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Abstract: The article presents the results of a comparison of the wear resistance of coatings
with a two-layer architecture (adhesion layer–wear-resistant layer) of Zr-ZrN, Zr-(Zr,Ti)N,
Zr,Hf-(Zr,Hf)N, Zr,Nb-(Zr,Nb)N, Zr,Hf-(Ti,Zr,Hf)N, and Zr,Nb-(Ti,Zr,Nb)N coatings, de-
posited on a titanium alloy substrate. The wear resistance was studied using two different
counterbodies: Al2O3 and steel. When in contact with the Al2O3 counterbodies, the best
wear resistance was demonstrated by samples with Zr,Hf-(Zr,Hf)N and Zr,Nb-(Zr,Nb,Ti)N
coatings. In tests conducted in contact with the steel counterbody, the best resistance was
demonstrated by samples with Zr-ZrN and Zr,Hf-(Ti,Zr,Hf)N coatings. The wear resistance
of samples with (Zr,Hf)N and (Zr,Nb,Ti)N coatings was 2.5–3.3 times higher than that of
the uncoated sample. The Zr,Nb adhesion layer ensures better adhesion of the coating to
the substrate. It was found that not only the adhesion strength of the adhesion layer to
the substrate and coating is of significant importance but also the strength of the adhesion
layer itself. The surface film of titanium oxide must be completely etched off to ensure
maximum strength of the adhesive bond between the coating and the substrate. It has been
established that the adhesion of the coating and the titanium substrate is also affected by
the characteristics of the outer (wear-resistant) coating layer, which is the composition and
structure of the wear-resistant coating layer. Delamination can occur both at the boundary
of the adhesive layer with the substrate and at the boundary of the wear-resistant and
adhesive layers of the coating depending on the strength of the adhesive bonds in the
corresponding pair. It is necessary to ensure a good combination of properties both in the
substrate–adhesion layer system and in the adhesion layer–wear-resistant layer system.

Keywords: wear resistance; titanium alloy; coatings; pin-on-disk test; adhesion

Metals 2025, 15, 163 https://doi.org/10.3390/met15020163

https://doi.org/10.3390/met15020163
https://doi.org/10.3390/met15020163
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-8239-5354
https://orcid.org/0000-0002-6720-0635
https://orcid.org/0000-0002-1465-2312
https://orcid.org/0000-0003-0367-5831
https://orcid.org/0000-0002-8424-0233
https://orcid.org/0000-0001-9776-0548
https://doi.org/10.3390/met15020163
https://www.mdpi.com/article/10.3390/met15020163?type=check_update&version=2


