- 4. Nuraliyev Sh., Jo'Raboev F., O'zbekiston milliy //universiteti xabarlari, 2023, [3/2/1] ISSN 2181-7324.
- 5. Кодиров О. Ш., Мирзакулов Х. Ч., Бердиев Х. У., & Шарипова В. В. // Исследование химического состава пироконденсата пиролизного производства. Universum: технические науки, (9 (54)), 59-64
- 6. Nuraliyev Sh.B., Nurmonov S.E. Synthesis Of Anthracene-2-Carboxylic Acid From Industrial Waste Secondary Tar-Produc. Turin Polytechnic university in Tashkent «Advanced Science and Technology» Scientific conference (April 22-23, 2024).

УДК: 664.4:577.151.3

Д. Т. Мирзарахметова, д-р техн. наук, зав. кафедрой М. М. Алимухамедова, магистрант (Ташкентский Международный университет КИМЁ, Узбекистан)

ЭФФЕКТИВНОСТЬ ПЛАСТИНОЧНОГО КУЛЬТИВИРОВАНИЯ МИКРОВОДОРОСЛЕЙ DUNALIELLA SALINA ДЛЯ ПОЛУЧЕНИЯ ИНОКУЛЯТА

Для быстрого накопления биомассы микроводорослей применяются пленочные биореакторы, обеспечивающие насыщение питательными веществами, CO_2 и светом. Однако отсутствие пластин для увеличения поверхности и нерациональное распределение газовоздушной смеси в этих устройствах замедляют рост микроводорослей и повышают энергозатраты.

В связи с этим разработана технология интенсивного выращивания микроводорослей.

Цель исследования – разработка биотехнологии для получения инокулята.

Объекты и методы исследований. В работе в качестве объекта использовали аральский штамм *Dunaliella salina AR-1*, предоставленные Институтом микробиологии АН РУз.

В работе применены классические методы культивирования микроводорослей: подсчет клеток под микроскопом и на пластинах для оценки плотности роста, определение биологической чистоты микробиологическими методами, измерение биомассы массспектрометрией и концентрации путем оптической плотности. Результаты обработаны дисперсионным и корреляционным анализами в Microsoft Excel 2010 при Р≤0,05.

Изучены условия культивирования микроводорослей Dunaliella

salina в стеклянных емкостях с различным количеством пластиковых пластинок (от 0 до 25). Оценивались динамика роста, титр микроводорослей, минерализация среды, температура, концентрация ${\rm CO_2}$, уровень освещенности и pH среды. (табл. 1, 2, 3, 4, 5).

Данные, представленные в табл. 1 показывают, что рост Dunaliella salina зависит от минерализации, освещенности, температуры и CO_2 . Максимальный титр ($135 \times 10{,}000$ клеток/мл) достигается на 8-е сутки, после чего снижение минерализации и CO_2 замедляет рост. Колебания освещенности влияют на фотосинтез и развитие клеток.

Таблица 1 – Динамика изменения параметров роста микроводорослей Dunaliella salina в контрольной банке без пластиковых пластинок

Сут-	Титр, ×10000, млн/мл	Минерализация, ×1000, ppm/m3	CO2, ×100, ppm/m3	Освещение,×10, лкс	Темпера- тура, °С
3	37	84	19,3	24	24,6
4	100	80	18	16	25,6
5	70	76	11,79	6	23,7
6	88	77	12,64	3	22,1
7	111	73	8,18	15,9	23,7
8	135	71	7,79	12,8	23
10	110	69	10,75	31,2	20,4

Данные, представленные в табл. 2 показывают, что титр микроводорослей Dunaliella salina достиг пика на 7-е сутки ($150 \times 10,000$ млн/мл), после чего снизился из-за ограниченности ресурсов и изменения условий среды. Снижение минерализации и концентрации CO_2 связано с их активным потреблением, а колебания освещенности и температуры влияли на динамику роста.

Таблица 2 — Динамика изменения параметров роста микроводорослей *Dunaliella salina* в контрольной банке из 10 шт пластиковых пластинок

Сут-	Титр, ×10000, млн/мл	Минерализа- ция,×1000, ppm/m3	CO2, ×100, ppm/m3	Освеще- ние,×10, лкс	Температу- ра, °С
3	38	89	18,66	35	24,3
4	83	86	14,59	10,8	23,3
5	60	89	12	3,3	22,5
6	78	86	14,47	4	21,4
7	150	84	10,97	23	22,9
8	130	84	11,88	11,4	22,3
10	80	84	10,71	39	19,2

Данные, представленные в табл. 3 показывают, что активный рост *Dunaliella salina* наблюдался с 3-го по 7-й день благодаря доста-

точному уровню CO_2 , освещенности и температуре.

