

Н.К. КРУК (Минлесхоз), Ф.Ф. БУРАК, О.М. ЛУФЕРТОВ (Гомельлеспроект), А.Д. ЯНУШКО (БГТУ)

ВВЕДЕНИЕ

В комплексе мероприятий, направленных на повышение продуктивности и хозяйственной ценности лесов Беларуси, важную роль играет выращивание быстрорастущих и технически ценных древесных пород, которые могут стать существенным фактором увеличения запасов древесины и сокращения сроков ее выращивания. К числу таких пород относится лиственница, которую начали выращивать в лесах и парках нашей страны уже во второй половине XIX века.

Лиственница привлекла внимание лесоводов не только своей изумрудно-зеленой хвоей, но и быстрым ростом и высокой продуктивностью, а также древесиной, обладающей высокими техническими свойствами, устойчивостью к вредителям и болезням.

В лесокультурной практике Беларуси апробированы три вида лиственницы: европейская (Larix decidua Mill), сибирская (Larix cibirica Lab) и японская (Larix leptolepis Gord). Есть сведения, что лиственница европейская является для Беларуси аборигенным видом.

Некоторые итоги введения лиственницы в лесокультурную

СОСТОЯНИЕ И ПРОДУКТИВНОСТЬ КУЛЬТУР ЛИСТВЕННИЦЫ В ЛЕСХОЗАХ БЕЛАРУСИ

практику Беларуси подведены в 1955-1965 гг., когда были осуществлены основательные исследования роста и продуктивности различных видов лиственницы и составлены таблицы хода роста и товарности ее насаждений [1, 2, 3]. Оказалось, что наиболее быстрорастущим и продуктивным видом является лиственница европейская, которая в благоприятных для нее условиях образует по сравнению с сосной и елью более продуктивные древостои [2]. Однако ее дальнейшее распространение в лесокультурной практике сдерживалось в связи с отсутствием собственной семенной базы. Что касается лиственницы сибирской, то ее культуры не обладали необходимой жизнестойкостью, а лиственница японская образовывала низкокачественные древостои.

В настоящее время интерес к быстрорастущим породам заметно оживился. Это связано с ростом потребления древесного сырья и топлива и интенсификацией лесохозяйственного производства. Программой развития лесного хозяйства на 2007-2011 гг. предусмотрено более широкое использование в лесоразведении быстрорастущих пород [4]. В их числе ведущее положение должны занять культуры лиственницы европейской.

В этой связи для лесохозяйственной науки и практики представляют несомненный интерес состояние и продуктивность ранее созданных культур лиственницы, которые учтены при базовом лесоустройстве 2007 г.

МЕТОДИКА ИССЛЕДОВАНИЯ

Настоящее исследование связано с изучением товарной и сортиментной структуры древостоев Беларуси, которое проводится Республиканским унитарным предприятием «Гомельлеспроект». Для оценки состояния и продуктивности культур лиственницы использованы данные базового лесоустройства 2007 г., обработка которых произведена с использованием программного комплекса ИСУЛХ «Лесопользование».

Для более детального анализа продуктивности культур лиственницы использован метод пробных площадей, которые закладывались в насаждениях различного состава и возраста. Всего заложено 30 пробных площадей с охватом культур от 40 до 110-летнего возраста. В основном это культуры лиственницы европейской, заложенные в различное время. Определение средних таксационных показателей производилось общепринятыми в таксации методами. При этом производилось сопоставление древесного запаса на пробных площадях, вычисленного глазомерно и с использованием таблиц ИСУЛХ.