Metals 2025, 15, 163 2 of 23

1. Introduction
Titanium alloy parts are widely used in various fields of life [1–3]. Possessing high

strength with relatively low specific gravity, this material also provides effective corrosion
resistance due to the dense protective oxide film formed on its surface. Titanium alloy products
often function as parts of various tribological pairs, which causes their mechanical wear. Being
a fairly soft material, titanium, under such conditions, resists wear quite poorly (compared,
for example, to ceramics). At the same time, in a number of cases, there is a technological
need to use titanium parts in contact with counterbodies that are both identical in hardness
(for example, titanium and other metals) and harder (for example, ceramics) [4–10]. When
the tribological pair “titanium alloy-ceramics” functions, the high wear rate of the titanium
component becomes a significant problem. One of the effective ways to increase the wear
resistance of parts made of various materials is the deposition of wear-resistant coatings
on their working surfaces [11–13]. Due to their high (20 GPa and more) hardness, nitride
coatings provide a significant increase in wear resistance. When depositing nitride coatings on
a titanium alloy substrate, a significant problem is ensuring a strong adhesive bond between
them. It was found that even with the same scratch test groove depth on a steel and titanium
substrate with a coating (deposited by magnetron sputter), more intense destruction of the
coating is observed on the titanium substrate [4]. Elastic recovery is more important for
titanium alloys than for steel [4,14,15]. Due to the deformations that occur in the titanium
substrate during the scratch test, significant shear forces arise at the boundary of the coating
and the substrate. It is worth considering the fact that without taking into account fatigue
and interphase properties, even extremely hard coatings will not necessarily be effective
and reliable [16]. Thus, for coatings deposited on titanium alloy products, adhesion to the
substrate is of particular importance. There are a number of methods that can increase the
strength of the adhesive bond. In particular, to improve the adhesion of the coating, it is
proposed to increase the roughness of the substrate [17]. For this purpose, ion beam etching
(IBE) [18] and laser micromachining [16,19–21] are used. Good adhesion, in this case, is
achieved by matching the chemical properties of the coating and the substrate and increasing
the area of the active surface of the substrate. At the same time, it has been shown that a
decrease in the roughness of the substrate surface increases the adhesion of the coating by
reducing the number of surface defects [22]. With a decrease in roughness from Ra = 1.348 to
Ra = 0.037, the LC2 value of the Ti-TiN-Zr-ZrN coating increased from 31 to 58 N [23]. Thus,
the roughness of the substrate surface can both improve and worsen adhesion depending
on a number of factors [24]. There is a correlation between the coating adhesion and the
substrate hardness [25]. Harder substrates provide a better level of adhesion to the coating. It
has been established that for Zr or ZrN coatings, the adhesion between the coating and the
substrate increases linearly with increasing substrate hardness [26]. At the same time, softer
and more plastic phases of the substrate allow for an increase in the resistance to cohesive
failure due to plastic deformation and the formation of a disordered atomic layer that absorbs
the deformation energy of the coating [25]. Thus, not only is the substrate hardness important,
but the combination of the properties of the coating and the substrate is also important.
To ensure a balance of these properties, duplex processing methods are used, which allow
modifying the structure and properties of the surface layers of the substrate before coating
deposition [27,28]. Such a modification is possible both as a separate technological operation
and as part of the general process of coating deposition. The ion implantation of Ti, Cr, and N
into the surface layers of the substrate allows for an increase in the hardness of these layers and
the adhesion of the deposited coating [29]. Preliminary plasma nitriding is also effective [30].
Both of these processes can be carried out in one technological cycle with the deposition of
coatings, which is their undoubted advantage.
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Another approach (including one that complements those described above) to improve
adhesion involves introducing an intermediate adhesive layer between the coating and
the substrate [31–35]. Depending on the substrate material and the coating composition,
the following metal components were used as the adhesion layer: Ti [31,36–38], Zr [39–44],
Cr [45–47], Mo [46,48,49], and Al [50]. Comparisons were also made of various adhesion
layer materials: Nb, Cr, and Ta [51] and W, Mo, Nb, Cr, Ti, Ag, and Al [34]. Intermetallic
compounds were also considered—Fe2Ti [36], ZrHf [52,53], and CrMo [54]. Of the ma-
terials considered, the best indicators for increasing adhesion were shown by Ti, Nb, Zr,
and Cr. The high Zr content in the three-component coatings allows for increased wear
resistance. With an increase in the Zr content in the CrN/ZrN coating from 50 to 71 at%,
the wear resistance of the coating increased significantly [55]. The arc-PVD ZrN coating
deposited on a titanium alloy substrate did not have very high adhesion (critical failure load
LC2 = 29.4 N) [56]. The adhesion of ZrN deposited on a titanium alloy was significantly
lower than that on a nickel or chromium-molybdenum alloy. When deposited on a Ti-29Nb-
13Ta-4.6Zr alloy, the modeled using density functional theory adhesion strength of the
coatings (critical point LC2) was 39 MPa for CrN, 37 MPa for TiN, and 29 MPa for ZrN [57].
The introduction of Ti or Zr layers between the TiN and ZrN layers increased the adhesion
energy, with Zr layers increasing adhesion more effectively than titanium layers [24,58].
The double glow plasma alloying method was also used to improve adhesion in the Ti-ZrN
system [59]. In this case, a transition layer was formed between the ZrN and Ti layers,
which contained both metallic and ceramic phases. By varying the deposition parameters,
it was possible to ensure sufficiently good adhesion of PVD-deposited ZrN on a titanium
alloy substrate [60]. Metallic sublayers of the PVD coatings prevented crack propagation
and increased the critical failure load [61]. Close values between the residual stresses of the
substrate before deposition and the deposited coating led to good adhesion. Differences
in hardness between the materials of the adhesion sublayer, coating, and substrate had a
greater effect on adhesion than differences in the modulus of elasticity [34]. Bias voltage
also had a significant effect on the adhesion strength of the ZrN coating, with the optimal
value of this parameter depending on the properties of the substrate [62].

This paper presents the results of a comparison of the properties of ZrN, (Zr,Ti)N,
(Zr,Hf)N, (Ti,Zr,Hf)N, (Zr,Nb)N, and (Ti,Zr,Nb)N coatings deposited on the Ti-6Al-4V
titanium alloy substrate. These coatings have adhesion layers of Zr, Zr,Hf, and Zr,Nb,
respectively. The pin-on-disk test will be conducted using two different counterfaces:
Al2O3 and 52100 bearing steel. The ceramic counterbody (Al2O3) simulates the contact
conditions in the titanium–ceramic pair, which simulates the operating conditions of some
groups of products (e.g., shut-off valves in pipelines) under conditions when one of the
elements of the tribological pair has a hardness significantly exceeding the hardness of
the second element. The metal counterbody (52100 bearing steel) simulates contact in a
metal-to-metal pair when two elements of the tribological pair have close hardness values.
Thus, the studies will allow not only the determination of the wear resistance of titanium
alloy samples with coatings of different compositions but also the study of the effect of
the material and properties of the counterbody (indenter) on the wear pattern of samples
with coatings. Particular attention will be paid to the disruption or preservation of strong
adhesive bonds between the coating and the substrate during the tests.

