Студ. А.С. Ушак, магистрант Тхет Ко Ко, Науч. рук. доц. В.В. Жилинский (кафедра X,ТЭХПиМЭТ, БГТУ)

ЕМКОСТНЫЕ ХАРАКТЕРИСТИКИ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ ДЛЯ СУПЕРКОНДЕНСАТОРОВ

Суперконденсаторы представляют собой класс электрохимических устройств накопления энергии, объединяющих высокую энергоёмкость, характерную для аккумуляторов, с способностью к быстрому выделению мощности, присущей классическим конденсаторам. Для повышения ёмкостных характеристик применяют углеродные нанотрубки (УНТ) в качестве электродов суперконденсаторов.

Изучение свойств новых углеродных материалов является актуальной задачей для совершенствования суперконденсаторов, расширения областей применения и повышения доступности составляющих.

Целью работы было повышение емкостных характеристик УНТ путем их обработки в окислительных средах, таких как концентрированные растворы азотной кислоты (HNO $_3$) и смеси HNO $_3$ с серной кислотой (H $_2$ SO $_4$).

Установлено, что после химической функционализации УНТ смесью азотной и серной кислот происходит удаление аморфной фазы из материала, а на поверхности УНТ образуются кислородосодержащие группы -OH, =C=O и -O-C-O-. Наличие на поверхности УНТ таких функциональных групп повышает гидрофильность этих нанотрубок, что способствует увеличению их смачиваемости и равномерному распределению в водных или других полярных средах.

С ростом концентрации серной кислоты в смеси при прочих постоянных условиях уменьшается массовая доля углерода. Увеличение температуры химической очистки до 90°С уменьшает долю углерода. Более того, при возрастании объема смеси химической очистки и постоянстве массы пробы скорость растворения УНТ превосходит таковую для аморфного углерода.

С этих позиций объем должен быть минимален, а температуру активации целесообразно снизить до 70 °C. Начиная с соотношения серной и азотной кислоты ($20 \% H_2SO_4$ и $63 \% HNO_3$) из смеси удаляется не весь аморфный углерод и, возможно, крышки УНТ. Все это улучшает стабильность углеродного материала при циклировании в среде $20 \% H_2 SO_4$ (обратимость 0,93) и 6 M NaOH (обратимость 0,922).