Студ. Д.А. Сенюк

Науч. рук. ассист. В.В. Яскельчик, зав. кафедрой доц. А.А. Ченик (кафедра X,ТЭХПиМЭТ, БГТУ)

ЭЛЕКТРОХИМИЧЕСКОЕ ОСАЖДЕНИЕ СПЛАВА НИКЕЛЬ-ХРОМ ИЗ КОМПЛЕКСНОГО ЭЛЕКТРОЛИТА

Среди многообразия известных композиций сплавов на основе никеля, сплавы никель-хром имеют ряд преимуществ. Кроме хорошей технологичности они обладают высокой жаропрочностью и коррозионной стойкостью в различных агрессивных средах, а также структурной устойчивостью в условиях радиационного воздействия. Это позволяет применять сплавы на основе никель-хром в существующих и перспективных конструкциях химического, авиакосмического и электронного машиностроения, а также для изготовления компонентов активной зоны термоядерных реакторов, использующих в качестве теплоносителей щелочные металлы в жидком состоянии. Обязательным легирующим элементом в таких сплавах является хром, обеспечивающий высокое сопротивление материалов окислению.

Цель работы заключалась в поиске эффективных и работоспособных электролитов для осаждения сплава никель-хром, с выявлением более эффективными для осаждения сплава.

Таблица 1 – Составы электролитов и условия электролиза

No	Компонент	Концентрация, г/л	Параметры
1	2	3	4
1	$Cr(BF_4)_3$ (в пересчете на Cr^{3+})	60 - 85	$T = 70 - 80^{\circ}C$
	$Ni(BF_4)_2$ (в пересчете на Ni^{2+})	12 –20	$i = 40 - 90 \text{ A/дm}^2$
	HBF4	250 - 650	
2	NiSO ₄	80	$T = 40 - 60^{\circ}C$
	NiCl ₂	20	$i = 4 - 60 \text{ A/дm}^2$
	KCrS ₂ O ₈	40	
	$C_2H_5NO_2$	220	
	(NH ₄) ₂ SO ₄	200	
	H_3BO_3	30	
	2-бутиндиол-1,4	0,3	
	сахарин	1,5	
3	CrCl ₃ ·6H ₂ O	160	$T = 25 - 30^{\circ}C$
	NH ₂ CH ₂ COOH	60	$i = 10 - 50 \text{ A/дм}^2$
	AlCl ₃ ·6H ₂ O	190	
	H_3BO_3	35	
	NH ₄ C	55	
	lNaF	5	
	NiSO ₄ ·7H ₂ O	30	

Продолжение таблицы 1

1	2	3	4
4	CrCl ₃	150	$T = 20 - 30^{0}C$
	NiCl ₂	20	$i = 15 - 50 \text{ A/дм}^2$
	NH ₄ Cl	50	
	NaCl	10	
	NH ₂ CH ₂ COOH	100	
	H ₃ BO ₃	30	
5	Cr ₂ (SO ₄) ₃ ·6H ₂ O	150	$T = 18 - 25^{\circ}C$
	NiSO ₄ ·7H ₂ O	50	$i = 7 - 40 \text{ A/дm}^2$
	$Al_2(SO_4)_3 \cdot 18H_2O$	100	
	Na ₂ SO ₄	60	
	Na ₂ C ₂ O ₄	20	
	NaF	15	
	H_3BO_3	30	
6	$Cr_2(SO_4)_3 \cdot 6H_2O$	150	$T = 20 - 30^{\circ}C$
	NiSO ₄ ·7H ₂ O	10	$i = 6 - 60 \text{ A/дм}^2$
	$Al_2(SO_4)_3 \cdot 18H_2O$	100	
	Na ₂ SO ₄	60	
	NH ₂ CH ₂ COOH	75	
	NaF	20	

Наилучшие резельтаты по осаждению покрытия никель-хром показал электролит № 2. Кроме того было изучено влияние температуры и плотности тока в электролите № 2 (таблица 2).

Таблица 2 – Зависимость выхода потоку от параметров электролиза

Tuotingu 2 Subitelikitetib bbikogu itotoky ot hupumetpob stiekipotinsu				
Температура	Плотность тока	Выход металла		
		по току		
	2 A/дм ²	1,8%		
$20^{0}\mathrm{C}$	4 A/дм ²	4,3%		
	6 A/дм ²	6%		
	8 A/дм ²	4,8%		
	2 A/дм ²	13,68%		
$40^{0}\mathrm{C}$	4 A/дм ²	23,37%		
	6 A/дм ²	23,66%		
	8 A/дм ²	25,62%		
	2 A/дм ²	39,4%		
60^{0} C	4 A/дм ²	54,6%		
	6 А/дм ²	62,4%		
	8 A/дм ²	57,81%		

При повышении температуры выход по току увеличивался, а так же выход по току возрастал при повышении плотности тока от 2 до 8 А/дм². Однако на данном этапе покрытия получались достаточно хрупкие, что требует дальнейших исследований.