2. Materials and Methods
A specialized physical vapor deposition (PVD) unit VIT-2 (IDTI RAS—MSUT

STANKIN, Moscow, Russia) was used for coating deposition [39,40,46,52,53]. Controlled
Accelerated Arc (CAA-PVD) evaporators were used [54,63]. Zr (99.98%), Ti (99.99%) cath-
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odes, as well as cathodes made of Zr-Nb (50:50%) and Zr-Hf (50:50%) alloys, were installed
in the CAA-PVD evaporators.

The samples were disks made of titanium alloy Ti-6Al-4V. The deposition surfaces of
the coatings were ground, and the surface roughness after grinding was Ra 0.53–0.36.

Before the deposition of the coatings, the samples were prepared in a special way:

• Washing in a special water solution (NaOH 15 g/L, sodium carbonate 15 g/L, aqueous
alkaline solution of sodium silicates Na2O(SiO2)n), 3 g/L) at a temperature of 80 ◦C
with ultrasound stimulation,

• Rinsing in purified running water,
• Drying in a stream of hot purified air (temperature is about 100 ◦C).

The arc current of the titanium cathode was set at 75 A, and for the zirconium cathode,
it was −80 A. For the alloy cathodes Zr-Nb (50:50%) and Zr-Hf (50:50%), the arc current was
set at 85 and 90 A, respectively. The remaining parameters were the same for all processes:
nitrogen pressure of 0.42 Pa, voltage on the substrate of 150 V, and a tool rotation speed of
0.7 rpm. The surface temperature of the samples during coating deposition was 400–430 ◦C.
Ten samples were produced with coatings of identical composition.

The deposited coatings have adhesive layers of Zr, Zr, Hf or Zr, and Nb, with a
thickness of 150–200 nm and a total coating thickness of about 3 µm. In the future, for ease
of perception, the coatings will be designated only by the composition of the wear-resistant
nitride layer.

The ASTM standard was used to test the wear resistance “Standard Test Method for
Wear Testing with a Pin-on-Disk Apparatus” [64,65]. The indenter was spherical in shape
with a diameter of 6 mm, a load of 10 N, and a rotation speed of 100 rpm.

Two counterbodies were used:

• Al2O3 ball, which has high hardness and low plasticity. The diffusion and chemical
interaction of samples with this counterbody is predictably low or absent.

• AISI 52100 bearing steel ball (ASTM A295 [66]). This material is more plastic and
is close to Ti-6Al-4V in a number of mechanical properties (see Table 1). An active
interdiffusion interaction is possible upon contact with this indenter.

Table 1. Properties of the indenter materials (Al2O3 and AISI 52100 bearing steel) and the Ti-6Al-4V
titanium alloy substrate (adapted from [67–73]).

Strength
Yield Strength

σT

Tensile Strain
δ5

Fracture Toughness
KIc

Hardness
HBTensile Yield

Strength σB

Compressive
Strength σC

Bending Yield
Strength σf

MPa MPa MPa MPa % MPa m1/2 MIIa

AISI 52100 590–730 600–750 395 370–410 20 15–18 179–433

Ti-6Al-4V 835–1050 885 300 75–105 6–10 84–107 293–361

Al2O3 255–260 2550–3100 282–470 1500 - 3–5 1620–2000

The test duration was 3800 s upon contact with the Al2O3 indenter and 16,700 s upon
contact with the AISI 52100 bearing steel indenter.

A comparison of the properties of the materials of both indenters and the titanium
substrate material is presented in Table 1. The properties of the Ti-6Al-4V substrate are
much closer to those of AISI 52100 bearing steel than to Al2O3. In terms of hardness
(and presumably wear resistance), Ti-6Al-4V and AISI 52100 are identical. However, the
hardness (and wear resistance) of Al2O3 is significantly higher.

A scanning electron microscope (SEM) Quanta 600 FEG (Materials & Structural Anal-
ysis Division, Hillsboro, OR, USA), equipped with an EDX system X-Max (OXFORD
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Instruments, Abingdon, Oxfordshire, UK), was used to study the microstructure of the
coatings; a transmission electron microscope (TEM) TEM JEM 2100 (JEOL Company, Tokyo,
Japan) was used to study the nanostructure of the coatings. TEM with EDX INCA Energy
(OXFORD Instruments, Abingdon, Oxfordshire, UK) was used to determine the chemical
composition of the coatings. A focused ion beam (FIB) system on a Strata 205 device (FEI,
Hillsboro, OR, USA) was used to cut out lamellas. An SV-500 nanoindentometer (Nanovea,
Irvine, CA, USA) with a Berkovich indenter installed was used to study the hardness, at a
load of 20 mN. Average values were calculated based on the results of 20 measurements.

