ЛИТЕРАТУРА

- 1. Сеннов, С. Н. Лесоведение и лесоводство: учеб. для студентов вузов / С. Н. Сеннов. М.: Издат. центр «Академия», 2005. 256 с.
- 2. Лабоха, К. В. Лесоведение: учеб. пособие для студентов учреждений высшего образования по специальности «Лесное хозяйство» / К.В. Лабоха. Минск: БГТУ, 2018. 264 с.
- 3. Лабоха, К. В. Лесоводство: учеб. пособие / К. В. Лабоха, Д. В. Шиман. Минск: БГТУ, 2015.-440 с.
- 4. Багинский, В. Ф. Лесопользование в Беларуси: История, современное состояние, проблемы и перспективы / В. Ф. Багинский, Л. Д. Есимчик. Минск: Беларуская навука, 1996. 367 с.
- 5. Борко, А. Ч. Лесоводственная эффективность полосно-постепенных рубок в сосновых лесах Беларуси: автореф. дисс. по спец. 06.03.02 // БГТУ, 2014.-17 с.
- 6. Рожков, Л. Н. Экологически ориентированное лесоводство / Л. Н. Рожков. Минск: БГТУ, 2005. 182 с.
- 7. Рожков Л. Н. Новый взгляд на цель несплошных рубок и возобновления леса / Л. Н. Рожков // Лесное хозяйство: мат. докладов 83-й науч.-техн. конф. профессорско-преподавательского состава, науч. сотр. и аспирантов (с междунар. участием), Минск, 4–14 февр. 2019 г. Минск: БГТУ, 2019. С. 52.
- 8. Лабоха, К. В. Лесоведение. Практикум: учеб.-метод. пособие / К. В. Лабоха, А. С. Клыш, Ю. А. Ларинина. Минск: БГТУ, 2021. 250 с.

УДК 630*5

А.В. Лебедев, доц., д-р с.-х. наук (РГАУ-МСХА имени К.А. Тимирязева, г. Москва, Россия)

ДИНАМИЧЕСКАЯ БОНИТЕТНАЯ ШКАЛА ДЛЯ СОСНОВЫХ ДРЕВОСТОЕВ ЕВРОПЕЙСКОЙ ЧАСТИ РОССИИ

В настоящее время широкое применение для составления бонитетных шкал находят методы, основанные на использовании динамических, инвариантных относительно базового возраста моделей [1-5]. Эта методика требует наличия или указательных кривых, извлеченных из массива однократных наблюдений [6-7], или наблюдений на постоянных пробных площадях [8-9], или данных анализов стволов модельных деревьев [10].

Для оценки динамической модели роста сосновых древостоев естественного происхождения по средней высоте использовался набор данных наблюдений на постоянных пробных площадях, извлеченных

из литературных источников [11]. Распределение рядов наблюдений (99 пробных площадей) по регионам европейской части России показано на рисунке. Географически охвачены Архангельская, Брянская, Вологодская, Костромская, Ленинградская, Мурманская, Московская и Свердловская области, город Москва, республики Карелия, Коми и Марий-Эл в пределах природного ареала сосны обыкновенной от 53 до 68 градусов северной широты. Наблюдениями охвачен период с 1862 по 2023 годы, возрастной диапазон древостоев от 5 до 205 лет.

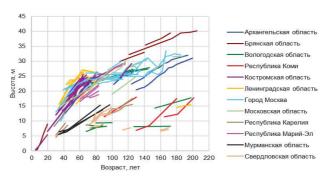


Рисунок – Распределение рядов роста сосновых древостоев по регионам европейской части России

Для описания роста по средней высоте использовалось динамиуравнение [12],основанное ростовой функции ческое на F.X. Schumacher [13]. С использованием нелинейного регрессионного анализа получена модель прогнозирования динамики средних высот, которая в качестве независимых переменных включает начальное и конечное значение возраста древостоя и начальное значение средней высоты. Уравнение объясняет большую долю изменчивости зависимой переменной, коэффициент детерминации (\mathbb{R}^2) составил 0,948. Полученная динамическая, инвариантная относительно базового возраста модель записывается в следующем виде:

$$H_1 = exp\left(X_0 - \left(\frac{77.194}{X_0}\right)t_1^{-0.804}\right),$$

$$X_0 = \frac{1}{2}\left(ln(H_0) + \left(ln^2(H_0) + 4 \times 77.194 \times t_0^{-0.804}\right)^{\frac{1}{2}}\right),$$

где H_0 и H_1 — начальная и прогнозируемая средняя высота, м; t_0 и t_1 — начальный и конечный возраст, лет; X_0 — вспомогательная переменная. С использованием уравнения составлена таблица рядов роста сосновых древостоев европейской части России по классам бонитета. Отдельные классы бонитета (SI) выражены как средняя высота (переменная H_0) в возрасте 100 лет (переменная t_0). Используемый набор данных позволил охватить диапазон классов бонитета от 5 до 33 м в 100 лет.

