Таким образом, производство таблетированного хлорида кальция включает следующие этапы:

- 1. Очищение и сушка порошка $CaCl_2$ для достижения оптимального содержания влаги.
- 2. Прессование порошка прессуется в формы с обеспечением заданных размеров и плотности.

ЛИТЕРАТУРА

- 1. Ткач Г.А., Шапорев В.П., Титов В.М. Производство соды по малоотходной технологии. Харьков: XГПУ. 1998. 429 с.
- 2. Реймов К.Д., Эркаев А.У. Исследование процесса утилизации дистиллерной жидкости-отхода производства УП «Кунградский содовый завод» // Умидли кимегарлар: Тез. докл. научн. техн. конф.-Ташкент, 2008.
- 3. Рамбергенов А.К. Разработка технологии производства кальцинированной соды из низкоконцентрированного печного газа. — Дисс. канд. техн. наук — Ташкент, 2009. — 174 с.

УДК:661.632

А.Н. Бобокулов, А.У. Эркаев, Б.Т. Кошанова

(Ташкентский химико-технологический институт, г.Ташкент, Узбекистан);

Д.З. Эшметова

(Совместный Белорусско-Узбекский межотраслевой институт прикладных технических квалификаций, г. Ташкент, Узбекистан);

А.Н. Гаврилюк (БГТУ, Беларусь)

e-mail: kafedranmkt@mail.ru тел.+998970074774

ИЗУЧЕНИЕ ПРОЦЕССА ИСПАРЕНИЯ ЖИДКОЙ ФАЗЫ ПРИ ПРОИЗВОДСТВЕ КН₂РО₄

При получении дигидрофосфата калия из хлорида калия с использованием термической фосфорной кислоты и диэтиламина по аминному методу, дигидрофосфат калия выпадает в осадок в твердую фазу. [1-4]. При изучении химического состава жидкой фазы было обнаружено, что в ее составе остались некоторые количества оксидов калия и фосфора. Содержание жидкой фазы, в масс. %: K_2O - 1.988; P_2O_5 - 5.08; Cl_2 - 6.01; ДЭА - 15.4 и H_2O - 71,522.

Теоретически в результате реакции в жидкой фазе образуется гидрохлорид диэтиламина, но если останется часть непрореагировавшего исходного компонента, то он останется в жидкой фазе.

Что бы осадить солей, содержащихся в жидкой фазе в твердую фазу, выпаривали насыщенный раствор на разных уровнях. При этом определялись технологические параметры, влияющие на процесс упа-

ривания. К ним относятся скорость фильтрации, показатели рН, преломления, плотности и вязкости (табл. 1-2).

Таблица 1 – Влияние технологических параметров на процесс испарения

образующейся жидкой фазы при получении КН2РО4

№	C, %	рН	Показатель преломления света, n^{20}	Т.Ф. %	Время фильтрации, секунды	Скорость фильтрации, кг/м² *c		
						Ж.Ф.	Т.Ф.	
1	10	7.18	1,3816	1.43	34,16	2054,71	33,16	
2	20	7.39	1,3831	2,75	28.89	2106.24	78,37	
3	30	7,61	1,3909	5.27	20.57	3095,74	261,41	
4	40	7,65	1,3950	7.25	10.61	5361,64	773,57	
5	45	7,83	1,4018	9,5 0	8.37	5782,13	1284,91	

Как видно из таблицы 1, при упаривании насыщенного раствора в диапазоне от 10% до 45% твердая фаза отделялась от 1,43% до 9,50% по сравнению с выпаренной жидкой фазой.

Таблица 2 – Реологические показатели жидкой фазы, образующейся в процессе получения КН2РО4 при различных степенях испарения

No	C, %	Плотность, кг/м ² *c				Вязкость, мм ² /сек			
		20	40^{0}	60^{0}	80^{0}	20^{0}	40	60	80
1	10	1066	1062	1054	1045	22:13	18:32	13:17	12:13
2	20	1064	1058	1051	1043	24:43	19:97	16:89	13:04
3	30	1062	1056	1048	1038	27:34	21:86	17:16	13:63
4	40	1054	1043	1037	1029	30:81	26:73	17:93	14:19
5	45	1046	1034	1028	1016	31:35	29:54	18:40	17:52

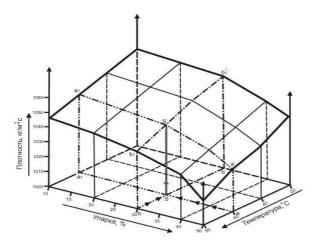


Рисунок 1 – Показатели плотности жидкой фазы, образующейся в процессе получения дигидрофосфата калия при различных степенях испарения

После фильтрации оставшейся твердую фазу сушили в сушильном шкафу при температуре 105, в течении 2 часов. Высушенного остатка подвергали к рентгеноструктурному анализу. Результаты, которые приведены в рисунке 2.

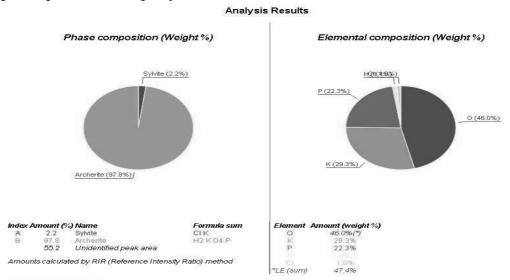


Рисунок 2 – Твердофазное рентгеновское изображение, полученное при 30% испарении насыщенного раствора

Из рентгеноструктурного анализа твердой фазы видно, что при 30%-ом выпаривании жидкой фазы в твердую фазу отделяется дигидрофосфат калия, а при испарении 40-45% в твердую фазу выпадает диэтиламинагидрохлорид вместе с дигидрофосфатом калия.

Таким образом, выпаривая жидкую фазу до 30%, можно дополнительно выделить продукт — дигидрофосфат калия, который также влияет на выход продукта, увеличивая его до 5%.

ЛИТЕРАТУРА

- 1. Позин М. Е. Технология минеральных удобрений. Л.: Химия, 1983.
- 2. Соловьева А. Н., Шокин И. Н., Яхонтова Е. Л. // Химия и химическая технология: сб. аспирантов и соискателей. Алма-Ата. 1967. Вып. 6. С. 206–211.
- 3. Мазунин С. А., Чечулин В. Л., Фролова С. А., Кистанова Н. С. Технология получения дигидрофосфата калия в системе с высаливанием // Химическая промышленность. 2010. №1. С. 6-15.
- 4. A. Bobokulov, A. Erkaev, Z. Toirov, M. Axmadova, and D. Eshmetova / Research of the process of obtaining potassium dihydrophosphate using diethylamine, E3S Web of Conferences 458, 02035 (2023) EMMFT-2023