AATOPUTMUSALNA U TPOTPAMMUPOBAHMUE
ALGORITHMIC AND PROGRAMMING

...

UDC 004.272.2

A. A. Prihozhy', O. N. Karasik?
'Belarusian National Technical University
2ISsoft Solutions (part of Coherent Solutions)

LOCALIZATION OF DATA REFERENCES IN BLOCKED HETEROGENEOUS
SHORTEST PATHS ALGORITHM FOR CLUSTERED GRAPHS

The increasing size of real systems, for which the problem of shortest paths search is solved, neces-
sitates the use of graph models that break the system into autonomous weakly interacting subsystems.
Such models include clustered graphs consisting of weakly connected dense subgraphs (clusters) of dif-
ferent sizes. Block algorithms are an efficient solution to the problem of the all-pairs shortest paths. Het-
erogeneous block algorithms distinguish four types of unequally sized blocks, operate on models that are
adequate to real objects, enable the use of architectural features of computing systems to be considered,
and reduce the time it takes to calculate the shortest paths in large graphs. In this paper, two new algo-
rithms for computing blocks of two types are developed. They are part of the heterogeneous block algo-
rithm, consider the properties of clustered graphs, and are built on the specifics of the organization of
computing architectures (in particular, multicore processors). An important property of these algorithms
is their ability to spatially and temporally localize data references, to reduce data transfer traffic in mul-
tilevel memory, and to reduce the number of iterations of loops executed. To develop the algorithms
formal methods were used to transform, optimize and prove correctness.

Keywords: shortest path, blocked algorithm, heterogeneous algorithm, multi-core system, throughput.

For citation: Prihozhy A. A., Karasik O. N. Localization of data references in blocked heterogeneous
shortest paths algorithm for clustered graphs, 2025, no. 2 (296), pp. 83-90.
DOI: 10.52065/2520-6141-2025-296-11.

A. A. llpuxoxmnii', O. H. Kapacuk?
'Benopycckuii HAMOHATEHBINA TEXHUYECKHiT YHUBEPCUTET
? HOCTpaHHOE TIPOU3BO/ICTBEHHOE YHUTapHOe npeanpustue «Mccodt Comormensy»

JJIOKAJIM3ALUS CCBLIOK HA TAHHBIE B BJIOYHOM I'ETEPOI'EHHOM AJI'OPUTME
INOUCKA KPATYAUIIUX TYTEU B KNIACTEPU30BAHHBIX I'PA®AX

YBenuueHne pa3MepoB peasbHbIX CUCTEM, JUIS KOTOPBIX PEIIAeTCs 3a/1aua [OUcKa KpaT4animx my-
TEH, MPUBOJUT K HEOOXOAMMOCTH UCIIOJIb30BaHUS TpaOBBIX MOJIesIel, pa30MBaIOIINX CUCTEMY Ha aBTO-
HOMHBIE cl1a00 B3aMMOJIEHCTBYIOIIME TTOACUCTEMBI. K TakiM MOJIesisiM OTHOCSITCS Tpadbl, COCTOSIIME U3
Pa3IMYHBIX 110 pa3Mepy CIa00CBI3aHHBIX IUIOTHBIX MOArpadoB (KiacTepoB). biouHble axropuT™Bel SIBISIOTCS
3¢ eKTUBHBIM pelieHneM 331Uk HaXxoXKIeHHs KpaTyaiimx myTed Ha Takux rpadax. ['ereporentsie 61104-
HbIE aJITOPUTMBI BBIJIEIISIOT YETHIPE THIIA OJIOKOB HEPABHOTO pa3Mepa, OIEPUPYIOT MOJEIISIMHU, aJIeKBaT-
HBIMH peajibHbIM 00bEKTaM, HO3BOJISIIOT YUUTHIBATh aPXUTEKTYPHBIE 0COOEHHOCTH BBIYHUCIIUTEIBHBIX CH-
CTEM, COKpAILIAIOT BPEeMsl BEIYMCIICHHS KpaTJallliX IyTeld MeXIy BCEMH Mapamu BeplH B rpadax 00iib-
moro pazmepa. B naHHo# cratbe pa3paboTaHbl ABa HOBBIX aJlrOPUTMa BBIYHUCIIEHHS OJI0KOB IBYX THIIOB,
SIBJISIIOIMXCSL YaCThIO FeTePOreHHOro anroputMa. OHM YYHUTHIBAIOT CBOMCTBA KIIACTEPU30BaHHBIX IpadoB
Y TIOCTPOEHBI C Y4ETOM OCOOEHHOCTEH OpraHU3alliK BBIYUCIMTEIBHBIX apXUTEKTYpP (B YaCTHOCTH, MHOTO-
SZICPHBIX MPOLIECCOPOB). BayKHBIM CBOHCTBOM aJITOPUTMOB SIBJISIETCSI CIIOCOOHOCTD K IIPOCTPAHCTBEHHO-
BPEMEHHOM JIOKAJIM3alMH CChIJIOK Ha JIaHHBIE, YMEHBIICHHIO TpaduKa IpH repeaade JaHHbIX B MHOTO-
YPOBHEBOH MaMSITH U COKPALICHHUIO YMCIIa UTEPAIMi BBIOIHAEMBIX UKIIOB. J{JIs CO31aHHs alrOpUTMOB,
UX NpeoOpa3oBaHusl, ONITUMHU3ALMH U JI0KA3aTEIbCTBA KOPPEKTHOCTH HUCTIOJIB30BaHbI ()OPMaIbHBIE METOIBL.

