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The increasing size of real systems, for which the problem of shortest paths search is solved, neces-

sitates the use of graph models that break the system into autonomous weakly interacting subsystems. 
Such models include clustered graphs consisting of weakly connected dense subgraphs (clusters) of dif-
ferent sizes. Block algorithms are an efficient solution to the problem of the all-pairs shortest paths. Het-
erogeneous block algorithms distinguish four types of unequally sized blocks, operate on models that are 
adequate to real objects, enable the use of architectural features of computing systems to be considered, 
and reduce the time it takes to calculate the shortest paths in large graphs. In this paper, two new algo-
rithms for computing blocks of two types are developed. They are part of the heterogeneous block algo-
rithm, consider the properties of clustered graphs, and are built on the specifics of the organization of 
computing architectures (in particular, multicore processors). An important property of these algorithms 
is their ability to spatially and temporally localize data references, to reduce data transfer traffic in mul-
tilevel memory, and to reduce the number of iterations of loops executed. To develop the algorithms 
formal methods were used to transform, optimize and prove correctness. 
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ЛОКАЛИЗАЦИЯ ССЫЛОК НА ДАННЫЕ В БЛОЧНОМ ГЕТЕРОГЕННОМ АЛГОРИТМЕ  
ПОИСКА КРАТЧАЙШИХ ПУТЕЙ В КЛАСТЕРИЗОВАННЫХ ГРАФАХ 

Увеличение размеров реальных систем, для которых решается задача поиска кратчайших пу-
тей, приводит к необходимости использования графовых моделей, разбивающих систему на авто-
номные слабо взаимодействующие подсистемы. К таким моделям относятся графы, состоящие из 
различных по размеру слабосвязанных плотных подграфов (кластеров). Блочные алгоритмы являются 
эффективным решением задачи нахождения кратчайших путей на таких графах. Гетерогенные блоч-
ные алгоритмы выделяют четыре типа блоков неравного размера, оперируют моделями, адекват-
ными реальным объектам, позволяют учитывать архитектурные особенности вычислительных си-
стем, сокращают время вычисления кратчайших путей между всеми парами вершин в графах боль-
шого размера. В данной статье разработаны два новых алгоритма вычисления блоков двух типов, 
являющихся частью гетерогенного алгоритма. Они учитывают свойства кластеризованных графов 
и построены с учетом особенностей организации вычислительных архитектур (в частности, много-
ядерных процессоров). Важным свойством алгоритмов является способность к пространственно-
временной локализации ссылок на данные, уменьшению трафика при передаче данных в много-
уровневой памяти и сокращению числа итераций выполняемых циклов. Для создания алгоритмов, 
их преобразования, оптимизации и доказательства корректности использованы формальные методы. 

Ключевые слова: кратчайший путь, блочный алгоритм, разнородный алгоритм, многоядер-
ная система, производительность. 
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Introduction. The classical Floyd-Warshall (FW) 
algorithm [1, 2] solves the all-pairs shortest paths 
problem (APSP) that is fundamental in numerous 
graph-based applications. The blocked FW algo-
rithm (BFW) [3, 4] divides the graph into equally sized 
subgraphs and homogeneously uses a single proce-
dure to compute all blocks of a distance matrix. The he-
terogeneous blocked HBFW algorithm [5] for dense 
graphs considers four types of blocks of the same size 
and uses a separate faster procedure for each type. 
Works [6 – 10] improve BFW and HBFW for solv-
ing scaling problems, efficient processor utilization, 
generating dataflow actor networks, reducing power 
consumption, etc. Work [11] generalizes BFW and 
HBFW for handling subgraphs and blocks of unequal 
sizes. The homogeneous BFW and HBFW are mod-
ified in [12, 13] for finding APSP in clustered graphs. 
Work [14] proposes the heterogeneous blocked short-
est paths algorithm HBSPCG for clustered large 
graphs while considering bridge vertices and edges. 
The contribution of this paper is the development of 
two new sub-algorithms of HBSPCG for cross block 
types that localize data references and improve the 
utilization of processor memory [15]. 

Main part. Clustered graphs. A directed weighted 
graph G = (V, E), |V| = N is called clustered if it is 
partitioned to a set C of clusters, which are dense 
subgraphs connected by a small number of edges. 
The vertex set of cluster c ∈ C is denoted V(c) and 
the number of vertices in c is denoted size(c). Graph 
G is represented by a cost-adjacent matrix W[N×N]. 
The matrix of shortest path distances between verti-
ces is decomposed into the blocked matrix B[M×M] 
where M = |C|. The graph is sparse if its edge den-
sity is low and approaches to 0. A subgraph is dense 

if its edge density is high and approaches to 1. Fig. 1 
shows an example of directed clustered graph. A ver-
tex of the cluster is called an in-bridge (out-bridge) 
if it has an incident bridge edge that is outgoing from 
(incoming to) another cluster. 