ОБЩАЯ ХАРАКТЕРИСТИКА КУЛЬТУР ЛИСТВЕННИЦЫ ПО БАЗОВОМУ ЛЕСОУСТРОЙСТВУ

Анализ учетных данных показывает, что в послевоен-

НАУЧНЫЕ ПУБЛИКАЦИИ

ЛЕСНОЕ и охотничье хозяйство

ные годы в лесхозах Беларуси проводилась планомерная работа по созданию культур листвен-По сведениям на 01.01.1960 г., культуры лиственницы или с ее участием составляли около 10 тыс. га. Генеральным планом развития лесного хозяйства Беларуси на 1959-1975 гг. предусматривалось создание еще 21 450 га культур с преобладанием лиственницы [1]. Однако эти планы в полном объеме не были выполнены. Главной причиной невыполнения плановых заданий был недостаток семян лиственницы европейской, а также неудовлетворительная сохранность культур лиственницы сибирской, которая была мало приспособлена к климатическим условиям Беларуси. Причины неудач были основательно проанализированы в работах А.Д. Янушко и других исследователей [1, 2, 3]. Оказалось, что эдафический ареал, в котором лиственница превосходит по продуктивности и скорости роста местные породы - сосну и ель - чрезвычайно узок и ограничивается следующими типами леса: кисличник, зеленомошно-кисличный, снытевый, а из трех видов лиственницы, испытанных в лесных культурах

Беларуси, наиболее перспективной является лиственница европейская.

По данным базового лесоустройства на 01.01.2007 г., в лесах, находящихся в ведении лесхозов Министерства лесного хозяйства РБ, имелось 185 га культур лиственницы старшего возраста и 372 га несомкнувшихся культур, в которых лиственница является главной и преобладающей породой. В составе других лесонасаждений лиственница сохранилась на площади 1 540 га. Распределение сохранившихся и учтенных культур лиственницы, а также несомкнувшихся ее культур по преобладающим породам приведено в табл.1.

Как следует из приведенных данных, 76,9% насаждений с участием в составе лиственницы представлены хвойными породами. На долю смешанных культур с преобладанием твердолиственных пород — дуба, ясеня, клена — приходится 11,6%, мягколиственных — березы, осины, ольхи — 11,4%. С преобладанием в составе лиственницы учтено только 185 га.

Анализ чистых и смешанных культур лиственницы представляет несомненный интерес

для лесохозяйственной науки и практики. Данные базового лесоустройства, отражающие фактическое состояние культур с учетом этой породы, дают богатый материал для такого анализа.

Учитывая особую требовательность лиственницы к условиям произрастания прежде всего нас интересует распределение культур лиственницы по типам леса (табл. 2).

Как следует из табл. 2, чистые или с преобладанием лиственницы культуры сосредоточены в четырех типах леса – мшистом, орляковом, кисличном и черничном, причем мшистый и черничный типы этих культур по почвенно-грунтовым условиям близки к кисличникам и снытьевым.

В рамках этого эдафического ареала сосредоточены и смешанные культуры с преобладанием сосны, ели, дуба. В целом на долю упомянутых четырех типов леса приходится 90% площадей с чистыми и смешанными культурами лиственницы. Из этого можно сделать вывод, что в целом культуры лиственницы сохранились в условиях, благоприятных для ее выращивания (табл. 2).

Непосредственно с типологической структурой культур

Таблица 1 Распределение насаждений и несомкнувшихся культур лиственницы по преобладающим породам

		просолидающ			
Преобладающая	Насах	кдения, га	Несомкнувшиеся	Всего, га	% к итогу
порода	итого	в т.ч. лесные культуры	культуры, га		
Сосна	619	551	32	651	29,4
Ель	429	392	64	493	22,3
Лиственница	185	181	372	556	25,2
Дуб	213	132	13	226	10,2
Граб	5	_	_	5	0,2
Ясень	12	8	5	17	0,8
Клен	8	1	_	8	0,4
Акация белая	1	1	_	1	_
Береза	186	12	_	187	8,5
Осина	39	_	-	39	1,8
Ольха серая	14	_	_	14	0,6
Ольха черная	12	-	_	12	0,5
Орех манчжурский	2	2	_	2	0,1
Bcero	1 725	1 280	486	2 211	100

