раствора (при 100 °C) выше, чем в первом варианте: с 0,80; 0,73 и 0,53 повышается до 1,49; 1,10 и 0,75 т, т.е. в 1,86; 1,92 и 1,41 раза выход больше. При способе расворения выход чистой поваренной соли (хлорида натрия) и хлорида калия увеличиваются по сравнению с вариантом 1. На основе теоретического анализа предложена принципиальная схема комплексной переработки низкосортных сильвинитов.

ЛИТЕРАТУРА

- 1. Mavlyanov M.B., Erkayev A.U., Adilova M.SH. Study of Low Silvinite Enrichment Process in Tubegatan Deposit // Published by:International Journal of Advanced Research in Science, Engineering and Technology. Asian Journalof Multidimensional Research, ISSN: 2350-0328, Vol 8, Issue 9, September 2021. India. P. 18237–18241.
- 2. Мавлянов М.Б., Адилова М.Ш., Эркаев А.У. Изучение процесса получения хлорида калия галургическим способом из сильвинита Тюбегатанского месторождения //«Universum:технические науки» Выпуск:11(104) ноябрь, 2022. С.30-38.
- 3. Mavlyanov M.B., Bekchanov B.B., Adilova M.SH., Erkayev A.U. Study of the chemical and mineralogical composition of potassium ores of tubegatan mine//Science and innovation international scientific journal, Vol 2, Issue 25 October 2023. P. 81–87.

УДК 669.872

Д.Б. Холикулов, д-р техн. наук, проф., зам. директора по научной работе и инновациям; X.Р. Хайдаралиев, докторант кафедры «Металлургия»; Ш.Т. Хожиев, Ph.D., доц. кафедры «Металлургия»; С.С. Муталибхонов, ст. преп. кафедры «Металлургия» (Алмалыкский филиал Ташкентского государственного технического университета им. Ислама Каримова, г. Алмалык, Узбекистан)

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ВЫЩЕЛАЧИВАНИЯ ФЕРРИТА ЦИНКА СЕРНОЙ КИСЛОТОЙ С ИСПОЛЬЗОВАНИЕМ ГИДРАЗИНА СУЛЬФАТА

Феррит цинка ($ZnFe_2O_4$) представляет собой один из основных компонентов отходов гидрометаллургических процессов [1]. Наличие цинкового феррита затрудняет переработку цинкового кека. Он образуется при обжиге цинкового концентрата и препятствует полному переходу цинка в раствор при обработке серной кислотой. Стабильность феррита цинка усложняет извлечение металла [2]. Эффективная переработка феррита цинка позволяет извлекать цинк и железо, что

имеет важное значение для металлургической промышленности [3]. Использование серной кислоты для выщелачивания феррита цинка широко изучено, однако добавление восстановителей, таких как гидразин сульфат ($N_2H_6SO_4$), может значительно улучшить процесс выщелачивания.

В этом исследование [4] изучено разработке экологически чистой и экономически выгодной технологии извлечения металлов из цинкового кека с использованием гидразина для разложения цинкферрита. Гидразин восстанавливает железо (III) в цинк-феррите до железа (II), выделяя азот в виде газа, а кислород связывается с водородом гидразина, образуя воду. Экономическая выгода обеспечивается эффективной диффузией гидразина в растворах, его нетоксичностью и низкой стоимостью по сравнению с углеродсодержащими восстановителями.

Авторы работы [5] исследовали остатки нейтрального выщелачивания руды, содержащие значительные количества кадмия (Cd) и цинка (Zn), представляющие угрозу для окружающей среды. Процесс восстановительного выщелачивания с использованием сульфата гидразина показал высокую эффективность извлечения этих элементов при оптимальных условиях.

Сульфат гидразина использовался в качестве восстановителя для выщелачивания лития, никеля, кобальта и марганца из отработанных литий-ионных батарей авторами работы [6]. Оптимальные условия включали определённую концентрацию серной кислоты, дозировку сульфата гидразина, соотношение твёрдое—жидкое, температуру и время выщелачивания. Энергии активации процесса выщелачивания были различными для каждого из элементов: лития, никеля и кобальта.

Целью настоящего исследования является термодинамический анализ процесса выщелачивания феррита цинка с серной кислотой в присутствии гидразина сульфата.