3. Results
3.1. Subsection

The thickness of the studied coatings is within the range of 2970–3310 nm (Figure 1),
which can be considered identical in thickness when taking into account the spread of
coating thickness during deposition by the PVD method [74]. When titanium and zirconium
are present in the coating composition simultaneously, a clearly expressed nanolayer
structure is formed (for coatings (Ti,Zr,Hf)N, (Zr,Ti)N, (Ti,Zr,Nb)N). For coatings based on
ZrN (ZrN, (Zr,Nb)N and (Zr,Hf)N), the formation of a nanolayer structure is not observed.
In all coatings, a metal adhesion layer with a thickness of 150–220 nm is observed (Figure 1).
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Figure 1. Structure and thickness of the coatings under study (left); structure and thickness of the 
adhesion layer (right) (TEM). (a) ZrN; (b) (Zr,Nb)N; (c) (Zr,Hf)N; (d) (Ti,Zr,Hf)N; (e) (Zr,Ti)N; (f) 
(Ti,Zr,Nb)N.  

3.2. Hardness and Elemental Composition of the Coatings Under Study 

Figure 1. Structure and thickness of the coatings under study (left); structure and thickness of
the adhesion layer (right) (TEM). (a) ZrN; (b) (Zr,Nb)N; (c) (Zr,Hf)N; (d) (Ti,Zr,Hf)N; (e) (Zr,Ti)N;
(f) (Ti,Zr,Nb)N.
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3.2. Hardness and Elemental Composition of the Coatings Under Study

The greatest hardness (see Table 2) is possessed by (Zr,Hf)N and (Ti,Zr,Nb)N coatings.
ZrN, (Ti,Zr,Hf)N and (Zr,Ti)N coatings also have fairly high hardness. Based on the results
obtained, the (Zr,Nb)N coating has the lowest hardness. It is worth noting that the research
object is a composite consisting of a very hard and thin coating on a much softer and thicker
titanium substrate. In addition, there are irregularities, defects, and microparticles on the
surface of the coating. These factors make the object under study very difficult to measure,
even using a nanoindentometer. To obtain adequate results, it is necessary to perform
many measurements (at least 30), discard obviously unreliable values (for example, those
associated with a microparticle), and determine the average value. This explains the rather
large measurement error.

Table 2. Hardness and elastic modulus.

Coating Hardness HV0.02 Elastic Modulus, GPa

ZrN 2993 ± 145 230 ± 15

(Zr,Ti)N 2727 ± 86 210 ± 18

(Zr,Hf)N 3350 ± 120 280 ± 27

(Zr,Nb)N 2336 ± 115 180 ± 30

(Ti,Zr,Hf)N 2860 ± 95 260 ± 25

(Ti,Zr,Nb)N 3110 ± 135 310 ± 31

The average contents of elements in the coating are presented in Table 3. The content
of elements is presented without taking into account nitrogen, the content of which is
about 50 at%. The nitrogen content in the composition of nitride coatings deposited under
similar parameters was previously studied in a number of works and, according to various
researchers, was 45.5–51.5 at% [75], 48.7 at% [76], 50 ± 3 at% [77], 48 at% [78], 54 at% [79],
42–47 at% [80], and 49.2–52.1 at% [81]. During planetary rotation, the sample passes
through plasma regions with a dominant content of various elements, so the composition
of the coating changes gradiently [39,46,52]. In the (Zr,Hf)N coating, a fairly low hafnium
content is observed, while in the (Zr,Nb)N coating, the zirconium and niobium contents are
almost identical. Given that the Zr-Hf cathode has a composition of 50/50%, the density of
zirconium (6.50 g/cm³) is significantly lower than the density of hafnium (13.31 g/cm³),
while the density of niobium (8.57 g/cm³) is comparable to the density of zirconium. The
atomic mass of hafnium (178.49 g/mol) is also noticeably higher than that of zirconium
(91.22 g/mol) and niobium (92.91 g/mol). Thus, it can be assumed that heavier and dense
hafnium particles require more energy to reach the substrate surface compared to zirconium
and niobium particles and, thus, the hafnium content in the (Zr,Hf)N coating is noticeably
lower than the zirconium content.

Table 3. Content of elements in the coating composition (excluding nitrogen, the content of which is
about 50 at. %, the content of all metals is taken as 100 at. %).