KaioueBbie ciioBa: Kparyaiiuuii myTh, OJ0UHBIN arOpUTM, Pa3HOPOIHBIH aIrOPUTM, MHOTOsIIIEp-
Hasl CUCTEMA, IPOU3BOAUTEIBHOCTD.

Tpyabl 6I'TY Cepus 3 Ne 2 2025

84 Localization of data references in blocked heterogeneous shortest paths algorithm for clustered graphs

s nurupoBanus: [puxoxuit A. A., Kapacuk O. H. Jlokanu3auus cCbUIOK Ha JaHHBIE B OJI0YHOM
TeTEepPOreHHOM allTOPUTME MMOMCKA KpaTdaWInX IMyTed B KiacTepu3oBaHHBIX rpadax // Tpynst BI'TY.
Cep. 3, ®uzuko-maremMaTnieckre Hayku u nHpopmaTuka. 2025. Ne 2 (296). C. 83-90 (Ha anri.).

DOI: 10.52065/2520-6141-2025-296-11.

Introduction. The classical Floyd-Warshall (£'W¥)
algorithm [1, 2] solves the all-pairs shortest paths
problem (APSP) that is fundamental in numerous
graph-based applications. The blocked FIW algo-
rithm (BF W) [3, 4] divides the graph into equally sized
subgraphs and homogeneously uses a single proce-
dure to compute all blocks of a distance matrix. The he-
terogeneous blocked HBFW algorithm [5] for dense
graphs considers four types of blocks of the same size
and uses a separate faster procedure for each type.
Works [6 — 10] improve BFW and HBFW for solv-
ing scaling problems, efficient processor utilization,
generating dataflow actor networks, reducing power
consumption, etc. Work [11] generalizes BFW and
HBFW for handling subgraphs and blocks of unequal
sizes. The homogeneous BFW and HBFW are mod-
ified in [12, 13] for finding APSP in clustered graphs.
Work [14] proposes the heterogeneous blocked short-
est paths algorithm HBSPCG for clustered large
graphs while considering bridge vertices and edges.
The contribution of this paper is the development of
two new sub-algorithms of HBSPCG for cross block
types that localize data references and improve the
utilization of processor memory [15].

Main part. Clustered graphs. A directed weighted
graph G=(V, E), |V] =N is called clustered if it is
partitioned to a set C of clusters, which are dense
subgraphs connected by a small number of edges.
The vertex set of cluster ¢ € C is denoted V(c) and
the number of vertices in c is denoted size(c). Graph
G is represented by a cost-adjacent matrix W[NXN].
The matrix of shortest path distances between verti-
ces is decomposed into the blocked matrix B[MXM]
where M = |C|. The graph is sparse if its edge den-
sity is low and approaches to 0. A subgraph is dense

In-out-bridge

Cluster 1

if its edge density is high and approaches to 1. Fig. 1
shows an example of directed clustered graph. A ver-
tex of the cluster is called an in-bridge (out-bridge)
if it has an incident bridge edge that is outgoing from
(incoming to) another cluster.