Heterogeneous blocked algorithm for clustered 
graphs. In Work [14], we developed a new hetero-
geneous blocked Algorithm 1 for solving the APSP 
problem on large, clustered graphs while considering 
bridge vertices and bridge edges, unequally sized 
blocks, separate computation procedures for each 
block type. Four types of blocks (diagonal D0, ver-
tical cross C1, horizontal cross C2 and peripheral P3) 
are computed with separate sub-algorithms D0CG, 
C1CG, C2CG and P3CG. Algorithm D0CG is opti-
mized by localizing data references to the block el-
ements to achieve higher performance, and algorithms 
C1CG, C2CG and P3CG are optimized to reduce 
the number of loop iterations due to the usage of in-
put or output bridge vertices instead of all bridge ver-
tices of the clusters. 

 

 
Fig. 1. Example of a clustered graph  

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 1: Heterogeneous blocked APSP algorithm 
for clustered graphs (HBSPCG) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

B[M×M] ← W[N×N] 
for m ← 1 … M do  

D0CG(B, m)                                          // D0 
for c ∈ {1 … M} and v ≠ m do 

C1CG(C, B, c, m)                                 // C1 
C2CG(C, B, m, c)                                 // C2 

for c, e ∈ {1 … M} and c ≠ m and e ≠ m do 
P3CG(C, B, c, m, e)                             // P3 

return B 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Computation of diagonal blocks. Algorithm 2 that 
is proposed in [14] is an advanced alternative for the 
classical FW algorithm. Its input is the current state 
B[m]0 of the diagonal block whose elements are con-
sidered as edge weights. Its output is the matrix of 
the shortest path distances between vertices of clus-
ter m. Due to better loop iteration schemes and assign-
ment statement grouping, D0CG outperforms FW in 
terms of processor hierarchical memory efficiency. 

 
 
Computation of vertical cross blocks. In [14], a ver-

tical cross-block computation algorithm is proposed 
that uses bridge-vertices of clusters but do not local-
ize data references. In this section, we develop an 
alternative algorithm that localizes data references 
and exploits bridge-vertices. Algorithm 3 (C1CGE) 
considers two clusters c and m and has two inputs: 
a rectangular vertical cross block B[c, m] of type C1 
and dimension size(c) × size(m), and a square diagonal 
block B[m] of type D0 and dimension size(m) × size(m). 
It modifies the B[c, m] block through the B[m] block 
and keeps B[m] unchanged. Fin is the first input bridge 
vertex in cluster m. The B[c, m] block describes the 
shortest paths between vertices of cluster c and ver-
tices of cluster m. 

 

Unlike the classical blocked Ford-Warshall algo-
rithm assuming equal sizes of all blocks, algorithm 
C1CGE supposes unequal hight and width of block 
B[c, m]. Moreover, it uses the input bridge vertices 
of cluster m to reduce the number of iterations to com-
putate the B[c, m] block. A predicate InBridge(v) takes 
value true if v is an input bridge-vertex of cluster m 
and takes value false otherwise. C1CGE is based on 
the ideas of column-wise block expansion, computa-
tion resynchronization, and locality of data references. 

It should be noted that the competitive sub-algo-
rithm C1US of algorithm HBAPSPUS [11] handles 
rectangular cross blocks but does not use bridge ver-
tices of cluster m and therefore traverses all vertices 
of m while computing the shortest paths from clus-
ter c to cluster m. Another competitive sub-algo-
rithm proc_bridges of algorithm CBA [12] handles 
rectangular cross blocks and uses all input and out-
put bridge vertices of cluster m, but it is homogene-
ous because of exploiting a single block calculation 
procedure for all types of blocks and does not per-
form the resynchronization of computations and lo-
calization of data references. 

Theorem 1. Upon termination, Algorithm 3 (C1CGE) 
correctly computes the vertical cross-block B[c, m] 
through the diagonal block B[m]. 

Proof. The C1CGE algorithm starts with a one-ver-
tex graph and one-column block B[c, m]1 of dimension 
size(c) × 1 and then iteratively adds one column k to the 
block B[c, m]k-1 to obtain the block B[c, m]k of dimen-
sion size(c) × k. To obtain the algorithm, the procedure 
shown in Fig. 2 is used. The initial state of the block 
B[c, m] of dimension size(c) × size(m) is denoted B[c, m]0.  