Coating
Elements Content, at. %

Zr Nb Hf Ti

ZrN 100 - - -

(Zr,Ti)N 57.63 - - 42.37

(Ti,Zr,Nb)N 14.08 14.39 - 71.53

(Ti,Zr,Hf)N 42.98 - 13.77 43.25

(Zr,Nb)N 49.72 50.28 - -

(Zr,Hf)N 77.25 - 22.75 -
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An important parameter influencing the coating deposition process is the sputtering
rates of the sprayed materials. For the metals used in this series of experiments, the sputter-
ing rates are, respectively, [82–86] Ti—1.1–1.6 mcg/s; Zr—3.7–4.6 mcg/s; Hf—9.3 mcg/s;
Nb—1.9 mcg/s. Thus, sputtering rates for Zr are significantly higher than for Ti, which
correlates to a sufficient degree with the predominance of zirconium in the composition
of the (Zr,Ti)N coating. At the same time, sputtering rates for Hf are significantly higher,
and for Nb, they are significantly lower than for Zr. At the same time, in the (Zr,Nb)N
coating, there is an almost identical content of Zr and Nb, and in the (Zr,Hf)N coating,
there is a dominant content of Zr. Based on the above, it can be concluded that the content
of elements in the coating composition is not determined by any one factor but is the
result of a process that is affected by a large number of different factors, including process
parameters and the configuration of the sample arrangement in the installation chamber.
Predicting the composition and properties of the coating, based on the composition of the
cathodes and process parameters, is a complex and not fully resolved problem.

The results of the phase (SAED) analysis of the studied coatings show that in the
coatings without titanium, one fcc phase of the solid solution based on ZrN is formed. In
the coatings with titanium inclusion, two fcc phases of the solid solution are formed—based
on ZrN and TiN (Figure 2).
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(d) (Ti,Zr,Hf)N; (e) (Zr,Ti)N; (f) (Ti,Zr,Nb)N.

3.3. Wear Resistance in Pin-on-Disk Test

The results of the pin-on-disk wear resistance studies of the samples are shown in
Figure 3a. It can be seen that in contact with the Al2O3 counterbody, the sample with the
(Zr,Hf)N coating showed the best wear resistance. Samples with (Zr,Nb,Ti)N coating also
demonstrate relatively high wear resistance. The worst wear resistance among the samples
with coatings is observed for the sample with the (Zr,Nb)N coating (wear resistance at the
level of the sample without coating). The wear resistance of samples with (Zr,Hf)N and
(Zr,Nb,Ti)N coatings was 2.5–3.3 times higher than that of the uncoated sample. It is also
worth noting the significantly larger spread of values on the wear graph for the uncoated
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sample, which may be associated with both a decrease in surface roughness for coated
samples and a higher coefficient of friction and adhesion between the uncoated sample and
the indenter.
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Figure 3. Results of wear resistance study using pin-on-disk technique (a) Al2O3, (b) 52100 bearing
steel. Comparison of tribological properties of samples with and without coatings. (c) Al2O3,
(d) 52100 bearing steel, after 3825 s.

In tests conducted in contact with the 52100 bearing steel counterbody, the best resis-
tance was demonstrated by samples with ZrN and (Ti,Zr,Hf)N coatings (Figure 3b).

Studies of the tribological properties of samples have shown that all coatings under
consideration can significantly reduce the friction coefficient (Figure 3c,d). The lowest
friction coefficient (about 0.25) is demonstrated by the ZrN-coated sample. The highest
value of the friction coefficient for coated samples was shown by a sample with a
(Zr,Nb)N coating. Samples with other studied coatings showed similar values of the
friction coefficient (0.32–0.42). In this case, the friction coefficient for the uncoated
sample is about 0.45.

A comparison of the data on the final mass losses of the samples and the indenter
(Figure 4) shows that the Al2O3 indenter wears out incomparably less than the samples
with all types of coatings and without coatings. In order to compare these values on
one diagram, the indenter mass loss was increased by 10 times (this value is close to the
measurement accuracy limit of the scale, so a correct comparison of the values is impossible
here). Since the parameters of the titanium alloy Ti-6Al-4V and 52100 bearing steel are
comparable (see above), their wear rates are also comparable. It is worth considering
the difference in geometry between the indenter (ball) and the sample (flat surface). In
two cases (for samples with ZrN and (Ti,Zr,Hf)N coatings), the indenter wears out more
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intensively than the sample. Thus, by applying a coating, it is possible not only to increase
the wear resistance of parts but also to ensure (with the appropriate choice of coating
composition) a uniform wear of elements in a tribological pair.
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3.4. Wear Pattern of Samples

Let us consider in more detail the wear pattern of the coated samples after the pin-
on-disk test (Figure 5). Upon contact with the Al2O3 counterbody, a clearly defined wear
groove is formed on all samples (upper row). Upon contact with the 52100 bearing steel
counterbody, a continuous wear groove is not formed on the sample with the (Ti,Zr,Hf)N
coating; only fragmentary wear of the coating is observed. The wear intensity of the steel
indenter, in this case, exceeds the wear intensity of the coated sample itself. For the ZrN-
coated sample in a tribo-pair with the 52100 bearing steel indenter, only the destruction of
the outer layers of the coating is observed, while its inner layers are preserved. This sample
is also characterized by more intense wear of the indenter.
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Figure 5. View of wear tracks of samples with the studied coatings.