Heterogeneous blocked algorithm for clustered
graphs. In Work [14], we developed a new hetero-
geneous blocked Algorithm 1 for solving the APSP
problem on large, clustered graphs while considering
bridge vertices and bridge edges, unequally sized
blocks, separate computation procedures for each
block type. Four types of blocks (diagonal DO, ver-
tical cross C1, horizontal cross C2 and peripheral P3)
are computed with separate sub-algorithms DOCG,
C1CG, C2CG and P3CG. Algorithm DOCG is opti-
mized by localizing data references to the block el-
ements to achieve higher performance, and algorithms
C1CG, C2CG and P3CG are optimized to reduce
the number of loop iterations due to the usage of in-
put or output bridge vertices instead of all bridge ver-
tices of the clusters.

Algorithm 1: Heterogeneous blocked APSP algorithm
for clustered graphs (HBSPCG)

B[MXM] < W[NxN]
form«1...Mdo
DOCG(B, m) /I DO
force {l... M} and v#mdo
C1CG(C, B, ¢, m) /I C1
C2CG(C, B, m, ¢) /1 C2

forc,ee {1 ... M} and c #m and e #m do
P3CG(C, B, c,m, e) /I P3
return B

Cluster 3

Fig. 1. Example of a clustered graph

Tpyabl BITY Cepus 3 Ne 2 2025

A. A. Prihozhy, O. N. Karasik

85

Computation of diagonal blocks. Algorithm 2 that
is proposed in [14] is an advanced alternative for the
classical F algorithm. Its input is the current state
B[m]° of the diagonal block whose elements are con-
sidered as edge weights. Its output is the matrix of
the shortest path distances between vertices of clus-
ter m. Due to better loop iteration schemes and assign-
ment statement grouping, DOCG outperforms FW in
terms of processor hierarchical memory efficiency.

Algorithm 2: Computation of the diagonal square
block B[m] (DOCGE)

B[m] < B[m]® S« size[m]
fork«2,...,S5do
forije {1,...,.k—1}do
B[m]ij - min (B[m]ij, B[m]ix-1 + B[m]x-1,)
B[m]ix - min (B[m]ix, B[m]ij + B[m];x)
B[m]j < min (B[m]x, B[m]xi + B[m]i;)
forije {1,...,5—1}do
B[m]ij < min (B[m]ij, B[m]is + B[m]s;)
return B[m]

Computation of vertical cross blocks. In [14], a ver-
tical cross-block computation algorithm is proposed
that uses bridge-vertices of clusters but do not local-
ize data references. In this section, we develop an
alternative algorithm that localizes data references
and exploits bridge-vertices. Algorithm 3 (C1CGE)
considers two clusters ¢ and m and has two inputs:
a rectangular vertical cross block B[c, m] of type C1
and dimension size(c) X size(m), and a square diagonal
block B[m] of type DO and dimension size(m) X size(m).
It modifies the B[c, m] block through the B[m] block
and keeps B[m] unchanged. Fi, is the first input bridge
vertex in cluster m. The B[c, m] block describes the
shortest paths between vertices of cluster ¢ and ver-
tices of cluster m.

Algorithm 3: Computing vertical cross-block B[c, m]
by per-column extension upon bridges (C1CGE)

S « size(m)
for k « Fin+1to Sdo
for i < 1 to size(c) do
forj < 1 to kdo
if InBridge(k — 1) then
B[C, m]i,j < min (B[C, m]i,j,
Blc, mix1 + B[m]i1;) /] O
if InBridge(j) then
Blc, mlix < min (B[c, m]ix,
Blc, m);j + B[m];x) /I Ax
if InBridge(S) then
for i < 1 to size(c) do
forj< 1toS—1do
B[c, m)ij <~ min (B[c, m]ij,
Blc, m]is + B[m]s;) /I Ox
return B[c, m]

Unlike the classical blocked Ford-Warshall algo-
rithm assuming equal sizes of all blocks, algorithm
C1CGE supposes unequal hight and width of block
B[c, m]. Moreover, it uses the input bridge vertices
of cluster m to reduce the number of iterations to com-
putate the B[c, m] block. A predicate InBridge(v) takes
value true if v is an input bridge-vertex of cluster m
and takes value false otherwise. C/CGE is based on
the ideas of column-wise block expansion, computa-
tion resynchronization, and locality of data references.

