ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ОТХОДОВ ЛЕСОПИЛЕНИЯ И ДЕРЕВООБРАБОТКИ ПРИ БИОКОНВЕРСИИ

Болтовский В.С., Цедрик Т.К., Некрасов Д.В.

Белорусский государственный технологический университет

В последние годы широко проводятся исследования по утилизации отходов лесопиления и деревообработки путем их биоконверсин с использованием микроорганизмов различных видов для получения белковых кормовых дрожжей, обогащенных белком растительно-углеводных белковых кормов, удобрений и других продуктов.

Биоконверсия древесных отходов микроорганизмами в белок может проводиться в условиях твердофазной и глубинной ферментации. Повышение эффективности процесса биоконверсии лигноцеллюлозных растительных материалов достигается путем их предварительной обработки различными способами.

В данной работе исследовали влияние различных мстодов предобработки (физических, механических, химических, и термокаталитических) на эффективность биоконверсии древесных отходов при глубинном культивировании мицелиальных грибов, дрожжей и их ассоциации. Влияние предварительной обработки сырья на гидролизуемость полисахаридов (ПС) оценивали по содержанию легко(ЛГПС) и трудногидролизуемых (ТГПС) полисахаридов. В субстрате после ферментации определяли концентрацию редуцирующих веществ (РВ) и белка общепринятыми методами. Результаты изучения влияния предобработки древесины на гидролизуемость полисахаридов приведены в табл.1.

Таблица 1
Влияние различных видов предварительной обработки сырья на содержание легко- и трудногидролизуемых полисахаридов

Вид предварительной обработки	Содержание полисахари-			
сырья	ЛГПС ТГПС Сумм			
1	2	3	4	
Необработанная древесина	24,8	40,4	65,2	
Измельченная древесина (фракция 2-5 мм)	18,6	40,2	58,8	
Измельченная древесина (фракция 1,5-2,0 мм)	20,9	38,2	59,1	
Размолотая древесина (фракция до 1,5 мм)	22,9	39,9	62,8	
Щелочная обработка 1%-ным раствором NaOH	13,4	45,5	58,9	

Г	Тродолжение таблицы I				
l l	2	3	4		
Обработка в поле СВЧ. Продолжи- тельность 2,5 мин.	19,6	35,9	55,5		
Термокаталитическая обработка (1%- ным раствором серной кислоты, темпе- ратура 150° С. Продолжительность 30 мин.	30,8	39,8	70,6		
Парофазная обработка в процессе по-	5,6	39,2	44,8		

В таблице 2 представлены результаты по изучению влияния предобработки сырья на изменение в процессе ферментации микроорганизмами полисахаридного состава, содержания РВ в культуральной жидкости и белка в полученном продукте.

Таблица 2
Результаты, полученные при глубинном культивировании древесины микроорганизмами

Вид	Содержание, % от полученного						
DIIA	продукта						
субстрата	PB	бе-		ТГПС	Сумма		
o) our partie		лок		11110	ПС		
Грибы вида Trichoderma viride							
Березовые опилки (фракция 2-5	0,11	5,92	8,42	32,25	40,67		
(MM)	.,	-,	,,	1 -,	,.		
Березовые опилки, обработан-	0,75	12,95	6,45	23,36	29,81		
ные 1%-ным раствором щелочи							
Целлолигнин	1,02	15,58	0,75	17,46	18,20		
Ассоциация Trichoderma viride и дрожжей Candida Tropicalis							
(в отношении 1:1)							
Березовые опилки (фракция 2-5	0,06	6,24	9,25	34,12	43,37		
мм)					4		
Березовые опилки (фракция 1,5-	0,12	8,92	9,08	25,42	34,50		
2 мм)							
Березовые опилки после СВЧ-	0,22	11,38	8,26	17,65	25,91		
обработки							
Березовые опилки, обработан-	0,54	15,42	4,28	16,28	20,56		
ные 1%-ным раствором щелочи							
Целлолигнин	0,78	18,52	0,56	15,45	16,01		

По результатам проведенных исследований установлено, что предварительная обработка древесины приводит к изменению се структуры и углеводного состава, что повышает реакционную спо-

собность полисахаридов и доступность действию ферментов при биоконверсии.

Содержание белка в древесных опилках после термокаталитической обработки составило 18,52%, что позволяет рекомендовать их для использования в качестве грубого раститительноуглеводного белкового корма.

УДК 674.055

АБРАЗИВНЫЕ ИНСТРУМЕНТЫ ДЛЯ ШЛИФОВАНИЯ ДРЕВЕСИНЫ И ДРЕВЕСНЫХ МАТЕРИАЛОВ

Кийко О.А., Грицак С.А.

Украинский государственный лесотехнический университет

Постоянный рост требований к качеству продукции мебельных и деревообрабатывающих предприятий обуславливает необходимость совершенствования технологий и способов обработки древесины.

В технологическом процессе изготовления изделий из древесины шлифование - один из самых ответственных и трудоемких процессов. Трудоемкость процесса шлифования в мебельном производстве составляет 12...13% от общей трудоемкости.

В настоящее время наиболее широко для финишного шлифования древесины и древесных материалов используется шлифовальная шкурка, которая не всегда отвечает требованиям производства. Существенными недостатками шлифшкурки являются относительно низкая износостойкость, сравнительно большая себестоимость и постепенное ухудшение режущей способности при работе.

Перечисленные недостатки создают определенные трудности при механизации и автоматизации процесса шлифования древесины и древесных материалов. Именно этим можно объяснить тот факт, что в мебельной промышленности на операциях шлифования часто используется ручной труд.

К вышеперечисленным недостаткам шлифовальной шкурки необходимо также отнести сложность, а иногда и невозможность шлифования деталей сложного профиля и ликвидации кинематических волн, которые возникают на поверхности древесины при обработке.

В последние годы сделано множество попыток создания новых видов инструментов для шлифования древесины, которые способны заменить шлифовальную шкурку.

В результате экспериментальных исследований в Украинском государственном лесотехническом университете создан новый высокопроизводительный инструмент для калибрования-шлифования изделий из древесины. Этот инструмент внедрен на многих мебельных и