НАУЧНЫЕ ПУБЛИКАЦИИ

Таблица 2

Распределение покрытых лесом земель по типам леса, площадь, га

Тип леса			Преобл	адаю	щие п	ороды			Итог	0
	Л	С	E	Д	Б	Олч	Ос	Прочие	площадь	%
Вересковый		4							4	0,2
Брусничный			1						1	0,1
Мшистый	28	127	46		3			1	205	11,9
Орляковый	44	214	93	17	30			2	400	23,2
Кисличный	99	243	247	141	88		11	25	854	49,5
Черничный	12	25	17	7	33				94	5,4
Долгомошный		1	2		7				10	0,6
Осоковый						2			2	0,1
Оссфагновый		5							5	0,3
Снытевый	1		18	42	8		28	10	107	6,2
Папоротниковый			5		17			4	26	1,5
Злпойменный				2					2	0,1
Пойменный				4					4	0,2
Таволговый						8			8	0,5
Болотно-папоротниковый						2			2	0,1
Зеленомошный	1								1	0,1
Bcero	185	619	429	213	186	12	39	42	1 725	100
в процентах	10,7	46,5	25,0	13,9	10,9	0,8	2,9	2,4	100	

Распределение культур лиственницы по классам бонитета

Таблица 3

Преобладающая порода			Класс	боните	ета		Итого	Средний бонитет
	1A	1	2	3	4	5A		
1	2	3	4	5	6	7	8	9
Сосна	222	334	58			5	619	1A,8
Ель	95	244	87	3			429	1,0
Лиственница	55	102	27		1		185	1A,9
Дуб	4	89	102	18			213	1,6
Граб			5				5	2,0
Ясень	5	6	1				12	1A,7
Клен			8				8	2,0
Акация белая			1				1	2,0
Береза	15	140	29	2			186	1,1
Осина	17	22					39	1A,6
Ольха серая		4	10				14	1,7
Ольха черная			12				12	2,0
Орех манчжурский				2			2	3,0
Всего	413	941	340	25	1	5	1 725	1,0
в процентах	23,9	54,6	19,7	1,4	0,1	0,3	100	

лиственницы связано распределение их площадей по классам бонитета, которые отражают добротность условий произрастания (табл. 3).

Приведенные в табл. 3 данные показывают, что на долю высокобонитетных насаждений (IA и I) приходится 76,5% культур, второй бонитет занима-

ет только 19,7% лесопокрытой площади. Что касается более низких бонитетов (III-V), то на их долю приходится только 1,8% площадей культур. Это впол-

НАУЧНЫЕ ПУБЛИКАЦИИ

ЛЕСНОЕ и охотничье хозяйство

не соответствует наличию таких типов леса, как вересковый, брусничный, долгомошный, осоковый, болотно-папоротниковый, доля которых составляет 1,4%; выращивать в них лиственницу нецелесообразно.

Несомненный интерес представляет распределение лесопокрытой площади с учетом в составе лиственницы по классам возраста (табл. 4).

Сложившаяся возрастная структура лесов с участием лиственницы неравномерна. Наиболее значительно представлен третий класс возраста (38,6%). Это культуры, созданные в 50-е годы прошлого столетия. Обращает на себя внимание небольшой процент культур первого класса возраста (9,3%). В дальнейшем, по нашему мнению, следует ежегодно создавать культуры лиственницы или с ее участием на более значительной площади. Важно отметить, что, по данным глазомерной таксации, в четвертом классе возраста (61-80 лет) запас древесины на корню при полноте 0,7 составляет не менее 350 м³/га, что подтверждает ее достаточно высокую продуктивность.

В табл. 5 приведены показатели распределения насаждений лиственницы или с ее участием по полнотам.

Средняя полнота насаждений лиственницы равна 0,73. При этом 46,5% насаждений имеют полноту 0,8 и более.

ПРОДУКТИВНОСТЬ КУЛЬТУР ЛИСТВЕННИЦЫ

Как известно, продуктивность насаждений — важнейший показатель, используемый в лесном хозяйстве для сравнительной количественной оценки древостоев. Выражается, как правило, запасом древесины на корню в м³/га. Величина продуктивности зависит от древесной породы, условий местопроизрастания, возраста и полноты дре-

востоя и др.

В данном случае нас интересует продуктивность насаждений лиственницы, созданных, как правило, путем посадки в различных лесорастительных условиях.

Для оценки продуктивности использованы показатели, полученные в процессе базового лесоустройства (табл. 6) и данные пробных площадей (табл. 7).