It should be noted that the competitive sub-algo-
rithm C1US of algorithm HBAPSPUS [11] handles
rectangular cross blocks but does not use bridge ver-
tices of cluster m and therefore traverses all vertices
of m while computing the shortest paths from clus-
ter ¢ to cluster m. Another competitive sub-algo-
rithm proc_bridges of algorithm CBA [12] handles
rectangular cross blocks and uses all input and out-
put bridge vertices of cluster m, but it is homogene-
ous because of exploiting a single block calculation
procedure for all types of blocks and does not per-
form the resynchronization of computations and lo-
calization of data references.

Theorem 1. Upon termination, Algorithm 3 (C1CGE)
correctly computes the vertical cross-block B[c, m]
through the diagonal block B[m].

Proof. The C1CGE algorithm starts with a one-ver-
tex graph and one-column block B[c, m]' of dimension
size(c) % 1 and then iteratively adds one column £ to the
block B[c, m]*! to obtain the block B[c, m]* of dimen-
sion size(c) % k. To obtain the algorithm, the procedure
shown in Fig. 2 is used. The initial state of the block
B[c, m] of dimension size(c) X size(m) is denoted B[c, m]°.

1 7 1ok
i
I
I
I
I

. Blc, m]=!

br:'gp'ge

size(m)

bridge”™

Fig. 2. Adding column £ to block B[c, m] in C1CG
(aij denotes an element of block B[c, m], and bjx denotes
an element of block B[m])

Tpyabl 6I'TY Cepus 3 Ne 2 2025

86 Localization of data references in blocked heterogeneous shortest paths algorithm for clustered graphs

The C1CGE algorithm uses two operations Ax and
O for computing the block. Operation Ay computes
using (1) the column k of B[c, m]* through the block
B[c, m]*" and the column & of block B[m]:

Ble,m]; "
Ble,m];”" + B[m],

k—1; vertex j is an input

Ble,m]}" = min{

fori=1...size(c),j=1...
bridge of cluster m.

Operation O recalculates the block B[c, m]<" to
block B[c, m]* through column k using (2):

Ble,m]”!

Blc,m]; = mi 2
[c,m]; mm[B[c,m]fk+B[m],J 2

fori=1...size(c),j=1 ... k—1; vertex k is an in-
put bridge of cluster m.
The behavior of C1CGE can be described as the

following sequence of operation pairs (A, Ok):
(A1, ©1), (A2, B2) ... (A, ©1) ... (An, On). (3)

The sequence (3) is interpreted with Algorithm 4.
Operation Ay is executed when the vertex with number
j is an input bridge of cluster m, andoperation © is exe-
cuted when the vertex £ is an input bridge. The two nests
of loops along i and j cannot be merged into one nest
because the operations Ax and O cannot be executed
simultaneously due to the mutual data dependences.

Algorithm 4: Recurrent procedure for computing
vertical cross-block upon bridges (C1CGE)

S « size(m)
for k < Fi, + 1 to S do
for i < 1 to size(c) do
forj<— 1ltok—1do
if InBridge(j) then
B[C, m]i,k < min (B[C, m]i,k, /1 Ay
Blc, m]ij + Blm];x)
for i < 1 to size(c) do
forj<— 1tok—1do
if InBridge(k) then
B[c, m);j <~ min (B[c, m]ij,
Blc, mlix + Blm]x;)

11 O

return B[c, m]

We resynchronize the computation process by
rewriting sequence (3) to sequence (4).

A1, (B1, A2), (02, A3) ... (O, Ay) ...
(On-1, AN), On. 4

Fig. 3 illustrates the resynchronized process and
Algorithm 5 realizes it. Its two nests of loops along
i and j perform operations ©Ok.; and Ax. They can be
merged into one loop nest, resulting in Algorithm 3.
The theorem is proved.