When analyzing the distribution maps of chemical elements on the surface of the
samples (Figure 6), it is obvious that in the area of wear tracks of samples with ZrN
and (Ti,Zr,Hf)N coatings, an increased content of iron and oxygen is observed, and the
configurations of the areas of content of these elements coincide, which may indicate
the formation of iron oxide. The high iron content correlates well with the high wear
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intensity of the steel indenter during friction in contact with these samples. At the same
time, in these samples, titanium is present in a high concentration in the form of separate
islands and coincides with similar areas of a high vanadium concentration (the area with
insignificant titanium intensity in the (Ti,Zr,Hf)N coating is associated with the presence of
this element in the coating itself, close titanium intensity is observed on the surface of all
titanium-containing coatings). Thus, it is obvious that the coating on these samples has
been largely preserved. The remaining samples show complete destruction of the coating
in the wear track area. There is an area of high Ti/V intensity corresponding to the surface
of the uncoated sample.
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The examination of the surface of the coatings before the tests does not show the
presence of oxygen. Oxygen is either absent or present in extremely small quantities, which
are inaccessible to detection by the methods used. After the pin-on-disk test, the presence
of oxygen in significant quantities is observed only in the wear track area (apparently
mainly in titanium and iron oxide compounds). The content of zirconium and oxygen has
an opposing character; that is, in areas with a high zirconium content, oxygen is absent
or present in extremely small quantities. Based on the mapping data, it is obvious that all
coatings prevent oxidation processes in the air atmosphere, and oxidation is characteristic
only in areas where the coating is destroyed.

A more detailed study of the wear pattern of the samples that demonstrated the
best wear resistance showed the following. When testing with the 52100 bearing steel
counterbody, the best wear resistance was demonstrated by samples with (Ti,Zr,Hf)N and
ZrN coatings with adhesive layers of Zr,Hf and Zr, respectively. The sample with the
(Zr,Hf)N coating with the Zr,Hf adhesive layer demonstrated the best wear resistance when
in contact with the Al2O3 indenter. For a better understanding of the role of the adhesive
layer in the nature of coating failure, let us also consider the (Zr,Nb)N sample with the
Zr,Nb adhesive layer.

3.4.1. ZrN Coating

In the pin-on-disk test in contact with the Al2O3 indenter, brittle failure of the ZrN
coating is observed (Figure 7a,b). Zirconium microparticles continue to maintain contact
with the substrate even when the surrounding ZrN coating is destroyed (Figure 7a). Thus,
it can be concluded that the adhesive bond between zirconium and titanium alloy is strong
enough. Examination of the cross-section of the destruction zone shows that the coating
as a whole continues to maintain good contact with the substrate (Figure 7c). Individual
fragments of the coating are pressed into the substrate during interaction with the Al2O3

indenter. Analysis of the distribution of elements across the coating thickness after the
pin-on-disk test (Figure 7d) shows the presence of a titanium alloy adherent on the coating
surface; oxygen is present in this adherent (possibly due to titanium oxidation). Titanium
diffusion takes place both on the coating surface (from the adherent to a depth of up
to 100 nm) and at the substrate–coating boundary (to a depth of up to 250 nm). In the
substrate–coating boundary area, oxygen is also present in small quantities, which may
indicate the preservation of oxide film fragments in this area.

When a sample with a ZrN coating and a steel indenter come into contact, the indenter
wears more actively than the sample wears. The indenter material is actively oxidized,
and a layer of AISI 52100 steel adherence with noticeable diffusion of zirconium from the
coating composition is formed on the coating surface (Figure 8). Iron diffusion from the
indenter into the coating to a depth of 200 nm is observed. Oxygen diffusion to a similar
depth is also observed. The coating fully maintains adhesion to the substrate. There is a
slight presence of oxygen at the boundary of the coating and the substrate, which may be
due to the presence of oxide film fragments.
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3.4.2. Coating (Zr,Ti,Hf)N

When in contact with the Al2O3 indenter, active cracking followed by a brittle fracture
is observed in the (Zr,Ti,Hf)N coating. Figure 9c shows a cross-section of the coating
fracture area. On the coating surface, a titanium alloy deposit is extruded from the substrate
under the action of the indenter. Diffusion of zirconium from the coating into the deposit
is observed. At the boundary of the coating and the substrate, a longitudinal crack is
observed passing through the Zr,Hf adhesion layer. A study of the elemental composition
of this layer shows a fairly noticeable presence of oxygen (Figure 9c,d, areas 9–12). Thus, it
can be assumed that, in this case, there is a preserved layer of titanium oxide that was not
completely removed during the ion-etching process.
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the content of elements in the area of coating destruction.

When a sample with a (Zr,Ti,Hf)N coating and an AISI 52100 bearing steel inden-
ter are rubbed, the coating is preserved, while active wear of the indenter is observed
(Figure 10a,b).

