Н.С. Красуцкая, ассист.; А.И. Клындюк, доц., канд. хим. наук (БГТУ, г. Минск)

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ НАТРИЯ В СЛОИСТОМ КОБАЛЬТИТЕ НАТРИЯ Na_{0.55}CoO₂ РАЗЛИЧНЫМИ МЕТОДАМИ

Целью работы является определение реального содержания натрия (x_{Na}) и среднюю степень окисления кобальта (Co^{+Z}) в кобальтитатах натрия $\text{Na}_{0.55}\text{Co}_{0.90}M_{0.10}\text{O}_2$ (M=Cr,Ni,Zn,Bi,W) методами иодиометрического и обратного потенциометрического титрования, а также спектрофотометрически. Согласно [1, 2] кислородная подрешетка слоистого кобальтита Na_xCoO_2 содержит незначительное количество вакансий, поэтому степень окисления кобальта в этих фазах контролируется только содержанием в них натрия (x_{Na}) .

Среднюю степень окисления кобальта (Co^{+Z}) в керамических образцах слоистого кобальтита натрия Na_xCoO_2 определяли иодометрически, растворяя навеску порошка Na_xCoO_2 в концентрированной соляной кислоте (HCl) в присутствии иодида калия KI в инертной среде (газообразный N_2) [3]. Согласно результатам иодометрии, конечный состав слоистого кобальтита натрия соответствовал формуле $Na_{0.55}CoO_2$, а средняя степень окисления кобальта Co^{+Z} в нем составила 3.45.

Содержание кобальта в средней степени окисления и реальное содержание натрия в $Na_xCo_{0.90}M_{0.10}O_2$ (M=Cr, Ni, Zn, Bi, W) также определяли по методике обратного потенциометрического титрования [4]. Навески порошков кобальтита $Na_xCo_{0.90}M_{0.10}O_2$ растворяли в концентрированной соляной кислоте (HCl), затем к полученному раствору добавляли избыток цитратно-аммонийного буферного маскировочного раствора, 25 % водный раствор NH_3 (до значения pH=10) и фиксированный объем фиксанального раствора $K_3[Fe(CN)_6]$. Полученный раствор титровали стандартным раствором $CoSO_4$ при помощи TitroLine easy (SI Analytics SCHOTT).

Содержание натрия в полученных образцах (x_{Na}), определенное методом обратной потенциометрии, составляло около 0.55 для всех исследованных образцов (табл. 1). Средняя степень окисления кобальта в слоистых кобальтитах $Na_{0.55}Co_{0.90}M_{0.10}O_2$ (M=Cr, Co, Ni, Zn, W, Bi) изменялась в пределах 3.17–3.61 (табл. 1), увеличиваясь при замещении акцепторного характера (Ni или Zn вместо Co) и уменьшение при замещении донорного характера (W или Bi вместо Co).

Общее содержание кобальта в слоистых кобальтитах натрия $Na_{0.55}Co_{0.90}M_{0.10}O_2$ также определяли спекрофотометрически в виде тиоционатного комплекса $[Co(SCN)_4]^{2-}$ и комплекса кобальта с ЭДТА $[CoY]^-[5]$. В первом случае, к навескам слоистого кобальтита добавляли раствор H_2SO_4 (1:1) и полученные смеси подогревали до их полного растворения, далее к полученным растворам добавляли фиксированные объемы 50 мас. % раствора NH_4SCN и ацетона. Оптическую плотность измеряли при $\lambda = 625$ нм ($\epsilon_{625} = 19100$ л/(моль см)) (рис. 1) и по результатам измерений рассчитывали содержание натрия (x_{Na}) и среднюю степень окисления кобальта (Co^{+Z}) в керамических образцах $Na_{0.55}Co_{0.90}M_{0.10}O_2$.

Таблица 1 — Содержание натрия (x_{Na}) и средняя степень окисления кобальта (Co^{+Z}) в образцах слоистых кобальтитов $Na_{0.55}Co_{0.90}M_{0.10}O_2$

(M = Cr, Co, Ni, Zn, W, Bi) определенное различными методами

(1) Ci, Co, I (i, Zii, V, Di) onpegenennoe pastin inbiam merogami						
M	Обратное		Спектрофотометрия			Спектрофотометрия
	потенциометрическое		комплекса кобальта			комплекса кобальта
	титрование		$[Co(SCN)_4]^{2-}$			[CoY] ⁻
	$x_{ m Na}$	Co^{+Z}	x_{Na}	Co^{+Z}	X _{Na}	Co^{+Z}
Cr	0.553	3.50	0.554	3.50	0.555	3.50
Co	0.545	3.45	0.549	3.45	0.548	3.45
Ni	0.554	3.61	0.553	3.61	0.554	3.61
Zn	0.548	3.61	0.551	3.61	0.549	3.61
W	0.551	3.17	0.555	3.16	0.557	3.17
Bi	0.553	3.28	0.552	3.28	0.553	3.28