Tpyabl BITY Cepus 3 Ne 2 2025

1 k size(m)

ID[C]! I Ble,ml]

i
: —--—-

1] _ size(m)

bridge

&
g,

size(m)

.--Erm’gé”

Fig. 3. Resynchronized process of adding a column

Algorithm 5: Computing vertical cross-block B[c, m]
by per-column extension upon bridges (C1CGE)

S « size(m)
for k « Fin+1to Sdo
for i < 1 to size(c) do
forj < 1 to kdo
if InBridge(k — 1) then
B[C, m]i,j < min (B[C, m]i,j,
B[C, m]i,k_1 +B[m]k_1,j) /] O
for i < 1 to size(c) do
forj <« 1tokdo
if InBridge(j) then
Blc, mix < min (B[c, m]iy,
Blc, m];; + B[m]ix) Il Ay
if /nBridge(S) then
for i < 1 to size(c) do
forj<— 1toS—1do
B[c, m)ij < min (B[c, m]ij,
Blc, mlis + B[m]s;) // Oy
return B[c, m]

There is no need to perform the computation of the
vertical cross-block B[c, m] with Algorithm 3 if cluster
m has no input bridge vertices. If the input bridge ver-
tices are placed at the end of the cluster m vertex list,
the number of iterations of the loop along k is reduced
to the number of these vertices. In Algorithms 3 - 5,
any of the InBridge(-) conditions can be omitted while
preserving the correctness of the result.

Due to the iteration schemes of the loops along j,
the number of conditional assignments is reduced up
to 2 and the data references are localized in C1CGE
compared to the FI¥ algorithm. The loops iteratively
process the B[c, m] block of growing size size(c) x 1

A. A. Prihozhy, O. N. Karasik

87

to size(c) x S, so the references to the block elements
are localized. Traversing only the input bridge-ver-
tices of the m cluster further decreases the number
of executions in O.; and Ax.

Computation of horizontal cross-blocks. Algo-
rithm C2CG calculates the shortest paths connecting
the vertices of cluster m to the vertices of cluster ¢ and
modifies the horizontal cross-block B[m, c] of dimen-
sion size(m) X size(c) through the diagonal block B[m].
The C2CG algorithm assumes the sizes of blocks be
unequal and exploits bridge vertices of clusters to
speed up the computation of the shortest paths. Algo-
rithm 6 is based on the idea of row-by-row block ex-
pansion and resynchronization of computations.

Theorem 2. Upon termination, Algorithm 6
(C2CGE) correctly computes the horizontal cross-
block B[m, c] through the diagonal block B[m].

Algorithm 6: Calculating horizontal cross-block by
row-per-row extension upon bridges (C2CGE)

S « size(m)
for k < Fo + 1to S do
fori < 1tokdo
for j < 1 to size(c) do
if OutBridge(k — 1) then
B[m, C]i,j < min (B[m, C]i,j,
B[m]ij1 + B[m, c]k-1,)
if OutBridge(i) then
B[m, C]k,j < min (B[m, C]k,j,
B[m]xi + Blm, cli;)
if OutBridge(S) then
fori—1toS—1do
for j < 1 to size(c) do
B[m, C]i,j <« min (B[m, C]i,j,
B[m]is + Blc, m]s;)

11 Q1

1/ Ax

AN
return B[m, c]

Proof. In Algorithm 6, Foy is the first output
bridge vertex in cluster m. The algorithm iteratively
adds one row to the B[m, c] block starting from a
one-vertex graph and one-row block B[m, c]' of di-
mension 1 X size(c). It computes the B[m, c]* block

1 J sizelc)
) ====s=s===g a;'t=—,
b
N
b .
brjzdge
4
/
k|-———————-- 1 @ T
B[m,.’:]O
size(m)

size(m)

of dimension & x size(c) from the B[m, c¢]*"! block of
dimension (k — 1) X size(c). To obtain the algorithm,
the procedure shown in Fig. 4 is used. The initial block
state of dimension size(m) X size(c) is denoted B[m, c]’.

