | 13   | 12   | 17   |
| 250.   | 25                    | 19   | 18   | 20   | 24   | 21   | 17   | 24   | 26   | 24   |
| 260.   | 18                    | 23   | 19   | 23   | 10   | 15   | 15   | 22   | 19   | 19   |
| 270.   | 18                    | 34   | 22   | 25   | 16   | 27   | 36   | 42   | 38   | 45   |
| 280.   | 44                    | 41   | 62   | 56   | 87   | 92   | 109  | 157  | 206  | 293  |
| 290.   | 346                   | 534  | 812  | 1148 | 1721 | 2469 | 3136 | 3549 | 3699 | 3276 |
| 300.   | 2524                  | 1676 | 1031 | 582  | 397  | 271  | 282  | 332  | 411  | 558  |
| 310.   | 674                   | 952  | 1360 | 1710 | 2091 | 2444 | 2571 | 2435 | 2131 | 1492 |
| 320.   | 1115                  | 654  | 393  | 219  | 123  | 75   | 49   | 29   | 19   | 8    |
| 330.   | 15                    | 7    | 2    | 3    | 5    | 3    | 1    | 1    | 1    | 3    |
| 340.   | 0                     | 0    | 1    | 3    | 0    | 2    | 1    | 2    | 0    | 0    |

Постройте спектр обратного рассеяния. Произведите калибровку энергетической шкалы спектрометра. Постройте шкалы глубин для серебра, платины и кислорода. Рассчитайте слоевые содержания серебра, платины и кислорода. Постройте профили распределения по глубине атомов серебра и платины.

#### ЛИТЕРАТУРА

- 1. Поплавский В.В. Основы измерений физических величин. Мн.: БГТУ, 2005.
- 2. Харт X. Введение в измерительную технику. М.: Мир, 1999.
- 3. Филлипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория базовых знаний, 2001.
- 4. Отто М. Современные методы исследований в аналитической химии: В 2 т. М.: Техносфера, 2003.
- 5. Фелдман Л., Майер Д. Основы анализа поверхности и тонких пленок. М.: Мир, 1989.
- 6. Поплавский В.В., Бойко Е.Б. Анализ поверхности твердых тел методом резерфордовского обратного рассеяния быстрых ионов. Мн.: БГТУ, 1993.

# ОГЛАВЛЕНИЕ

| Предисловие                                                                                           | 2  |
|-------------------------------------------------------------------------------------------------------|----|
| 1. Программа дисциплины                                                                               | 2  |
| 1.1.2. Измерение как процесс преобразования сигналов                                                  | _  |
| измерение как процесс преооразования сигналов                                                         | _  |
| 1.1.3. Измерительные системы и их основные элементы                                                   | 5  |
| 1.1.5. измерительные системы и их основные элементы 1.2. Основы измерений состава веществ. Физические | •  |
| основы измерении состава веществ. Физические основы измерений с применением излучений                 | 6  |
| 1.2.1. Принципы преобразований электромагнитного                                                      | (  |
| излучения                                                                                             | 6  |
| 1.2.2. Принципы преобразований корпускулярного                                                        | `  |
| излучения                                                                                             | 8  |
| 1.2.3. Измерения состава веществ, основанные                                                          |    |
| на исследовании электронной структуры атомов                                                          | 8  |
| 1.2.4. Ядерно-физические измерения состава веществ                                                    | Ç  |
| 1.2.5. Основы акустических измерений                                                                  | 10 |
| 2. Методика выполнения заданий                                                                        | 11 |
| 2.1. Построение физико-математических моделей и                                                       | 1. |
| определение статических характеристик измерительных                                                   |    |
| преобразователей                                                                                      | 11 |
| 2.2. Построение блок-схем преобразования сигналов                                                     |    |
| в средствах измерений                                                                                 | 19 |
| 2.3. Определение статических и динамических                                                           |    |
| характеристик средств измерений                                                                       | 23 |
| на основе блок-схем сигналов                                                                          |    |
| 2.4. Определение характеристик оптических спектральных                                                |    |
| приборов                                                                                              | 33 |
| 2.5. Моделирование распределений интенсивности                                                        |    |
| рентгеновских спектральных линий                                                                      | 37 |
| 2.6. Определение состава веществ методом                                                              |    |
| рентгеновской фотоэлектронной спектроскопии                                                           | 46 |
| 2.7. Определение состава веществ методом спектроскопии                                                |    |
| резерфордовского обратного рассеяния                                                                  | 53 |
| 3. Контрольные задания                                                                                | 84 |
| 3.1. Вопросы контрольных заданий                                                                      | 85 |

| 3.2. Задачи контрольных заданий                    | 90  |
|----------------------------------------------------|-----|
| 3.2.1. Построение физико-математических моделей    |     |
| и блок-схем преобразования сигналов; расчет        |     |
| характеристик измерительных преобразователей       |     |
| на основе блок-схем                                | 90  |
| 3.2.2. Определение характеристик оптических        |     |
| спектральных приборов                              | 98  |
| 3.2.3. Моделирование распределений интенсивности   |     |
| рентгеновских спектральных линий                   | 102 |
| 3.2.4. Определение элементного состава поверхности |     |
| образцов по фотоэлектронным спектрам               | 103 |
| 3.2.5. Определение состава поверхности образцов    |     |
| по спектрам резерфордовского обратного             |     |
| рассеяния                                          | 134 |
| Литература                                         | 170 |

#### Учебное издание

#### Поплавский Василий Владимирович

# ОСНОВЫ ИЗМЕРЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН ПРАКТИКУМ

Учебное пособие

Редактор И.О. Гордейчик

Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 10,0. Уч.-изд. л. 10,3. Тираж 200 экз. Заказ .

Учреждение образования «Белорусский государственный технологический университет». 220050. Минск, Свердлова, 13а. ЛИ № 02330/0133255 от 30.04.2004.

Отпечатано в лаборатории полиграфии учреждения образования «Белорусский государственный технологический университет». 220050. Минск, Свердлова, 13. ЛП № 02330/0056739 от 22.01.2004.