Во втором случае, к навескам керамических образцов $Na_{0.55}Co_{0.90}M_{0.10}O_2$ добавляли фиксированные объемы 0.25 М раствора ЭДТА и 2М раствора H_2SO_4 и полученные смеси подогревали до полного растворения, затем к полученному раствору добавляли навеску сухой соли KIO_4 (для окисления Co^{2+} до Co^{3+}). Оптическую плотность полученного раствора измеряли при $\lambda = 550$ нм ($\epsilon_{550} = 294$ л/(моль·см)) и по результатам измерений рассчитывали содержание натрия (x_{Na}) в образцах $Na_{0.55}Co_{0.90}M_{0.10}O_2$. Содержание натрия в полученных образцах (x_{Na}), определенное спектрофотометрическими методиами также составляло около 0.55 для всех исследованных образцов (табл. 1). Средняя степень окисления кобальта в слоистых кобальтитах $Na_{0.55}Co_{0.90}M_{0.10}O_2$ (M=Cr, Co, Ni, Zn, W, Bi) изменялась в пределах 3.17—3.61 (табл. 1), также увеличиваясь при замещении кобальта никелем или цинком и уменьшаясь при замещении кобальта вольфрамом или висмутом.

Таким образом, в работе показано, что определение средней степени окисления ионов кобальта для слоистых кобальтитов натрия при помощи идометрического и обратного потенциометрического

титрования, а также спектрофотометрическими методами позволило определить конечный состав слоистых кобальтитов $Na_{0.55}Co_{0.90}M_{0.10}O_2$ ($M=Cr,\ Ni,\ Zn,\ Bi,\ W$), а результаты обеих методик хорошо согласуются друг с другом.

ЛИТЕРАТУРА

- 1. Viciu L., Huang Q., Cava R.J. Stoichiometric oxygen content in Na_xCoO₂. // Phys. Rev. B. 2006. Vol. 73. 212107.
- 2. Joo W., Yoo H.-I. Point defect structure of γ -Na_xCoO₂ // Solid State Ion. 2018. Vol. 314. 74–80.
- 3. Клындюк А.И., Красуцкая Н.С., Дятлова Е.М. Влияние температуры спекания на свойства керамики Na_xCoO_2 // Труды БГТУ. Сер. III, Химия и технология неорган. в-в. 2010. Вып. XVIII. С. 96—102.
- 4. Пятницкий, И.В. Аналитическая химия кобальта / И.В. Пятницкий М. Наука, 1965. 292 с.
- 5. Sopicka-Lizer, M. Assessment of Co(II), Co(III) and Co(IV) content in thermoelectric cobaltites / M. Sopicka-Lizer [et al.] // Archives of Metallurgy and Materials 2009. Vol. 54, № 4. P. 881–888.

УДК 546.46+621.793.3+620.193+666.11.01

И.И. Курило, доц., зав. кафедрой ФКиАХ, канд. хим. наук; М.В. Дяденко, доц., канд. техн. наук (БГТУ, г. Минск); А.В. Поспелов, вед. инж. (ООО «Футберг»); Е.О. Богдан, доц., канд. техн. наук; А.С. Глинский, стажер мл. науч. сотр. (БГТУ, г. Минск)

КОМПОЗИЦИОННОЕ ПОКРЫТИЕ НА ОСНОВЕ МОДИФИЦИРОВАННОГО БИОСТЕКЛАМИ ПОЛИЛАКТИДА НА ФОСФАТИРОВАННЫХ СПЛАВАХ МАГНИЯ

В настоящее время в травматологии и ортопедии весьма перспективно применение биоразлагаемых металлических имплантатов, среди которых наибольший интерес представляют магний и его сплавы благодаря их высокой биосовместимости, низкой плотности и механическим свойствам, сходным со свойствами нативной кости. Однако, несмотря на огромный потенциал магния и его сплавов как материала для получения биоразлагаемых имплантатов, существует ряд нерешенных вопросов, ограничивающих их широкое применение: быстрая и неконтролируемая деградация в биологических средах, сопровождающаяся высвобождением водорода, а также неоднородная степень разрушения с образованием локальных дефектов. Вышеопи-