The C2CGE algorithm uses two operations Ax
and Qy for recomputing the block. Operation Ag
computes the row k of block B[m, c]* through the
block B[m, c]*' and the row k of block B[m]:

Blm,cl;;

Blm,c]i' = mi 5
[m,c]kj mln[B[m]ki +B[m,c]f;lJ (5)

fori=1...k—1,j=1...size(c); vertex i is an output
bridge of cluster m. Operation Qi recalculates the
elements of block B[m, c]*' through row k of the
block using (6):

B[m,c]{f_l

B k _) ij 6
[m,C],J mlnLB[m]ik +B[m’c]ll;J "

fori=1..k—1,7=1 ... size(c); vertex k is an
output bridge of cluster m. The behavior of C2CGE
can be described with sequence (7) of pairs (Ax, Q).

(A1, Q1) (As, D) ... (A, Q) ... (Ax, Q). (7)

Algorithm 7 realizes sequence (7).

Algorithm 7: Recurrent procedure for computing
horizontal cross-block upon bridges

for k « Fou + 1 to size(m) do
fori— 1tok—1do
for j < 1 to size(c) do
if OutBridge(i) then
B[m, C]k,j < min (B[m, C]k,j,
B[m]x + B[m, cli;)
fori— 1tok—1do
for j < 1 to size(c) do
if OutBridge(k) then
B[m, C]i,j < min (B[m, C]i,j,
B[m]ix + B[m, cli;)

/I Ax

11 Qx

return B[m, c]

size(m)

"~ bridge *~

Fig. 4. Adding row k to block B[m, c] in C2CG
(a;; denotes an element of block B[m, c], and bjx denotes an element of block B[m])

Tpyabl 6I'TY Cepus 3 Ne 2 2025

88 Localization of data references in blocked heterogeneous shortest paths algorithm for clustered graphs

size(c)

k-1 size(im)

size(m)

size(m)

ridee

Fig. 5. Resynchronized process of adding a row

It is impossible to merge the Ax and Qk opera-
tions in the algorithm, therefore, we resynchronize
the operations to obtain sequence (8).

A (@1, A), (@2, A3) .. (@i, A ..
(Qx1, AN), Q. ®)

The new computation process shown in Fig. 5 is
realized by Algorithm 8. Two nests of loops along i
and j perform operations ., and Ax. After merging
the nests, Algorithm 8 is transformed to Algorithm 6.
The theorem is proved.

Algorithm 8: Calculating horizontal cross-block by
row-per-row extension upon bridges (C2CGE)

S « size(m)
for k < Fou+ 1 to Sdo
fori < 1to kdo
for j < 1 to size(c) do
if OutBridge(k — 1) then
B[m, clij < min (B[m, clij,
B[m]ix1 + B[m, c]k1,)
fori < 1tokdo
for j < 1 to size(c) do
if OutBridge(i) then
B[m, C]k,j < min (B[m, C]k,j,
B[m]x; + B[m, clij) /1 Ax
if OutBridge(S) then
fori<1toS—1do
for j < 1 to size(c) do
B[m, C]i,j <« min (B[m, C]i,j,
B[m]is + Blc, m]s;)

11 Q1

/1 Qn
return B[m, c]

Algorithm 6 does not affect the horizontal cross-
block B[m, c] if cluster m has no output bridges.
If the output bridge vertices are placed at the end of
cluster m vertex list, the number of iterations of the
loop along k is reduced to the number of these

Tpyabl BITY Cepus 3 Ne 2 2025

vertices. Due to the iteration schemes of the loops
along 7, the number of the conditional assignments
is reduced up to 2 in C2CGE compared to the FIW
algorithm. The loops iteratively process the B[m, c]
block of growing size 1 x size(c) to S x size(c), so
the references to the block elements are localized.
Traversing only the output bridge vertices of the m
cluster reduces further the number of executions of
Q.1 and Ax. Any of the OutBridge(-) conditions can
be omitted while preserving the correctness of the
result in Algorithms 6 — 8.

Computation of peripheral blocks. Algorithm 9 [14]
computes a rectangular block BJc, e] over two rectangular
blocks B[c, m] and B[m, e]. The vertex set BridgesBest(m)
is equal to Bridgesin(m) if |BridgesIn(m)| < |Brid-
gesOut(m)| and is equal to BridgesOut(m) otherwise.
Function Index(v, m) returns the vertex v number in
cluster m. P3CG speeds up the computation against
FW depending on the size of the BridgesBest(m) set
compared to size(m).