Процесс выщелачивания феррита цинка включает сложные реакции между компонентами:

$$2ZnFe_2O_4 + N_2H_6SO_4 + 5H_2SO_4 \rightarrow 2ZnSO_4 + 4FeSO_4 + N_2 + 8H_2O$$
 (1)

Термодинамический анализ включает расчет стандартных значений энтальпии (Δ H), энтропии (Δ S) и свободной энергии Гиббса (Δ G) для этих реакций. Отрицательное значение Δ G указывает на термодинамическую возможность протекания реакции. Термодинамический анализ реакции был проведён в интервале температур 298–368 К (25–95 °C). При этом рассмотрено влияние температуры системы на энергию Гиббса реакции, а результаты представлены в таблице 1.

Таблица 1 – Свободная энергия Гиббса (ΔG) в зависимости от температуры

Температура (Т)		AG (willing/years)
K	°C	ΔG (кДж/моль)
298	25	-1077,918
308	35	-1079,828
318	45	-1081,738
328	55	-1083,648
338	65	-1085,558
348	75	-1087,468
358	85	-1089,378
368	95	-1091,288

Значения ΔG для выщелачивания феррита цинка серной кислотой показывают, что реакция становится более благоприятной при повышении температуры.

Введение гидразина сульфата способствует снижению общего ΔG процесса за счет повышения восстановительной способности среды (рис. 1). Экспериментальные данные подтверждают, что добавление гидразина сульфата приводит к более полному растворению феррита цинка и повышению извлечения цинка до 90–95 %.

Добавление восстановителя ускоряет протекание реакции.

Увеличение температуры дополнительно способствует повышению скорости процесса.

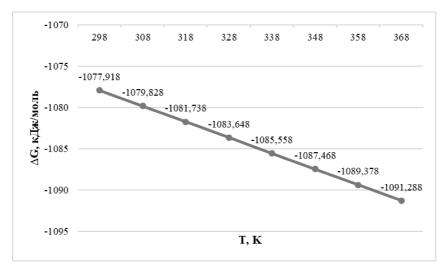


Рисунок 1 — Зависимость свободной энергии Гиббса от температуры для восстановления цинкового феррита с использованием сульфата гидразина

Проведенный термодинамический анализ показал, что использование гидразина сульфата в процессе выщелачивания феррита цинка серной кислотой является термодинамически и кинетически эф-

фективным методом. Это открывает перспективы для дальнейшего внедрения данного подхода в гидрометаллургическую промышленность.

Значение ΔG становится более отрицательным с ростом температуры, что указывает на увеличение термодинамической стабильности реакции.

ЛИТЕРАТУРА

- 1. Hojiyev Sh.T., Berdiyarov B.T. Sulfidli rux boyitmasini Qaynar Qatlam pechida kuydirish jarayonida silikatlar va ferritlar hosil bo'lishining oldini olish chora-tadbirlari // "Fan va Texnika taraqqiyotida intellektual yoshlarning o'rni" nomli Respublika ilmiy anjumanining ma'ruzalar to'plami, I qism/ Toshkent: ToshDTU, aprel, 2015. 171 174 p.
- 2. Холикулов Д.Б., Нормуротов Р.И., Хайдарлиев Х.Р., Рузикулов К.М. Гидрометаллургическая переработка цинковых кеков в условиях цинкового завода АО «Алмалыкский ГМК» // Проблемы комплексной и экологически безопасной переработки природного и техногенного минерального сырья. Плаксинские чтения, 2021. С. 17–18.
- 3. Khaydaraliev K., Karshiyev H., Mamaraximov S. Effect of particle size during leaching of zinc cakes in sulfuric acid // Talqin va Tadqiqotlar. 2023. T. 1. N = 24. C. 27-31.
- 4. Khojiev Sh.T., Kholikulov D.B., Toshkodirova R.E., Khaydaraliev Kh.R. Investigation of the reduction of zinc ferrite with hydrazine: thermodynamic analysis and optimization of process conditions // "Kimyo sanoatining dolzarb muammolari, innovatsion yechimlari va istiqbollari" nomli xalqaro ilmiy-amaliy anjumani toʻplami, Olmaliq, 1-2 noyabr, 2024. C. 288–289.
- 5. Zhang C., Min X., Zhang J., Wang M., Zhou B., Shen C. Reductive acid leaching of cadmium from zinc neutral leaching residue using hydrazine sulfate // Transactions of Nonferrous Metals Society of China, 2015. T. 25. C. 4175–4182.
- 6. Yang J., Jiang L., Liu F., Jia M., Lai Y. Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant // Transactions of Nonferrous Metals Society of China, 2020. T. 30. C. 2256–2264.