Студ. И.С. Кунцевич, И.М. Гайдукевич Науч. рук. доц. В.И. Бакаленко (кафедра автоматизации производственных процессов и электротехники, БГТУ)

АНАЛИЗ ПРОЦЕССА СЖИГАНИЯ БИОМАСС В КОТЛЕ С ПСЕВДООЖЖИЖЕННЫМ СЛОЕМ

Цель процесса — получение пародымовой смеси определённой температуры и давления (P_{ϕ} = -2 мбар, T_{ϕ} = 620 °C).

Участок сжигания биомасс в котле с псевдоожиженным слоем состоит из топливного бункера, бункера для песка, растопочной горелки и котла сжигания.

Топливо в виде биомасс из древесины, получаемых на различных стадиях производства поступает по конвейеру (привод М1) в бункер хранения топлива, где поддерживается уровень топлива ($L_m = 35\%$) путем изменения расхода биомассы ($F*_{ml}=25$ т/ч). Из бункера топливо распределяется по трем слоям котла с помощью конвейеров (приводы М2, М3, М4).

Одновременно с этим по конвейеру (привод М5) подается песок поле сепарации в бункер песка, где поддерживается уровень песка после сепарации ($L_{nnc} = 80\%$) путем изменения расхода биомассы (F^*_{nnc}).

В котле поддерживается температура по всей площади котла на трех слоях, на нижнем слое температура ($T_{nhc} = 600...850$ °C, $T_{nhc} = 600...850$ °C) поддерживается путем изменения расхода топлива на нижний слой (F^*_{m4}), на среднем слое температура ($T_{ncc} = 600...850$ °C, $T_{ncc} = 600...850$ °C) поддерживается путем изменения расхода топлива на средний слой (F^*_{m3}), на верхнем слое температура ($T_{nec} = 600...850$ °C, $T_{nec} = 600...850$ °C) поддерживается путем изменения расхода топлива на верхний слой (F^*_{m2}).

В котле на каждом слое, с двух сторон котла поддерживается заданное давление ($P_{nhc}=-0,1\ldots-2$ мбар, $P_{nhc}=-0,1\ldots-2$ мбар, $P_{nec}=-0,1\ldots-2$ мбар, $P_{nec}=-0,1\ldots-2$ мбар, $P_{nec}=-0,1\ldots-2$ мбар, $P_{nec}=-0,1\ldots-2$ мбар) путем изменения расхода пародымовой смеси из котла (F^*_{∂}).

На выходе из котла получаем пародымовую смесь с определенными давлением и температурой ($P_{\theta} = -2$ мбар, $T_{\theta} = 620$ °C), регулируемых путем изменения степени открытия клапана подачи воздуха ($S^*_{\theta} = 0...90$ %), с учетом расхода воздуха (F_{θ}) с целью его экономии.

Растопка происходит при подаче природного газа в горелку с постоянным расходом (F_{nz}), с поддержанием расхода путем изменения степени открытия клапана природного газа ($S^*_{\kappa nz} = 0...90$ %).

Также в самой нижней части котла поддерживается определенное давление и температура ($P_{HN^{\prime}}=0.08$ бар, $T_{HN^{\prime}}=190$ °C), путем изменения степени открытия клапана удавления шлаков ($S^*_{uu}=0...90$ %) для сохранения необходимой плотности.

Таким образом, система автоматического управления имеет 9 локальных систем управления.

Структурная схема САУ представлена на рисунке. На данной схеме приведены входные и выходные материальные потоки с указанием технологических переменных. Анализ технологического процесса сжигания биомасс в котле с псевдоожжиженным слоем как ОУ позволяет обосновать выбор структуры системы автоматического управления.

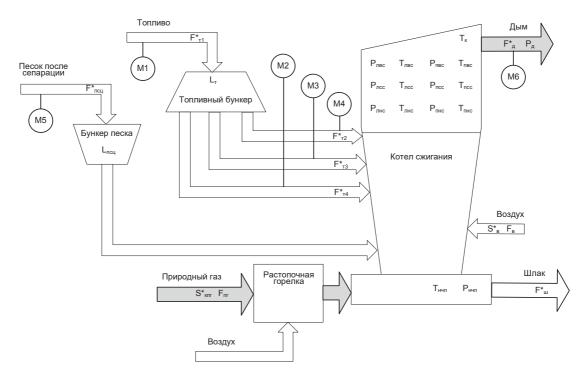


Рисунок – Схема анализа процесса сжигания биомасс в котле с псевдоожиженным слоем как ОУ

Кипящий слой как объект регулирования обладает специфическими свойствами и требует введения такого дополнительного (по сравнению с традиционными методами сжигания параметра регулирования, как температура кипящего слоя. А циркуляция песка еще больше усложняет процесс регулирования. С другой стороны, котел работает на отходах, которые представляют малую ценность для предприятия. Поэтому надежность функционирования котла и возможность экономия электроэнергии в дутьевых вентиляторах являются направлением для улучшения работы системы управления.