Сравнительный анализ данных глазомерной таксации базового лесоустройства и показателей пробных площадей, заложенных в процессе исследований, дают основания утверждать, что культуры лиственницы обладают высокой продуктивностью. В возрасте 80-100 лет запас древостоя на корню по данным пробных площадей составляет 500-800 м³/га (табл. 7). Наиболее высокой продуктивностью обладают культуры с долей участия лиственницы более 50% состава. Из смешанных культур более продуктивными оказались еловолиственничные, сосново-листвен-

Таблица 4 Распределение насаждений с участием лиственницы по классам возраста, га/тыс. м³

Преобладающая			Классы	возраста			Итого
порода	i	II	111	IV	V	VI и более	
1	2	3	4	5	6	7	8
Сосна	3 <u>2</u> 0,8	142 26,9	<u>266</u> 67,9	80 27,5	80 29,2	<u>19</u> 6,9	619 159,2
Ель	77 2,8	147 23,1	158 41,1	26 9,6	<u>18</u> 5,6	<u>3</u> 0,9	429 83,1
Лиственница	13 0,5	25 3,7	108 27,0	20 7,0	<u>11</u> 3,8	<u>8</u> 2,3	185 44,3
Дуб и другие твердолиственные	33 1,1	<u>27</u> 2,3	100 18,2	<u>46</u> 11,1	<u>17</u> 3,8	1 <u>5</u> 3,6	238 40.1
Береза	4 -	<u>3</u> 0,2	<u>22</u> 2,5	<u>65</u> 10,2	<u>44</u> 8,7	48 12,4	186 34,0
Осина	2 -	=	2	=	35 9,0	=	<u>39</u> 9,0
Ольха серая	=	=	<u>6</u> 0,4	<u>4</u> 0,5	<u>4</u> 0,6	_	14 1,5
Ольха черная	=	=	=	<u>6</u> 0,8	<u>3</u> 0,4	<u>3</u> 0,6	<u>12</u> 1,8
Орех манчжурский	=	=	<u>2</u> 0,2	=	1 0,2	=	<u>3</u> 0,4
Bcero	161 5,2	344 56,2	664 157,3	247 66,7	213 61,3	<u>96</u> 26,7	1 725 373,4
% по площади	9,3	20,0	38,6	14,3	12,3	5,5	100

НАУЧНЫЕ ПУБЛИКАЦИИ

Таблица 5

Распределение насаждений с участием лиственницы по полнотам, га

Преобладающая порода				П	олнота				Итого	Средняя полнота
	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0		
Сосна		6	21	100	226	159	51	56	619	0,74
Ель		8	5	50	123	94	75	74	429	0,79
Лиственница	1		8	35	55	72	6	8	185	0,73
Дуб			8	65	104	14	2	20	213	0,70
Граб					5				5	0,70
Ясень				5	7				12	0,66
Клен			1	7					8	0,59
Акация белая				1					1	0,60
Береза		15	19	33	73	32	3	11	186	0,68
Осина				22	3	4	4	6	39	0,72
Ольха серая		6		4	4				14	0,54
Ольха черная				10	2				12	0,62
Орех манчжурский			2						2	0,50
Bcero	1	35	64	332	602	375	141	175	1 725	0,74
в процентах	0,1	2,0	3,7	19,2	35,0	21, 7	8,2	10,1	100,0	

ничные и сосново-елово-лиственничные. Характерной особенностью показателей глазомерной оценки продуктивности лиственницы является их более низкий уровень по сравнению с данными пробных площадей. Данные по запасу на 1 га отличаются на 58%, это подтверждает необходимость выработки достоверных методик и таблиц для более точного определения таксационных характеристик насаждений с участием лиственницы при лесоустройстве. На данном этапе для этих целей целесообразно использовать таблицы хода роста и товарности культур лиственницы, составленные А.Д. Янушко [1, 3].

ным видом является лиственница европейская. К сожалению, эдафический ареал, в котором лиственница растет быстрее местных пород – сосны и ели – чрезвычайно узок и охватывает лишь следующие типы леса: кисличник, зеленомошно-кисличный, орляковый, частично снытьевый.

2. Из смешанных культур наиболее успешными и продуктивными являются елово-лиственничные и сосново-лиственничные. В условиях листвягов – кисличников и снытьевых – можно с успехом создавать сосново-лиственничные и дубово-лиственничные культуры, однако в этом случае целесообразно вводить буферную породу для ослабления межвидо-

вой конкуренции. Береза в молодых культурах является опасным конкурентом для лиственницы.