There is active oxidation of the steel in the contact zone with the coating. The interdif-
fusion of zirconium and titanium from the coating into the indenter material (to a depth of
up to 50 nm) and iron from the indenter into the coating (to a depth of up to 200 nm) is
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observed (Figure 10c–e). The presence of a high concentration of oxygen in the adherent
area indicates the active oxidation of the indenter material (primarily iron).
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of up to 50 nm) and iron from the indenter into the coating (to a depth of up to 200 nm) is 

Figure 10. Cross-section of the wear area of a specimen with a (Zr,Ti,Hf)N coating in contact with an
AISI 52100 bearing steel indenter. (a) general view of the coating with an adhesion of the indenter
material, (b) nature of the adhesion of the indenter elements, (c–e) study of the elemental composition
at the boundary of the coating and the adhesion of the indenter material.

3.4.3. Coating (Zr,Hf)N

The nature of the (Zr,Hf)N coating failure differs significantly from the failure of
the (Zr,Ti,Hf)N and ZrN coatings. The (Zr,Hf)N coating is characterized by a large area
of defoliation from the substrate (Figure 11a). Although cohesive failure (delamination
between nanolayers) also occurs along with adhesion failure (Figure 11b), the main failure
factor is precisely defoliation from the substrate and a brittle fracture of the coating.

The detachment of the (Zr,Hf)N coating from the substrate occurs not due to the
detachment of the coating from the adhesion layer or detachment of the adhesion layer from
the substrate but due to a failure in the structure of the Zr,Hf layer itself (see Figure 11d,e).
That is, it is this layer that turns out to be the weak link in the substrate–adhesion layer-
coating system. When examining the cross-section of the wear zone boundary, it is evident
that the coating chipping occurs with the formation of a surface that is almost perpendicular
to the substrate surface (Figure 11d). There is a brittle fracture without the formation of a
crack network, which is typical for brittle materials. Extended defoliation is also observed
on a significantly larger scale than that of the (Zr,Ti,Hf)N and ZrN coatings. Defoliation
occurs to a greater extent inside the (Zr,Hf)-layer.
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Figure 11. Study of the nature of destruction of the (Zr,Hf)N coating (indentor Al2O3). (a,b) boundary
of the fracture area, (c) cross-section of the wear zone boundary area indicating areas for further
study, (d,e) delamination in the area of interface between the coating and the substrate.

Although the (Zr,Hf)N coating formally demonstrated better wear resistance due to
its high hardness and sufficient strength, its weak point is the relatively low strength of
the adhesive layer. Analysis of the nature of destruction in the pin-on-disk test shows the
practical absence of a transition region. There is a clearly defined boundary of the wear
region, outside of which there are no signs of coating destruction.

The formation of transverse cracks passing through the structure of the (Zr,Hf)N
coating is also observed upon contact with the AISI 52100 bearing steel indenter (Figure 12).
This fact indicates the high brittleness of this coating. The substrate material adherent
present on the coating surface is partially introduced into the crack. The diffusion of
titanium from the adherent into the coating is observed. The presence of oxygen indicates
the oxidation of the adherent material (primarily titanium). The crack completely cuts
through the coating layer and passes into the substrate (Figure 12).
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AISI 52100 bearing steel, analysis of the content of chemical elements in the crack zone.

3.4.4. Coating (Zr,Nb)N

The (Zr,Nb)N coating has a fairly low wear resistance, especially when in contact with
an Al2O3 indenter (the wear resistance is actually at the level of the uncoated sample). A
branched network of cracks is formed, which results in the intensive destruction of the
coating (Figure 13).
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Figure 13. The nature of the destruction of the (Zr,Nb)N coating upon contact with an indenter.
(a,b) formation of a crack network and chipping of the coating.

The (Zr,Nb)N coating has relatively low strength and hardness. An area of active
cracking and chipping of the coating along the wear boundary is visible (Figure 14a,b).
From this point of view, the (Zr,Nb)N coating has opposite properties to the (Zr,Hf)N
coating, which is characterized by higher hardness. This type of destruction of the (Zr,Nb)N
coating correlates well with its lowest hardness among the studied coatings. Along with
low strength, the (Zr,Nb)N coating also demonstrates a rather low adhesion strength to
the substrate (Figure 14d). It is evident that the disruption of the adhesive bond occurs
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predominantly between the Zr,Nb adhesive layer and the coating. At the same time,
the Zr,Nb adhesive layer itself, on the contrary, demonstrates very good adhesion to
the substrate. This adhesive bond is not disrupted even under conditions of significant
plastic deformation (see Figure 14c–e). Analysis of the distribution of elements in the area
of indentation of fragments of the destroyed adhesive layer into the substrate material
(Figure 14f) shows that oxygen penetration into the substrate structure is possible through
cracks in the coating. Both diffusion of Zr and Nb into the substrate and diffusion of
substrate elements (mainly titanium) into the coating occur.
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(a,b) cracking and spalling of the coating at the boundary of the wear zone, (c–e) defoliation of the
coating and substrate under the influence of plastic deformation, plastic deformation and destruction
of the coating, preservation of sublayer adhesion Zr,Nb and the substrate under conditions of
noticeable plastic deformation, (f) distribution of elements in the area of pressing fragments of the
destroyed adhesive layer of the coating into the substrate material.
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4. Discussion
Let us consider the efficiency of using adhesive layers of different compositions.