 

 
Fig. 2. Adding column k to block B[c, m] in C1CG  

(aij denotes an element of block B[c, m], and bjk denotes 
an element of block B[m]) 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 2: Computation of the diagonal square 
block B[m] (D0CGE) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

B[m] ← B[m]0     S ← size[m] 
for k ← 2, …, S do 

for i, j ∈ {1, …, k – 1} do 
B[m]i,j ← min (B[m]i,j, B[m]i,k-1 + B[m]k-1,j) 
B[m]i,k ← min (B[m]i,k, B[m]i,j + B[m]j,k) 
B[m]k,j ← min (B[m]k,j, B[m]k,i + B[m]i,j) 

for i, j ∈ {1, …, S – 1} do 
B[m]i,j ← min (B[m]i,j, B[m]i,S + B[m]S,j) 

return B[m] 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 3: Computing vertical cross-block B[c, m] 
by per-column extension upon bridges (C1CGE) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
S ← size(m) 
for k ← Fin + 1 to S do 

for i ← 1 to size(c) do 
for j ← 1 to k do 

if InBridge(k – 1) then  
B[c, m]i,j ← min (B[c, m]i,j,  

B[c, m]i,k-1 + B[m]k-1,j)    // Θk-1 
if InBridge(j) then  

B[c, m]i,k ← min (B[c, m]i,k,  
B[c, m]i,j + B[m]j,k)          // Δk 

if InBridge(S) then  
for i ← 1 to size(c) do 

for j ← 1 to S − 1 do 
B[c, m]i,j ← min (B[c, m]i,j,  

B[c, m]i,S + B[m]S,j)       // ΘN 
return B[c, m] 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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The C1CGE algorithm uses two operations Δk and 
Θk for computing the block. Operation Δk computes 
using (1) the column k of B[c, m]k through the block 
B[c, m]k-1 and the column k of block B[m]: 

 1
1

[ , ]
[ , ] min

[ , ] [ ]

j
ikj

ik k
ij jk

B c m
B c m

B c m B m
+

−

 
 =
 + 

 (1) 

for i = 1 … size(c), j = 1 … k – 1; vertex j is an input 
bridge of cluster m. 

Operation Θk recalculates the block B[c, m]k-1 to 
block B[c, m]k through column k using (2): 

 
1[ , ]

[ , ] min
[ , ] [ ]

k
ijk

ij k
ik kj

B c m
B c m

B c m B m

− 
 =
 + 

 (2) 

for i = 1 … size(c), j = 1 … k – 1; vertex k is an in-
put bridge of cluster m. 

The behavior of C1CGE can be described as the 
following sequence of operation pairs (Δk, Θk): 

 (Δ1, Θ1), (Δ2, Θ2) … (Δk, Θk) … (ΔN, ΘN). (3) 

The sequence (3) is interpreted with Algorithm 4. 
Operation Δk is executed when the vertex with number 
j is an input bridge of cluster m, andoperation Θk is exe-
cuted when the vertex k is an input bridge. The two nests 
of loops along i and j cannot be merged into one nest 
because the operations Δk and Θk cannot be executed 
simultaneously due to the mutual data dependences.  

 
 

We resynchronize the computation process by 
rewriting sequence (3) to sequence (4). 

Δ1, (Θ1, Δ2), (Θ2, Δ3) … (Θk-1, Δk) … 
 (ΘN-1, ΔN), ΘN. (4) 

Fig. 3 illustrates the resynchronized process and 
Algorithm 5 realizes it. Its two nests of loops along 
i and j perform operations Θk-1 and Δk. They can be 
merged into one loop nest, resulting in Algorithm 3. 
The theorem is proved. 

 
Fig. 3. Resynchronized process of adding a column 

 
 
There is no need to perform the computation of the 

vertical cross-block B[c, m] with Algorithm 3 if cluster 
m has no input bridge vertices. If the input bridge ver-
tices are placed at the end of the cluster m vertex list, 
the number of iterations of the loop along k is reduced 
to the number of these vertices. In Algorithms 3 - 5, 
any of the InBridge(⋅) conditions can be omitted while 
preserving the correctness of the result.  