Таблица – Шкала классов бонитета для сосновых древостоев европейской части России

D			вропсис					I
Возраст, лет	SI = 5 M	SI = 9 M	SI = 13 M	SI = 17 M	SI = 21 M	SI = 25 M	SI = 29 M	SI = 33 M
0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
5	0,0	0,0	0,0	0,1	0,1	0,1	0,2	0,3
10	0,1	0,3	0,5	0,8	1,2	1,6	2,1	2.5
15	0,3	0,8	1,5	2,3	3,1	4,0	4,9	2,5 5,9
20	0,6	1,5	2,6	3,9	5,1	6,5	7,9	9,3
25	1,0	2,3	3,8	5,4	7,1	8,8	10,6	12,4
30	1,4 1,7	3,0	4,9	6,8	8,8	10,9	13,0	15,1
35	1,7	3,7	5,9	8,1	10,4	12,7	15,1	17,5
40	2,1	4,4	6,8	9,2	11,8	14,3	17,0	19,6
45	2,4	4,9	7,6	10,3	13,0	15,8	18,6	21,4
50	2,8 3,1	5,5	8,3	11,2	14,1	17,1	20,1	23,1
55	3,1	6,0	9,0	12,0	15,1	18,2	21,4	24,6
60	3,3	6,4 6,8	9,6	12,8	16,0	19,3	22,6	25,9
65	3,6	6,8	10,1	13,5	16,8	20,2	23,6	27,1
70	3,8 4,1	7,2	10,6	14,1	17,6	21,1	24,6	28,1
75	4,1	7,6	11,1	14,7	18,3	21,9	25,5	29,1
80	4,3	7,9	11,6	15,2	18,9	22,6	26,3	30,0
85	4,5	8,2	12,0	15,7	19,5	23,3	27,1	30,9
90	4,7	8,5	12,3	16,2	20,0	23,9	27,8	31,6
95	4,8	8,8	12,7	16,6	20,5	24,5	28,4	32,3
100	5,0	9,0	13,0	17,0	21,0	25,0	29,0	33,0
105	5,2	9,2 9,5	13,3	17,4	21,4	25,5	29,6	33,6
110	5,3	9,5	13,6	17,7	21,8	26,0	30,1	34,2
115	5,4 5,6	9,7	13,9	18,0	22,2	26,4	30,6	34,7
120	5,6	9,9	14,1	18,4	22,6	26,8	31,0	35,2
125	5,7	10,0	14,3	18,6	22,9	27,2	31,4	35,7
130	5,8	10,2	14,6	18,9	23,2	27,5	31,9	36,1
135	5,9	10,4	14,8	19,2	23,5	27,9	32,2	36,6
140	6,0	10,5	15,0	19,4	23,8	28,2	32,6	37,0
145	6,1	10,7	15,2	19,6	24,1	28,5	32,9	37,3
150	6,2	10,8	15,4	19,9	24,4	28,8	33,3	37,7
155	6,3	11,0	15,5	20,1	24,6	29,1	33,6	38,0
160	6,4	11,1	15,7	20,3	24,8	29,4	33,9	38,4

Полученная модель позволяют более реалистично передать процесс изменения средней высоты от возраста по сравнению с традиционными бонитетными шкалами. Модель полиморфна, имеет форму Sобразной кривой и переменные асимптоты, т.е. учитывает большинство предъявляемых свойств к функциям роста, инварианта относительно базового возраста и напрямую оценивает класс бонитета на основе любого значения средней высоты и возраста.

Разработанная динамическая бонитетная шкала может быть включена в состав более сложных моделей роста сосновых древостоев [14].