- 3. Слабая сохранность культур лиственницы, созданных в послевоенный период, объясняется, прежде всего, использованием для этих целей неблагоприятных почвенно-грунтовых условий, а также посадочного материала лиственницы сибирской, которая не приспособлена к климатическим условиям Беларуси.
- 4. Для корректировки таксационных показателей культур лиственницы при базовом лесоустройстве целесообразно использовать таблицы хода роста и товарности лиственницы, составленные А.Д. Янушко [1].

ЗАКЛЮЧЕНИЕ

Исследование состояния и продуктивности культур лиственницы на основе данных базового лесоустройства и показателей пробных площадей, заложенных в насаждениях различного состава и возраста, позволяют сделать следующие выводы:

1. В благоприятных условиях произрастания лиственница образует высокопродуктивные древостои. Наиболее продуктив-

ЛИТЕРАТУРА.

- 1. Янушко А.Д. Лиственница в лесах БССР и перспективы ее разведения // Автореф. дисс...канд. с-х наук, Рига, 1962. 21 с.
- 2. Янушко А.Д. Условия произрастания и продуктивность культур лиственницы европейской в БССР // Сборн. ботан. работ. Мн., 1960, стр. 145-154.
- 3. Захаров В.К., Янушко А.Д. Ход роста и товарность культур лиственницы в БССР // Лесной журнал, №5, Архангельск, 1957. С.46-49.
- 4. Программа развития лесного хозяйства Республики Беларусь на 2007-2011 гг. Мн., 2007. 89 с.
- 5. Лиственница в Беларуси (научный обзор) // Научно-техническая информация в лесном хозяйстве. Вып. 1-2. — Мн.: Минлесхоз, 2006. — 94 с.

9	
a	
=	
=	
.5	
9	
·w	
-	

				Средние таксацио	ние таксационные показатели			
Преобладающая	тэп	БТЭТИІ	БТ	Запас насаждений на 1 га, м³	аждений а, м³	Изменение запаса на 1 га покрытых лесом земель, м	запаса крытых лель, м	Средний состав насаждений
порода	возраст,	кизсс рон	онпоп	покрытых лесом земель	спелых и перестойных	средний	текущий	
				Bcero	Всего по Минлесхозу			
Сосна	55	1A,8	0,75	256	352	4,6	4,2	6,9C 1,4JI 0,9E, 0,8E
Ель	40	1,0	0,79	194	330	4,6	4,8	6,8Е, 1,3 Л, 1,3Б, 0,6С
Пиственница	53	1A,9	0,73	241	315	4,5	4,1	6,8JJ 1,6E,0,8E, 0,8C
Дуб	99	1,6	0,70	165	275	3,0	3,0	5,4Д 1,6Л 1,2Ос1,1Б0,7Е
Граб	43	2,1	69'0	151	1	3,5	4,7	8,0Г 1,0Д 1,0Л
Ясень	47	1A,7	99'0	196	1	3,9	3,3	6,1Я1,9Л 1,40c 0,6E
Клен	75	2,0	09'0	179	1	2,2	2,3	5,7Кл1,5Л1,0Лп1,0Олч0,8 А
Акация белая	50	2,0	0,64	162	1	3,1	3,2	3,0 А2,0Лп2,0Б 1,0Бх 1,0Олч 1,0Л
Береза	45	1,1	0,68	183	293	4,0	2,8	7,2Б1,60с1,2Л
Осина	46	1A,6	0,74	238	259	5,0	5,0	6,60с 2,6Б 0,8Л
Ольха серая	36	1,8	0,55	115	190	3,0	2,2	7,1 Олс1,5Л 0,80с
Ольха черная	44	2,0	0,62	152		3,4	3,7	7,00лч 1,5 Б 1,5Л
	50	1,0	0,74	216	307	4,3	4,0	
Итого			A	41C19F19N14E07N+Oc Onc Ony Kn C 9 Nn B A T Man 96 Ex Ony	771+Oc Onc Ony	Kn F 9 Dn	B A T MRA	Sh Fx Ony