Due to the iteration schemes of the loops along j, 
the number of conditional assignments is reduced up 
to 2 and the data references are localized in C1CGE 
compared to the FW algorithm. The loops iteratively 
process the B[c, m] block of growing size size(c) × 1  

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 4: Recurrent procedure for computing 
vertical cross-block upon bridges (C1CGE) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
S ← size(m) 
for k ← Fin + 1 to S do 

for i ← 1 to size(c) do 
for j ← 1 to k – 1 do 

if InBridge(j) then  
B[c, m]i,k ← min (B[c, m]i,k,             // Δk 

B[c, m]i,j + B[m]j,k) 
for i ← 1 to size(c) do 

for j ← 1 to k – 1 do 
if InBridge(k) then  

B[c, m]i,j ← min (B[c, m]i,j,              // Θk 
B[c, m]i,k + B[m]k,j) 

return B[c, m] 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 5: Computing vertical cross-block B[c, m] 
by per-column extension upon bridges (C1CGE) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
S ← size(m) 
for k ← Fin + 1 to S do 

for i ← 1 to size(c) do 
for j ← 1 to k do 

if InBridge(k – 1) then  
B[c, m]i,j ← min (B[c, m]i,j,  

B[c, m]i,k-1 + B[m]k-1,j)    // Θk-1 
for i ← 1 to size(c) do 

for j ← 1 to k do 
if InBridge(j) then  

B[c, m]i,k ← min (B[c, m]i,k,  
B[c, m]i,j + B[m]j,k)          // Δk 

if InBridge(S) then  
for i ← 1 to size(c) do 

for j ← 1 to S − 1 do 
B[c, m]i,j ← min (B[c, m]i,j,  

B[c, m]i,S + B[m]S,j)       // ΘN 
return B[c, m] 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
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to size(c) × S, so the references to the block elements 
are localized. Traversing only the input bridge-ver-
tices of the m cluster further decreases the number 
of executions in Θk-1 and Δk.  

Computation of horizontal cross-blocks. Algo-
rithm C2CG calculates the shortest paths connecting 
the vertices of cluster m to the vertices of cluster c and 
modifies the horizontal cross-block B[m, c] of dimen-
sion size(m) × size(c) through the diagonal block B[m]. 
The C2CG algorithm assumes the sizes of blocks be 
unequal and exploits bridge vertices of clusters to 
speed up the computation of the shortest paths. Algo-
rithm 6 is based on the idea of row-by-row block ex-
pansion and resynchronization of computations. 

Theorem 2. Upon termination, Algorithm 6 
(C2CGE) correctly computes the horizontal cross-
block B[m, c] through the diagonal block B[m]. 

 
 
Proof. In Algorithm 6, Fout is the first output 

bridge vertex in cluster m. The algorithm iteratively 
adds one row to the B[m, c] block starting from a 
one-vertex graph and one-row block B[m, c]1 of di-
mension 1 × size(c). It computes the B[m, c]k block 

of dimension k × size(c) from the B[m, c]k-1 block of 
dimension (k – 1) × size(c). To obtain the algorithm, 
the procedure shown in Fig. 4 is used. The initial block 
state of dimension size(m) × size(c) is denoted B[m, c]0. 

The C2CGE algorithm uses two operations Λk 
and Ωk for recomputing the block. Operation Λk 
computes the row k of block B[m, c]k through the 
block B[m, c]k-1 and the row k of block B[m]: 

 1
1

[ , ]
[ , ] min

[ ] [ , ]

i
kji

kj k
ki ij

B m c
B m c

B m B m c
+

−

 
 =
 + 

 (5) 

for i = 1 … k – 1, j = 1…size(c); vertex i is an output 
bridge of cluster m. Operation Ωk recalculates the 
elements of block B[m, c]k-1 through row k of the 
block using (6): 

 
1[ , ]

[ , ] min
[ ] [ , ]

k
ijk

ij k
ik kj

B m c
B m c

B m B m c

− 
 =
 + 

 (6) 

for i = 1 … k – 1, j = 1 … size(c); vertex k is an 
output bridge of cluster m. The behavior of C2CGE 
can be described with sequence (7) of pairs (Λk, Ωk). 

 (Λ1, Ω1), (Λ2, Ω2) … (Λk, Ωk) … (ΛN, ΩN). (7) 
Algorithm 7 realizes sequence (7).  

 
 