Исследование выполнено за счет гранта Российского научного фонда № 23-76-01016, https://rscf.ru/project/23-76-01016/

ЛИТЕРАТУРА

- 1. Cieszewski C.J. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes / C.J. Cieszewski, R.L. Bailey // Forest Science. − 2000. − № 46. − P. 116–126.
- 2. Cieszewski C.J. New dynamic site equation that fits best the Schwappach data for Scots pine (*Pinus sylvestris* L.) in Central Europe / C.J. Cieszewski, M. Strub, M. Zasada // Forest Ecology and Management. − 2007. − № 243. − P. 83–93.
- 3. Ercanli Í. Dynamic base-age invariant site index models based on generalized algebraic difference approach for mixed Scots pine (*Pinus sylvestris* L.) and Oriental beech (*Fagus orientalis* Lipsky) stands / Í. Ercanli, A. Kahriman, H. Yavuz // Turkish Journal of Agriculture and Forestry. − 2014. − № 38. − P. 134-147.
- 4. Nunes L. Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables / L. Nunes, M. Patrício, J. Tomé, M. Tomé // Annals of Forest Science. -2011. N = 68. P. 311-323.
- 5. Лебедев А.В. Построение бонитетной шкалы с использованием обобщенного алгебраического разностного подхода / А.В. Лебедев, В.В. Кузьмичев // Сибирский лесной журнал. 2022. № 3. С. 48-58.
- 6. Socha J. A Method for the Development of Dynamic Site Index Models Using Height–Age Data from Temporal Sample Plots / J. Socha, L. Tymińska-Czabańska // Forests. 2019. № 10(7). article 542.
- 7. Kazimirović M. Dynamic height growth models for highly productive pedunculate oak (*Quercus robur* L.) stands: explicit mapping of site index classification in Serbia / M. Kazimirović, B. Stajić, N. Petrović // Annals of Forest Science. − 2024. − № 81. − article 15.
- 8. Лебедев А.В. Прогнозирование роста по средней высоте культур сосны с использованием обобщенного алгебраического разностного подхода / А.В. Лебедев // Известия Санкт-Петербургской лесотехнической академии. $2022. \mathbb{N} 238. \mathbb{C}$. 49-66.
- 9. Лебедев А.В. Динамическая модель роста и производительности сосновых древостоев (*Pinus sylvestris* L.) Унженской низменности / А.В. Лебедев // Лесотехнический журнал. -2024. T. 14, № 3(55). C. 127-151.
- 10. Socha J. Site Index Models for Main Forest-Forming Tree Species in Poland / J. Socha, L. Tymińska-Czabańska, E. Grabska, S. Orzeł // Forests. 2020. № 11(3). article 301.
- 11. Лебедев А.В. Динамическая модель роста сосновых древостоев Европейской части России по данным повторных наблюдений / А.В. Лебедев // Сибирский лесной журнал. 2024. № 4. С. 72-83.

- 12. Cieszewski C.J. GADA derivation of dynamic site equations with polymorphism and variable asymptotes from Richards, Weibull and other Exponential Functions / C.J. Cieszewski // In: International Conference on Forest Measurements and Qualitative Methods and Management. Athens USA: University of Georgia, 2004. P. 248–261.
- 13. Schumacher F.X. A new growth curve and its application to timber yield studies / F.X. Schumacher // Journal of Forestry. − 1939. − № 37. − P. 819–820.
- 14. Лебедев А.В. Эмпирическая имитационная модель динамики таксационных показателей лесных культур сосны / А.В. Лебедев // Международная научная конференция молодых учёных и специалистов, посвящённая 180-летию со дня рождения К.А. Тимирязева: сборник статей. Москва: Российский государственный аграрный университет МСХА им. К.А. Тимирязева, 2023. С. 18-21.

УДК 630*004

А.В. Леоненко, ведущий инженер ДальНИИЛХ, научный сотрудник Института горного дела ДВО РАН (г. Хабаровск, Россия)

ПОДБОР ЛЕСНЫХ УЧАСТКОВ ДЛЯ СОЗДАНИЯ ЛЕСОСЫРЬЕВЫХ ПЛАНТАЦИЙ С ИСПОЛЬЗОВАНИЕМ ГИС-ТЕХНОЛОГИЙ В ДАЛЬНЕВОСТОЧНОМ ФЕДЕРАЛЬНОМ ОКРУГЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Введение

Первая четверть нового тысячелетия характеризуется стремительным развитием информационных технологий. В том числе ГИС системы актуальны для мониторинга различного уровня. Подбор лесных участков по космическим снимкам, позволил оценить территорию и дать рекомендации для создания лесо-сырьевых плантаций, учесть разные инфраструктурные факторы.

Методика

Для оценки участков пригодных для плантаций использовались стандартные геоподложки: Google Satellite, ESRI Satellite, Yandex Satellite, представлены на рисунке 1.

В более дальнейшем исследовании использована ГИС- программа QGIS. Информационной основой для изучения лесных территорий ДФО послужили снимки в формате GeoTIFF спутника Landsat 8, находящиеся в свободном доступе в сети Интернет Они представляют собой стандартный продукт с разрешением 30 м на 1 пиксель. При оценке состояния объектов применялись растровые одноканаль-