Б.С. Мамарасулов, Б.Т. Кошанова, А.У. Эркаев (Ташкентский химико-технологический институт, г.Ташкент, Узбекистан); А.У. Абдурахимова

(Ташкентский филиал Российского химико-технологического университета им. Д.И. Менделеева, г. Ташкент, Узбекистан)

ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ ХЛОРИДА КАЛЬЦИЯ, ПРИГОДНОГО ДЛЯ ОСУШКИ ПРИРОДНОГО ГАЗА

В данной работе испытывали возможность применения отхода производства ООО СП «Кунградский содовый завод» — дистиллерную жидкость.

Известно, что одним из основных способов сокращения отходов хлора в процессе производства соды является получение продуктов путем их переработки. На сегодняшний день существуют направления решения проблемы утилизации отходов, такие как получение хлоридов кальция и натрия из застойных взвесей, использование их в качестве мелиорантов в нефтяной и газовой промышленности (рекультивация нефтезагрязненных болотных почв модифицированными мелиорантами) и получение гидроксида кальция, а также бесцементное вяжущее и другие продукты [1–3].

Растворы хлористого кальция представляют собой эффективное и экономичное средство для абсорбции водяного пара в различных промышленных процессах. Их высокая гигроскопичность, доступность и простота регенерации делают их незаменимыми в системах осушки. Однако для достижения максимальной эффективности требуется учитывать такие факторы, как концентрация раствора, температура процесса и возможные риски коррозии.

Опыты проводились с дистиллерной жидкостью следующего состава (г/л): $26,92 - \text{Na}^+$; $37,07 - \text{Ca}^{2+}$; $99,98 - \text{Cl}^-$; $0,30 - \text{SO}_4^{2-}$; $1,01 - 2 \text{ OH}^-$; плотность $-1,133 \text{ г/см}^2$.

Для разработки стадий разделения образующихся солевых осадков изучали процессы их седиментации и фильтрации суспензии в зависимости от температуры и соотношения Ж:Т. Упарку раствора продолжали до достижения содержания CaCl₂ 40–45%, поскольку дальнейшее повышение концентрации не влияет на содержание хлорида натрия в жидкой фазе. С повышением концентрации CaCl₂ раствор становится более вязким, что затрудняло осаждение и фильтрацию кристаллов хлорида натрия. Поэтому предлагаем проводить процесс упарки в две стадии. Первая стадия продолжается до содержания хлорида кальция 45% и после отделения кристаллов начинается вторая

стадия. Поэтому процесс седиментации и фильтрации проводили при 80^{0} C.

Как показал седиментационный анализ, при отстаивании могут образоваться соляные суспензии с Ж:Т=1:1–5:1 в течении 10 мин и солевая суспензия, образующаяся при упарке дистиллерной жидкости до 45%, быстро декантируется и легко фильтруется (таблица 1).

Таблица 1 – Скорость фильтрации суспензии, образующейся при упарке дистиллерной жидкости

	Соот- но- ше- ние Ж:Т	При 20 ⁰ С				При 80 ⁰ C			
No		скорость филь- трации, кг/м ² ·ч			n	скорость филь- трации, кг/м ² ·ч			n
тов		по твер- дому осадку	по жид- кой фазе	р, г/см	η, мПа с	по твер- дому осадку	по жид- кой фа- зе	ρ, Γ/см	η, мПа с
1	5:1	191,8	938,5	1,40	210,0	225,89	1207,5	1,38	150,0
2	4:1	205,11	825,28	1,42	220,5	315,05	1431,0	1,39	180,4

1,48

1,59

Таким образом, мы получили растворы с концентрацией 30, 40 и 50% и плавленые таблетированные продукты хлорида кальция с диаметром частиц $-4 \div +3$; $-3 \div +1$; $-1 \div +0,5$, пригодные для осушки природного газа (рис.1).

410,4

1590,1

347,92

426,3

239,4

240

2:1

1:1

483,01

233

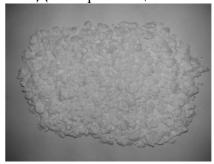
Диаметр частиц больше +5

747,40

360,9

1,460

1,570


210,1

1290

Диаметр частиц -4+3

Диаметр частиц -3+1

Диаметр частиц -1+0,5

Рисунок 1 — Фотография образцов хлорида кальция, пригодных для применения при осушки природного газа

Таким образом, производство таблетированного хлорида кальция включает следующие этапы:

- 1. Очищение и сушка порошка $CaCl_2$ для достижения оптимального содержания влаги.
- 2. Прессование порошка прессуется в формы с обеспечением заданных размеров и плотности.

ЛИТЕРАТУРА

- 1. Ткач Г.А., Шапорев В.П., Титов В.М. Производство соды по малоотходной технологии. Харьков: XГПУ. 1998. 429 с.
- 2. Реймов К.Д., Эркаев А.У. Исследование процесса утилизации дистиллерной жидкости-отхода производства УП «Кунградский содовый завод» // Умидли кимегарлар: Тез. докл. научн. техн. конф.-Ташкент, 2008.
- 3. Рамбергенов А.К. Разработка технологии производства кальцинированной соды из низкоконцентрированного печного газа. – Дисс. канд. техн. наук – Ташкент, 2009. – 174 с.

УДК:661.632

А.Н. Бобокулов, А.У. Эркаев, Б.Т. Кошанова

(Ташкентский химико-технологический институт, г.Ташкент, Узбекистан);

Д.З. Эшметова

(Совместный Белорусско-Узбекский межотраслевой институт прикладных технических квалификаций, г. Ташкент, Узбекистан);

А.Н. Гаврилюк (БГТУ, Беларусь)

e-mail: kafedranmkt@mail.ru тел.+998970074774

ИЗУЧЕНИЕ ПРОЦЕССА ИСПАРЕНИЯ ЖИДКОЙ ФАЗЫ ПРИ ПРОИЗВОДСТВЕ КН₂РО₄

При получении дигидрофосфата калия из хлорида калия с использованием термической фосфорной кислоты и диэтиламина по аминному методу, дигидрофосфат калия выпадает в осадок в твердую фазу. [1-4]. При изучении химического состава жидкой фазы было обнаружено, что в ее составе остались некоторые количества оксидов калия и фосфора. Содержание жидкой фазы, в масс. %: K_2O - 1.988; P_2O_5 - 5.08; Cl_2 - 6.01; ДЭА - 15.4 и H_2O - 71,522.

Теоретически в результате реакции в жидкой фазе образуется гидрохлорид диэтиламина, но если останется часть непрореагировавшего исходного компонента, то он останется в жидкой фазе.

Что бы осадить солей, содержащихся в жидкой фазе в твердую фазу, выпаривали насыщенный раствор на разных уровнях. При этом определялись технологические параметры, влияющие на процесс упа-