С. Г. Тихомиров, д-р техн. наук, проф., М. А. Кулигина, асп. (ФГБОУ ВО «ВГУИТ», г. Воронеж, Российская Федерация); Ж. С. Шашок, д-р техн. наук, проф. (БГТУ, г. Минск); А. Ю. Люштык, нач. лаб.-гл. химик, С. Н. Каюшников, канд. техн. наук, нач. инж.-техн. центра (ОАО «Белшина», г. Бобруйск)

ПРОГНОЗИРОВАНИЕ СВОЙСТВ РЕЗИН ПРИ ВВЕДЕНИИ В ИХ РЕЦЕПТУРУ РАДИАЦИОННОГО БУТИЛРЕГЕНЕРАТА

Производство и потребление полимерных материалов неуклонно возрастает в различных областях. Переработка резиновых изделий, вышедших из эксплуатации, их регенерация и таким образом, возвращение в технологический цикл углеводородного сырья является актуальными задачами.

На территории РФ с 2019 года запрещено захоронение многих видов отходов, в их числе отработанных пневматических шин, включающих изделия, армированные текстильным кордом, металлокордом, резиновых комплектующих машин, механизмов, технологического оборудования. В то же время рост количества автотранспорта обусловил увеличение производства и потребления автомобильных шин и резиновых изделий, применяемых при их производстве, поэтому проблема переработки отходов отработанных резиновых изделий приобретает все большее значение [1].

Существующие в настоящее время методы регенерации основаны на использовании сложного оборудования, являются многоступенчатыми, подразумевают использование химических соединений в качестве активаторов регенерации, характеризуются образованием побочных продуктов - сточных вод, летучих соединений и т. д [2–4].

Использование ионизирующего излучения при регенерации отработанных резин на основе насыщенных каучуков позволит решить некоторые из указанных проблем и получить регенерат с прогнозируемыми свойствами за счет варьирования условий обработки материала на его технические свойства [5–6].

В качестве объектов исследования использованы образцы диафрагменной резины, которые были подвергнуты воздействию ускоренных электронов при поглощенной дозе 35 кГр. Дополнительно проведена термомеханообработка полученных облученных по двум режимам:

1) на вальцах в течение 30 мин при зазоре 2 мм (шифр образца РБР-1);

2) в резиносмесителе в два стадии при 30%-ой загрузке камеры: I стадия – 35 мин при скорости вращения роторов 45 об/мин, II стадия – 15 мин при 60 об/мин (шифр образца РБР-2).

Использование данных режимов позволяет смоделировать процесс термомеханообработки и дальнейшие свойства бутилового регенерата с использованием оборудования валкового и роторного типа.

На основе полученных бутилрегенератов были изготовлены две резиновые смеси: контрольная и модельная (таблица 1). Модельная смесь предусматривает частичную замену хлорбтилкаучука на радиационный бутилрегенерат. Резиносмешение проводили в две стадии: І стадия — изготовление маточной резиновой смеси с последующей доработкой на вальцах при зазоре 2 мм и вылежкой в течение не менее 4 ч; ІІ стадия — введение вулканизующей группы. Двухстадийное смешение позволяет избежать негативного явления — подвулканизации, вызванного повышением температуры маточной смеси в камере пластикодера.

Таблица 1 – Рецепты резиновых смесей

1 wovingur 1 engent bi pesintobbix emeeen			
Наименование	Шифры образцов и содержание компонентов, мас.ч.		
компонентов	контрольный образец	модельная смесь	
Натуральный каучук	10	10	
Бутадиен-стирольный каучук	20	20	
Хлорбутилкаучук	70	60	
Регенерат РБР-1 или РБР-2	_	20	
Ингредиенты по рецепту	110	110	
Всего:	202	202	

Для физико-механических испытаний образцы вулканизовали по режиму $170^{\circ}\text{C}\times10$ мин. Результаты испытаний представлены в таблице 2.

Установлено, что при введении в рецептуру 20 мас. ч. бутилрегенерата РБР снижение условной прочности при разрыве составило 1 МПа, при этом относительное удлинение вулканизата на основе РБР-1, которое составило 460% было выше контрольного образца (430%).

Проведено исследование влияние термического старения на полученные вулканизаты на основе РБР и контрольного образца. Испытания проводили в соответствии с ГОСТ 9.024-74, режим термического старения: $100^{\circ}\text{C}\times72$ ч. Снижение прочностных характеристик вулканизатов для контрольной резины составило 20%, для опытных образцов – 22-25%.

Таблица 2 – Физико-механические показатели вулканизатов

	Шифры образцов		
Наименование показателей	контроль- ный образец	РБР-1	РБР-2
Условное напряжение при удлинении на 300%, МПа	4,0	3,6	3,8
Условная прочность при разрыве, МПа	6,6	5,5	5,5
Относительное удлинение при разрыве, %	430	460	416
Относительная остаточная деформация после разрыва, %	8,5	8,5	9,0

Полученные экспериментальные данные дополнили базу данных, которая формировалась для разработки математических моделей, описывающих кинетику деструкции основных и поперечных связей молекулярной структуры облученных и теромеханообработанных резин, динамику моментов её молекулярно-массового распределения, предназначенных для прогнозирования свойств резин при использовании бутилрегенерата разного качества.

ЛИТЕРАТУРА

- 1. Tikhomirov S. G., Karmanova O. V., Podvalnyi S. L., Khvostov A. A., Karmanov A. V. Investigation of the kinetics of the radiation destruction of elastomers // Advanced Materials & Technologies Founders. − № 2. − 2018. − P. 29–42.
- 2. Karmanova O. V., Tikhomirov S. G., Kayushnikov S. N. Obtaining and using of reclaimed butyl rubber with the use of ionizing radiation // Radiation Physics and Chemistry. 2019. Vol. 159. P. 154–158.
- 3. Хакимуллин Ю. Н. Структура, свойства и применение радиационных регенератов резин на основе бутилкаучука. Казань. 2011. 188 с.
- 4. Дроздовский В. Ф. Применение модифицированных и немодифицированных измельченных вулканизатов // Каучук и резина. 1997. № 2. C. 48.
- 5. Дроздовский В. Ф. Переработка и использование невосстанавливаемых изношенных шин. Москва: BECKOM. 2018. 370 с.
- 6. Zaharescu T., Cazac C., Jipa S., Setnescu R. Assessment on radio-chemical recycling of butyl rubber // Nuclear Instruments and Methods in Physics Research. 2001. Vol. 185. P. 360–364.