Algorithm 9: Calculation of peripheral rectangular
block upon bridges and unequal block-sizes (P3CG)

for i < 1 to size(c) do
for v € BridgesBest(m) and k < Index(v, m) do
for j < 1 to size(e) do
Blc, eli,j«min(B]c, eli,,B[c, m]i tB[m, el
return B[c, ¢]

Conclusion. We have proposed new sub-algo-
rithms C/CGE and C2CGE for computing vertical
and horizontal cross-blocks of the heterogeneous
all-pairs shortest path algorithm, which speed up com-
putations and improve the locality of references to
blocked data and hence aim to improve the opera-
tional efficiency of multicore processor hierarchical
memory while solving the all-pairs shortest paths
problem on large clustered weighted directed and
undirected graphs.

A. A. Prihozhy, O. N. Karasik 89

References

1. Floyd R. W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5 (6), p. 345.

2. Warshall S. A theorem on Boolean matrices. Journal of the ACM, 1962, no. 9 (1), p. 11-12.

3. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Jour-
nal of Experimental Algorithmics (JEA), 2003, vol. 8, pp. 857-874.

4. Park J. S., Penner M., and Prasanna V. K. Optimizing graph algorithms for improved cache perfor-
mance. [EEE Trans. on Parallel and Distributed Systems, 2004, no. 15 (9), pp. 769-782.

5. Prihozhy A. A., Karasik O. N. Advanced heterogeneous block-parallel all-pairs shortest path algo-
rithm. Trudy BGTU [Proceedings of BSTU], issue 3, Physics and Mathematics. Informatics, 2023, no. 1
(266), pp. 77-83.

6. Sangeetha D. P, Sekar S, Parvathy PR., GaneshBabu SRTR and Muthulekshmi M. Optimizing Short-
est Paths in Big Data Using the Floyd-Warshall Algorithm, International Conference on Intelligent Control,
Computing and Communications (IC3). Mathura, India, 2025, pp. 382-387.

7. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative cache on all-pairs shortest
paths algorithms. System analysis and applied information science, 2019, no. 4, pp. 10-18.

8. Kumar S., Karthik S., Srilakshmi S. and Dharun Viginesh P. Performance Analysis of Floyd-Warshall
Algorithm: Sequential and Parallel Execution Using Intel oneAPI. 8t International Conference on Elec-
tronics, Communication and Aerospace Technology (ICECA). Coimbatore, India, 2024, pp. 205-211.

9. Prihozhy A. A. Generation of shortest path search dataflow networks of actors for parallel multicore
implementation. Informatics, 2023, vol. 20, no. 2, pp. 65-84.

10. Prihozhy A. A., Karasik O. N. Influence of shortest path algorithms on energy consumption of multi-
core processors. System analysis and applied information science, 2023, no. 2, pp. 4-12.

11. Prihozhy A. A., Karasik O. N. New blocked all-pairs shortest paths algorithms operating on blocks
of unequal sizes. System analysis and applied information science, 2023, no. 4, pp. 4—13.

12. Karasik O. N., Prihozhy A. A. Blocked algorithm of finding all-pairs shortest paths in graphs divided
into weakly connected clusters. System analysis and applied information science, 2024, no. 2, pp. 4-10.

13. Prihozhy A. A., Karasik O. N. Blocked algorithm of shortest paths search in sparse graphs partitioned
into unequally sized clusters. Big Data and Advanced Analytics X. Minsk, 2024, pp. 262-271.

14. Prihozhy A. A., Karasik O. N. Heterogeneous blocked all-pairs shortest paths algorithm for clustered
weighted graphs. Journal of the Belarusian State University. Mathematics and Informatics, 2025, no. 3 (Pa-
per forthcoming).

15. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms. System analysis and applied information science, 2021, no. 3, pp. 40-50.

Cnucok JuTepaTrypsl

1. Floyd R. W. Algorithm 97: Shortest path // Communications of the ACM. 1962. No. 5 (6). P. 345.

2. Warshall S. A theorem on Boolean matrices // Journal of the ACM. 1962. No. 9 (1). P. 11-12.

3. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm // Jour-
nal of Experimental Algorithmics (JEA). 2003. Vol. 8. P. 857-874.

4. Park J. S., Penner M., and Prasanna V. K. Optimizing graph algorithms for improved cache perfor-
mance // IEEE Trans. on Parallel and Distributed Systems. 2004. No. 15 (9). P. 769-782.