Таблица 3 – Динамика изменения параметров роста микроводорослей Dunaliella salina в контрольной банке из 15 шт пластиковых пластинок

Сут-	Титр, ×10000, млн/мл	Минерализа- ция,×1000, ppm/m3	CO ₂ , ×100, ppm/m3	Освеще- ние,×10, лкс	Температу- ра, °С
3	90	88	21,85	21	24,4
4	113	89	11,61	13,4	22,7
5	88	88	14,01	0,51	22,1
6	115	85	14,11	0,27	21
7	133	79	0,89	20,2	22,8
8	118	78	0,908	11,1	21,6
10	100	77	0,939	41,7	19,1

Снижение титра после 7-го дня связано с уменьшением ${\rm CO_2}$ и изменением освещения, при этом минерализация оставалась стабильной. Для дальнейшего роста требовалось восстановление уровня ${\rm CO_2}$.

Таблица 4 — Динамика изменения параметров роста микроводорослей Dunaliella salina в контрольной банке из 20 шт пластиковых пластинок

Сут-	Титр, ×10000, млн/мл	Минерализа- ция,×1000, ppm/m3	CO2, ×100, ppm/m3	Освеще- ние,×10, лкс	Температура, °С
3	75	98	20,8	21	24,1
4	80	85	11,61	19,5	23,2
5	88	85	13,94	0,48	21,1
6	125	82	13,68	0,35	20,8
7	108	82	10,57	14	22,4
8	138	80	11,03	0,87	21,5
10	88	78	10,68	36,2	19,1

Данные табл. 4 показывают, что активный рост *Dunaliella salina* наблюдался с 3-го по 8-й день благодаря достаточному уровню CO_2 , освещению и температуре. Снижение титра после 8-го дня связано с недостатком CO_2 , снижением температуры и накоплением ингибиторов. Минерализация оставалась достаточной, а колебания освещённости временно замедляли фотосинтез. Для дальнейшего роста требовалась стабилизация условий и восстановление CO_2 .

Из данных табл. 5 видно, что активный рост микроводорослей Dunaliella salina наблюдался с 3-го по 8-й день благодаря оптимальным условиям (CO_2 , минералы, освещённость), а угнетение роста началось с 8-го дня из-за истощения ресурсов и снижения температуры.

Таблица 5 – Динамика изменения параметров роста микроводорослей Dunaliella salina в контрольной банке из 25 шт пластиковых пластинок

Сут-	Титр, ×10000, млн/мл	Минерализа- ция,×1000, ppm/m3	CO ₂ , ×100, ppm/m3	Освеще- ние,×10, лкс	Температу- ра, °С
3	35	87	19,1	28	24,3
4	95	87	11,53	14,7	23,2
5	98	86	13,98	0,44	21
6	105	83	13,27	0,3	20
7	125	81	0,957	19	22,3
8	138	82	10,79	0,83	21,1
10	45	80	10,07	23,9	19,1

Рост микроводорослей *Dunaliella salina* зависит от оптимальных условий, включая уровень CO_2 , минерализацию, освещенность и температуру. Активный рост наблюдается с 3-го по 8-й день, после чего замедляется из-за истощения ресурсов и изменений в условиях среды. Колебания освещенности и снижение CO_2 также влияют на динамику роста, а для продолжения роста требуется стабилизация этих факторов.

ЛИТЕРАТУРА

- 1. А.А. Шевцов, А.В. Дранников, А.В. Пономарев, Е.А. Шабунина, Д.В. Коптев. Способ управления процессом культивирования фотоавтотрофных микроорганизмов//Патент РФ №2622081. –2017.
- 2. Е.А. Шабунина. Научное обоснование режимов массообмена при автотрофном биосинтезе Дуналиеллы и ее применение в технологии мучных кондитерских изделий. Автореферат диссертация на со искание ученой степени канд.технич.наук. г.Воронеж. 2018 г.
- 3. Лелеков А.С. Количественные закономерности роста микроводорослей в культуре и параметры управления процессом фотобиосинтеза: диссертация на соискание учёной степени доктора биологических наук / Севастополь, 2023.