 
Fig. 4. Adding row k to block B[m, c] in C2CG  

(aij denotes an element of block B[m, c], and bjk denotes an element of block B[m]) 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 6: Calculating horizontal cross-block by 
row-per-row extension upon bridges (C2CGE) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
S ← size(m) 
for k ← Fout + 1to S do 

for i ← 1 to k do 
for j ← 1 to size(c) do 

if OutBridge(k – 1) then  
B[m, c]i,j ← min (B[m, c]i,j,  

B[m]i,k-1 + B[m, c]k-1,j)         // Ωk-1 
if OutBridge(i) then  

B[m, c]k,j ← min (B[m, c]k,j,  
B[m]k,i + B[m, c]i,j)               // Λk 

if OutBridge(S) then  
for i ← 1 to S − 1 do 

for j ← 1 to size(c) do  
B[m, c]i,j ← min (B[m, c]i,j,  

B[m]i,S + B[c, m]S,j)             // ΩN 
return B[m, c] 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 7: Recurrent procedure for computing 
horizontal cross-block upon bridges 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
for k ← Fout + 1 to size(m) do 

for i ← 1 to k – 1 do 
for j ← 1 to size(c) do 

if OutBridge(i) then  
B[m, c]k,j ← min (B[m, c]k,j,             // Λk 

B[m]k,i + B[m, c]i,j) 
for i ← 1 to k – 1 do 

for j ← 1 to size(c) do 
if OutBridge(k) then  

B[m, c]i,j ← min (B[m, c]i,j,              // Ωk 
B[m]i,k + B[m, c]k,j) 

return B[m, c] 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Fig. 5. Resynchronized process of adding a row 

 
It is impossible to merge the Λk and Ωk opera-

tions in the algorithm, therefore, we resynchronize 
the operations to obtain sequence (8).  

Λ1, (Ω1, Λ2), (Ω2, Λ3) … (Ωk-1, Λk) … 
(ΩN-1, ΛN), ΩN. (8) 

The new computation process shown in Fig. 5 is 
realized by Algorithm 8. Two nests of loops along i 
and j perform operations Ωk-1 and Λk. After merging 
the nests, Algorithm 8 is transformed to Algorithm 6. 
The theorem is proved. 

 
 
Algorithm 6 does not affect the horizontal cross-

block B[m, c] if cluster m has no output bridges. 
If the output bridge vertices are placed at the end of 
cluster m vertex list, the number of iterations of the 
loop along k is reduced to the number of these 

vertices. Due to the iteration schemes of the loops 
along i, the number of the conditional assignments 
is reduced up to 2 in C2CGE compared to the FW 
algorithm. The loops iteratively process the B[m, c] 
block of growing size 1 × size(c) to S × size(c), so 
the references to the block elements are localized. 
Traversing only the output bridge vertices of the m 
cluster reduces further the number of executions of 
Ωk-1 and Λk. Any of the OutBridge(⋅) conditions can 
be omitted while preserving the correctness of the 
result in Algorithms 6 – 8. 

Computation of peripheral blocks. Algorithm 9 [14] 
computes a rectangular block B[c, e] over two rectangular 
blocks B[c, m] and B[m, e]. The vertex set BridgesBest(m) 
is equal to BridgesIn(m) if |BridgesIn(m)| ≤ |Brid-
gesOut(m)| and is equal to BridgesOut(m) otherwise. 
Function Index(v, m) returns the vertex v number in 
cluster m. P3CG speeds up the computation against 
FW depending on the size of the BridgesBest(m) set 
compared to size(m). 

 
 
Conclusion. We have proposed new sub-algo-

rithms C1CGE and C2CGE for computing vertical 
and horizontal cross-blocks of the heterogeneous 
all-pairs shortest path algorithm, which speed up com-
putations and improve the locality of references to 
blocked data and hence aim to improve the opera-
tional efficiency of multicore processor hierarchical 
memory while solving the all-pairs shortest paths 
problem on large clustered weighted directed and 
undirected graphs. 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 8: Calculating horizontal cross-block by 
row-per-row extension upon bridges (C2CGE) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
S ← size(m) 
for k ← Fout + 1 to S do 

for i ← 1 to k do 
for j ← 1 to size(c) do 

if OutBridge(k – 1) then  
B[m, c]i,j ← min (B[m, c]i,j,  

B[m]i,k-1 + B[m, c]k-1,j)         // Ωk-1 
for i ← 1 to k do 

for j ← 1 to size(c) do 
if OutBridge(i) then  

B[m, c]k,j ← min (B[m, c]k,j,  
B[m]k,i + B[m, c]i,j)          // Λk 

if OutBridge(S) then  
for i ← 1 to S − 1 do 

for j ← 1 to size(c) do  
B[m, c]i,j ← min (B[m, c]i,j,  

B[m]i,S + B[c, m]S,j)         // ΩN 
return B[m, c] 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm 9: Calculation of peripheral rectangular 
block upon bridges and unequal block-sizes (P3CG) 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
for i ← 1 to size(c) do 

for v ∈ BridgesBest(m) and k ← Index(v, m) do 
for j ← 1 to size(e) do 

B[c, e]i, j←min(B[c, e]i, j,B[c, m]i, k+B[m, e]k, j) 
return B[c, e] 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
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