5. Prihozhy A. A., Karasik O. N. Advanced heterogeneous block-parallel all-pairs shortest path algo
rithm // Tpyasr BI'TY. Cep. 3, ®usnko-marematndeckue Hayku u nadopmatuka. 2023. Ne 1 (266).
C. 77-83.

6. Sangeetha D. P, Sekar S, Parvathy PR., GaneshBabu SRTR and Muthulekshmi M. Optimizing Short-
est Paths in Big Data Using the Floyd-Warshall Algorithm // International Conference on Intelligent Control,
Computing and Communications (IC3). Mathura, India. 2025. P. 382-387.

7. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative cache on all-pairs shortest
paths algorithms // System analysis and applied information science. 2019. No. 4. P. 10-18.

8. Performance Analysis of Floyd-Warshall Algorithm: Sequential and Parallel Execution Using Intel
oneAPI / S. Kumar [et al.] / 8th International Conference on Electronics, Communication and Aerospace
Technology (ICECA). Coimbatore, India. 2024. P. 205-211.

9. Prihozhy A. A. Generation of shortest path search dataflow networks of actors for parallel multicore
implementation // Informatics. 2023. Vol. 20, no. 2. P. 65-84.

10. Prihozhy A. A., Karasik O. N. Influence of shortest path algorithms on energy consumption of multi-
core processors // System analysis and applied information science. 2023. No. 2. P. 4-12.

11. Prihozhy A. A., Karasik O. N. New blocked all-pairs shortest paths algorithms operating on blocks
of unequal sizes // System analysis and applied information science. 2023. No. 4. P. 4-13.

Tpyabl 6I'TY Cepus 3 Ne 2 2025

90 Localization of data references in blocked heterogeneous shortest paths algorithm for clustered graphs

12. Karasik O. N., Prihozhy A. A. Blocked algorithm of finding all-pairs shortest paths in graphs divided
into weakly connected clusters // System analysis and applied information science. 2024. No. 2. P. 4-10.

13. Prihozhy A. A., Karasik O. N. Blocked algorithm of shortest paths search in sparse graphs partitioned
into unequally sized clusters // Big Data and Advanced Analytics X. Minsk, 2024. P. 262-271.

14. Prihozhy A. A., Karasik O. N. Heterogeneous blocked all-pairs shortest paths algorithm for clustered
weighted graphs // Journal of the Belarusian State University. Mathematics and Informatics. 2025. No. 3
(Paper forthcoming).

15. Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms // System analysis and applied information science. 2021. No. 3. P. 40-50.

Information about the authors

Prihozhy Anatoly Alexievich — DSc (Engineering), Professor, Professor, Department of Computer and
System Software. Belarusian National Technical University (65 Nezavisimosti Ave., 220013, Minsk, Re-
public of Belarus). E-mail: prihozhy@bntu.by

Karasik Oleg Nikolaevich — PhD (Engineering), Tech Lead. ISsoft Solutions (5 Chapaeva str., 220034,
Minsk, Republic of Belarus). E-mail: karasik.oleg.nikolaevich@gmail.com

HNndopmanus o6 aBTopax

[puxoxuii AHaToIMil AJIeKCeeBHY — JIOKTOP TEXHHUUYECKUX HayK, mpodeccop, mpodeccop Kadeaps
MPOrpaMMHOro obecneueHus HHPOPMAIIMOHHBIX CUCTEM U TEXHOJOTHA. benopycckuil HalMoHaIbHBIH TeX-
HUuYecKkui yauBepcutet (p-T HezaBucumoctn 65, 220013, r. Munck, Pecniyonuka Benapycs). E-mail: pri-
hozhy@bntu.by

Kapacuk Osier HukonaeBu4 — KaHAMIaT TEXHUYECKUX HAyK, BeXyLuil nHxkeHep. IHocTpaHHOE mpo-
n3BOJCTBeHHOE yHHUTapHOoe npennpusitie «HMccopt Comromensy. (ya. Yamaesa 5, 220034, r. Munck, Pec-
ny6nuka Benapycs). E-mail: karasik.oleg.nikolaevich@gmail.com

Received 15.04.2025