Theoretically, the use of the Zr,Hf adhesive layer during the deposition of coatings on
titanium alloys may be advisable based on the following assumptions. Hafnium, like
zirconium, increases the thermal stability of the titanium alloy structure, increases the creep
limit and the strength at low and medium temperatures, and improves the weldability
of titanium-based alloys [82,87–89]; accordingly, it can increase the strength of diffusion
between the coating and the titanium substrate. In both liquid and solid states, a continuous
series of solid solutions are formed between hafnium and titanium. In addition to the
above, hafnium, together with zirconium, is a neutral hardener of a titanium-based solid
solution, acting according to the mechanism of solid-solution hardening. At the same
time, in this series of experiments, the Zr,Hf layer did not provide sufficient adhesion of
the coating to the substrate. The Zr layer provided an average adhesion strength for the
samples studied. The Zr,Nb layer provided the best adhesion. Alloys of the Zr–Nb system
are characterized by such properties as high fatigue endurance. The elastic modulus of
these alloys is in the range of 58–90 GPa, depending on the initial structural-phase state and
impurity content [90–94]. In the (Zr,Nb)N coating, adhesion failure occurs mainly between
the Zr,Nb adhesion layer and the coating, but the adhesion layer itself exhibits a high
strength of adhesive bonds with the substrate. However, in the (Ti,Zr,Nb)N coating, Zr,Nb
peels off from the substrate while maintaining adhesion to the coating. Thus, the strength of
the adhesion of the coating to the base depends not only on the composition and structure
of the adhesive layer but also on the composition and structure of the wear-resistant coating
layer. Delamination occurs at the weakest interface (with the base or with the wear-resistant
coating layer).

Thus, summarizing the results of the study, we can obtain the following table (Table 4).

Table 4. Comparison of the properties of coatings and the properties of the adhesion layer.

Coating Hardness and Resistance to
Brittle Fracture Adhesive Layer Adhesion Strength

to Substrate

ZrN
A fairly hard coating, but at the
same time it has good resistance

to brittle fracture
Zr Provides fairly good

adhesion to the substrate

(Zr,Ti,Hf)N A hard but rather brittle coating
prone to cracking Zr,Hf The adhesion strength to

the substrate is insufficient

(Zr,Hf)N Very hard, but at the same time
very brittle coating Zr,Hf The adhesion strength to

the substrate is insufficient

(Zr,Nb)N
Brittle coating, prone to

formation of a network of cracks.
Hardness is relatively low.

Zr,Nb Provides high adhesion
strength to the substrate

5. Conclusions
1. When in contact with the Al2O3 counterbody, the best wear resistance was demon-

strated by the sample with the (Zr,Hf)N coating. Quite good wear resistance was also
observed for the sample with the (Zr,Nb,Ti)N coating. When tested in contact with the
52100 bearing steel counterbody, the best resistance was demonstrated by the samples
with the ZrN and (Ti,Zr,Hf)N coatings.

2. By applying the coating, it is possible not only to increase the wear resistance of
the parts but also to ensure (with the appropriate choice of the coating composition)
the uniform wear of the elements in the tribological pair. When in contact with the
52100 bearing steel counterbody, the indenter wear for the sample with the ZrN and
(Ti,Zr,Hf)N coatings was more intense than for the sample without the coating. The
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wear resistance of samples with (Zr,Hf)N and (Zr,Nb,Ti)N coatings was 2.5–3.3 times
higher than that of the uncoated sample.

3. To ensure the overall strength of the coating, it is important not only to have the
adhesive layer adhere to the base on one side and the coating on the other side but
also the strength of the adhesive layer itself. The boundary of the coating’s destruction
and its separation from the substrate sometimes passes inside the adhesive layer itself.
In this case, the peeling occurs not because of poor adhesion to the base but because
of the adhesive layer’s insufficient strength.

4. The surface oxide film must be completely removed from the titanium substrate, as this
film will have a negative effect on the adhesion strength of the coating and the substrate.

5. The composition and structure of the wear-resistant layer have a significant im-
pact on the overall strength of the adhesive bond between the coating and the
substrate. Delamination occurs at the weakest interface in terms of adhesion (with
the substrate or with the coating). It is necessary to ensure a good combination
of properties, both in the substrate–adhesive layer system and in the adhesive
layer–wear-resistant layer system.
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