Н. Р. Прокопчук, член-корр. НАН Б, д-р хим. наук, проф., И. О. Лаптик, инженер (БГТУ, г. Минск)

РОЛЬ ЗАРЯДА ПОВЕРХНОСТИ НАНОЧАСТИЦ В ФОРМИРОВАНИИ СТРУКТУРЫ И СВОЙСТВ КОМПОЗИТОВ

Ранее при наномодифицировании эпоксидных покрытий по стали и модельного состава (МС) для точного литья по выплавляемым моделям $3\Gamma B$ -101 наночастицами TiO_2 , ZnO нами было установлено существенное повышение стойкости композитов в температурносиловых полях и агрессивных средах [1, 2].

Была предложена гипотеза, объясняющая повышение твердости, прочности при ударе, адгезии, стойкости к воздействию жидкостей эпоксидных покрытий по стали, а также снижение усадки и повышение теплостойкости МС ЗГВ-101. Согласно этой гипотезе, наночастицы TiO₂ и ZnO, имея на своей поверхности нескомпенсированный электрический заряд, активно взаимодействуют с полярными группами эпоксидной смолы и компонентами, входящими в МС ЗГВ-101. При этом образуются дополнительные физические связи к существующим в изученных композитах. В результате снижается молекулярная подвижность звеньев олигомерных молекул, что и приводит к повышению устойчивости композитов в температурно-силовых полях и агрессивных средах.

Цель настоящей работы — экспериментально определить величину зарядов в nA на поверхности частиц TiO_2 , ZnO, Al_2O_3 , SiO_2 ; установить корреляции: величина заряда наночастиц — свойства композитов; показать решающую роль заряда поверхности наночастиц в формировании структуры и свойств полимерных композитов.

Объектами исследования служили: эпоксидная смола ЭД-20, отвержденная канифолетерпеностирольномалеиновым аддуктом (КТСМА – новый отвердитель), а также МС ЗГВ-101 для точного литья.

Нанопорошки TiO_2 , ZnO производства OOO «Томские нанопорошки» и Al_2O_3 и SiO_2 производства «Nano Formula» фабрика уникальных нанозащитных покрытий (Estonia) имели широкое распределение по размерам 20–80 нм. Их равномерное распределение в композициях в количествах 0,005; 0,01; 0,1 мас. % достигалось их диспергированием в ультразвуковой ванне в течение 30 минут.

Твердость антикоррозионных покрытий определяли с помощью маятникового прибора ТМЛ по ГОСТ 5233-89; прочность при ударе — по ГОСТ 4765-73; адгезию методом решетчатых надрезов согласно ГОСТ 15140-78; стойкость к воздействию жидкостей согласно

ГОСТ 9.403-80. Линейную усадку МС 3ГВ-101 определяли на брусках с сечением 4×10 мм и длиной 90 мм электронным штангельциркулем марки F-5096РЕЗ (0–250 мм). Теплостойкость оценивали по температурам размягчения (T_P) и каплепадения по Уббеллоде ($T_{\rm Vb}$). Исследование энергетических характеристик поверхности наночастиц TiO_2 , ZnO, Al_2O_3 , SiO_2 было проведено методом термостимулированных токов (TCT анализом) на приборе ST-1.

Электрический заряд стабилен в интервале температур 20– 200 °C и имеет значения: $TiO_2 = -4$; ZnO = -3.5; $Al_2O_3 = -2$; $SiO_2 = -1$.

Для оценки влияния наночастиц на структуру отвержденных эпоксидных пленок произведена оценка содержания в них гельфракции методом экстракции в ацетоне при нагревании 56–65°C.

Значения гель-фракции G в % и показатели физикомеханических свойств приведены в таблице 1 и 2 соответственно.

Таблица 1 - Гель-фракции G в эпоксидных пленках, %

Tuosinga T tota ppakuni o b snokengnbix nitenkax, 70							
Название наночастиц	Гель-фракция G (%) эпоксидных пленок в зависимости от						
	концентрация наночастиц, %						
	0	0,005	0,01	0,02			
TiO ₂	6,5	33,5	22,4	15,3			
ZnO		27,3	17,5	14,5			
Al ₂ O ₃		18,4	12,3	11,8			
SiO ₂		15,7	12,2	10,6			
I .	I	1					

Анализируя экспериментальные данные, можно сделать вывод: чем выше заряд на поверхности наночастиц, тем выше гель-фракция отвержденных пленок.