ии лиственницы (по данным прс

) (XX		IO HIVUI CTB	E /						_	1.0	\/1	111	_	_		, _		16.6		141	4									2/2	200)8
3}	111	CTB	<u>so</u> /			_				HA	A	4H	ы	<u> </u>	11)	/Ь	ЛИ	KA	λЦ	NI.	<u>/</u>											
	нный	ицам Х	В Т.Ч.	240	247	327	310	444	137	237	370	92	114	123	136	338	190	130	178	29	243	64	209	248	192	411	520	172	108	82	703	757
1 ram3	вычисленный	по таблицам ИСЛУХ	всего	469	542	397	384	613	220	513	559	382	347	732	304	765	344	230	999	339	319	319	440	419	493	476	555	371	108	170	715	792
Запасна	рный	ללאט		350	440	280	290	300	300	490	650	310	290	230	270	390	350	195	300	300	220	250	360	380	280	380	350	320	06	155	420	420
	глазомерный	0108	разов	310	360	270	290	300	310	250	330	270	290	190	250	390	270	250	220	180	220	240	280	320	260	370	300	280	80	150	370	540
		ЦИ	IT	KNC	KNC	KNC	KNC	KNC	KMC	KNC	KMC	KNC	KNC	KNC	KNC	do	CH	do	do	do	do	do	KNC	KNC	KNC	КИС	do	KNC	d9	MILL	do	KNC
затели		инир метр, м	Бид	40	44	44	52	44	28	28	48	40	20	24	28	36	44	16	28	28	20	20	52	48	48	48	32	48	16	20	28	36
Средние таксационные показатели	1	ввнр и ,вто	BPIC	26	31	30	27	28	22	28	35	26	23	22	26	27	24	19	27	25	21	22	33	31	30	33	27	31	15	18	25	31
ионны		БТОН	поп	6,0	6,0	2,0	8,0	1,0	9,0	1,0	8,0	8,0	6,0	1,0	9,0	1,0	8,0	2'0	1,0	0,8	6'0	8,0	0,7	0,7	6,0	8,0	1,0	9,0	0,4	9,0	1,0	0
ксац		T9TN	нод	-	14	14	-	-	16	1A	14	1A	-	1	1A	-	-	-	15	-	1A	1A	1A	1A	1A	1A	14	-	-	-	14	14
ие та		et et		84	91	91	100	98	40	58	93	65	09	09	99	95	62	20	52	20	51	20	26	95	26	105	20	108	40	53	29	89
Сред		COCTAB		5Л4E1B	5J3C2E	9Д1E	8J1E15	7J1C1E15	7.J3E	5Л2E1C2B	7,72E1C	2Л4C2E1Д1B	3Л5C1Б1E	272C2E2Д2B	4Л2Б2С1Е1Д	5Л3C2E	6Л2Б1Д1Кл	6Л3E1C	7СЗЛ	9E1Л	8J12E	6Е2Л1С1Лп	5Л31Oc1E	7Л3E	4Л2Д2С1Б1Я	9J11E	10Л	5Л2Д2С1Б	10Л	5Л5C	101	101
		ощар 1990		1,0	1,0	0,3	0,25	0,3		1,0	1,1	1,0		0,1		9,0	0,2	0,20	0,50	0,40	0,50	0,50	0,50	0,41	0,50		0,50	0,20	0,30	0,47	0,10	0 29
	ı	төдіч	8	21	9	13	7	22	7	2	8	11	3	7	4	15	51	4	2	16	7	13	6	14	5	4	13	7	14	ω	11	2
:	и	етде	KB	124	133	134	114	125	246	73	160	169	68	20	47	88	54	153	154	150	150	157	158	158	158	134	116	135	186	174	67	-
		Лесничество			Кохановское		Озерецкое	Кохановское	Оболецкое	Копысское	Балбасовское	Дубровское		Копысское		Клюковское	Борховичское			Сапоцкинское						00000	индурское					1 I y ook ck oe
		ндоді		-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	56
		Лесхоз				Tonounidoraix	THE PROPERTY OF THE PROPERTY O						Оршанский				Верхнедвинский							Гродненский					1		Service Co.	IJOURGRAIM