Таблица 2 – Физико-механические свойства защитных покрытий, модифицированных наночастицами разной природы

Физико-механические	0%	ZnO, %				TiO ₂ , %	
свойства	0 / 0	0,005	0,01	0,02	0,005	0,01	0,02
Твердость, отн. ед.	0,1	0,50	0,30	0,80	0,80	0,61	0,57
Адгезия, балл	4	2	1	1	1	1	1
Прочность при ударе, см	30	50	70	90	90	70	30

Эффективность структурирования композиций располагается в ряду: $TiO_2 > ZnO > Al_2O_3 > SiO_2$ при трех концентрациях наночастиц 0,005; 001; 0,02 мас. %. Наиболее равномерная и густая физическая сетка образуется при минимальной концентрации наночастиц 0,005 мас. % (гель-фракция убывает с превышением этой концентрации при введении всех наночастиц).

Чем выше заряд на поверхности наночастиц (TiO_2), тем выше гель-фракция, твердость, адгезия и прочность при ударе.

В этом же ряду располагается и химическая стойкость покрытий (таблица 3).

Таблица 3 - Химическая стойкость покрытий

Наночастицы	Стойкость к ста при (20 ± 2)	Адгезия, баллы		
	вода 3%-ый водный p-p NaCl			
_	5	4	4	
TiO ₂ , %				
0,005	9	7	1	
0,01	8	9	1	
0,02	8	6	1	
ZnO, %				
0,005	6	5	2	
0,01	7	5	1	
0,02	8	7	1	

Из таблицы 3 следует, что стойкость к действию воды возрастает при введении 0,005 мас. % наночастиц TiO_2 с 5 до 9 сут., а в 3%-ном водном растворе хлорида натрия с 4 до 9 сут. При введении 0,02 мас. % TiO_2 стойкость снижается из-за частичной агломерации наночастиц. Адгезия при этом возрастает с 4 до 1 балла. Наномодификация покрытий частицами ZnO менее эффективна: водостойкость возрастает с 5 до 8 сут. при содержании ZnO 0,02 мас. %, а в 3%-ном водном растворе хлорида натрия с 4 до 7 сут. при содержании ZnO 0,02 мас. %. Большую эффективность TiO_2 по сравнению с ZnO можно объяснить большим поверхностным зарядом частиц TiO_2 .

Зависимости на рисунке также свидетельствуют об более эффективном влиянии частиц TiO_2 по сравнению с частицами ZnO на снижение линейной усадки модельного состава $3\Gamma B$ -101 и повышение его теплостойкости.

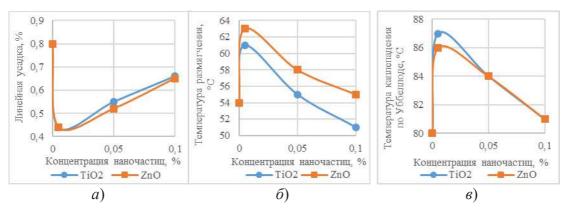


Рисунок – Зависимость усадки (a), температуры размягчения (δ) и каплепадения (s) эпоксидных прленок от от концентрации наночастиц

Таким образом, решающая роль в формировании структуры и свойств полимерных композитов при их наномодифицировании принадлежит электрическому заряду на поверхности наночастиц. Чем выше заряд на поверхности наночастиц, тем более эффективная дополнительная физическая сетка образуется в композите, что проявляется в росте гель-фракции отвержденных эпоксидных пленок и повышении их устойчивости в температурно-силовых полях и агрессивных средах. Межмолекулярные взаимодействия усиливаются, плотность покрытия возрастает, а, следовательно, растет и его твердость. Дополнительная эластичная физическая сетка выступает демпфером, принимает на себя механическую кинетическую энергию падающего бойка и прочность покрытия при ударе сильно возрастает. Активные поверхности наночастиц взаимодействуют с оксидом железа на поверхности металла, усиливая адгезию эпоксидного покрытия, препятствуя тем самым подпленочной коррозии. Надмолекулярная структура по типу взаимопроникающих сеток препятствует диффузии агрессивной среды через покрытие к поверхности металла, замедляет его коррозию. Повышение теплостойкости и снижение усадки модельного состава обеспечивается тем, что дополнительная физическая сетка, образованная наночастицами, удерживает объем композиции МС ЗГВ-101 от сокращения при усадке и от расширения при нагревании тем сильнее, чем выше заряд на поверхности наночастии.

ЛИТЕРАТУРА

- 1. Улучшение механических свойств эпоксидных покрытий по металлу наночастицами разной природы / Н. Р. Прокопчук [и др.] // Цветные металлы. 2023. № 8. С. 25–29.
- 2. Снижение усадки и повышение теплостойкости модельного состава наночастицами TiO_2 и ZnO / H. P. Прокопчук [и др.] // Труды БГТУ. 2024. № 1. С. 50–54.