УДК: 547.371:547.372

С.Ш. Шарипов, PhD, зав. кафедрой; Б.Ф. Мухиддинов, проф., д-р техн. наук; P.А. Данакулова, студ. (НГГТУ, г. Навои, Узбекистан)

ОКИСЛИТЕЛЬНЫЙ ОБЖИГ УПОРНЫХ СУЛЬФИДНЫХ РУД МЕСТОРОЖДЕНИЯ АУМИНЗО-АМАНТАЙ

Применение традиционных методов переработки упорных сульфидных руд не всегда даёт положительные результаты, так как характеристики таких типов руд требует использование более рациональных способов [1–3]. Одним из таких эффективных способов обогащения является применение окислительного обжига [4–5]. Окислительный обжиг, по сути, считается термохимическим процессом, в котором происходит нагрев упорных сульфидных руд в присутствии кислорода для изменения химического состава, улучшения их перерабатываемости и извлечения ценных металлов. На сегодняшний день процессы окислительного обжига выполняют на современных печах псевдоожиженного кипящего слоя и ротационном оборудованияи [6–7]. Основные направления исследований в этой области будут направлены на определение оптимальных параметров процесса окислительного обжига.

Нами, для установления оптимальных температурных режимов обжига, выполнены следующие эксперименты. Исходный материал флотокнцентрата ГМЗ-5 подвергали обжигу в разных температурных интервалах от 300 °C до 800°C. Процесс выполняли в муфельной печи марки SNOL 8,2/1100 LSM01. Время эксперимента во всех случаях составило 15-120 мин с перемешиванием материала каждые 10 мин. Перед началом опыта определяли основные показатели исходного флотоконцентрата. При этом исходный флотокнцентрат имел следющие показатели:

$$Au = 20.0 \text{ г/т}; S_s = 17.64 \%; C_{opr} = 2.98 \%; влаж. = 9.79 \%$$

В ходе обжига тщательно наблюдали над видоизменениями материала и газовыделением. По результатам эксперимента можно констатировать что при 300 °С и протяженности эксперимента 2 ч, выделение газов не наблюдалось. Проба в конце опыта имела буро-серый цвет. При 400 °С с небольшой подачей воздуха при продолжительности эксперимента 2 ч, в конце опыта наблюдается характерный запах. Цвет пробы — серый. При 500 °С с подачей воздуха через 15 мин наблюдается накаливание пробы, через 1 ч накаливание не наблюдается, но изменяется цвет пробы до коричневого. При 600 °С через 10 мин начинается накаливание пробы, через 40 мин накаливание не наблюдается, выделение газов также не наблюдается, цвет пробы из-

меняется на коричневый. При 700 °C происходит следующее: через 7 мин начинается накаливание пробы, но после обработки в течение 1 и 2-х ч пробы еще были накалены, выделение газов не наблюдалось. Цвет пробы — красновато коричневый. При 800 °C через 5 мин начинается накаливание пробы, но после часовой и двухчасовой обработки проба еще была накалена. При этом образовались большие окатыши, цвет пробы — красно-коричневый, выделение газов не наблюдалось.

Таблица – Результаты лабораторных испытаний по обжигу флотоконцентрата ГМЗ-5 при разных температурах

№	Температурный режим, °С	Состав огарка			Аи в хво- стах	Извлечение,
		Аи, г/тн	Ss, %	Сорг, %	сорбции,	%
					Γ/TH	
1	300	22,3	15,83	2,62	8,5	61,8
2	400	24,2	7,44	2,38	8,9	63,2
3	500	27,2	0,31	0,54	4,4	86,3
4	600	25,9	0,09	0,17	4,25	83,5
5	700	26,6	0,1	0,16	9,15	65,6
6	800	26,8	0,013	0,09	13,85	48,0

Результаты опыта показывают, что хорошие результаты получены в промежутке 500-600 °C. Именно в этих температурах происходит активное окисление сульфидных минералов. При относительно низких температурах (<500-600°C) окислительные реакции протекают медленно и при этом сульфиды частично могут окисляться. Полученные результаты по извлечению металла только подтверждает данный факт. По мере увеличения температуры обжига окисления сульфидных минералов протекает интенсивно, с образованием оксидов металлов (например, Fe₂O₃, CuO), наблюдается интенсивное выделение газов – продуктов реакции. Кроме того, температурный режим способствует протеканию фазовых превращений. При низких температурах обжига сульфидных минералов образуется пирротины и соответствующие сульфаты элементов. При условиях стыковки температурного режима и температур плавления собственных, породообразующих и акцессорных минералов может протекать спекание продуктов реакции. Образующие промежуточные продукты и окиды металлов, покрывая поверхность материала, будут ограничивать доступ кислорода, снижая пористость массы, что в конечном итоге приводит к уменьшению извлечения металла.

ЛИТЕРАТУРА

1. Комогорцев Б.В., Вареничев А.А. Проблемы переработки бедных и упорных золотосодержащих руд // ГИАБ. 2016. №2. URL:

https://cyberleninka.ru/article/n/problemy-pererabotki-bednyh-i-upornyh-zolotosoderzhaschih-rud (дата обращения: 19.01.2025).

- 2. Никитина Т.Ю., Петров Г.В. Современное состояние и технологические перспективы применения малотоксичных растворителей золота для переработки техногенного сырья // Вестник МГТУ им. Г.И. Носова. 2021. №1. URL: https://cyberleninka.ru/article/n/sovremennoe-sostoyanie-i-tehnologicheskie-perspektivy-primeneniya-malotoksichnyh-rastvoriteley-zolota-dlya-pererabotkitehnogennogo (дата обращения: 19.01.2025).
- 3. Резник Ю.Н., Шумилова Л.В. Способ подготовки упорных сульфидных золотосодержащих руд к выщелачиванию // Современные технологии. Системный анализ. Моделирование. 2008. №2. URL: https://cyberleninka.ru/article/n/sposob-podgotovki-upornyh-sulfidnyh-zolotosoderzhaschih-rud-k-vyschelachivaniyu (дата обращения: 19.01.2025).
- 4. Kubaschewski, O. and Alcock C.B. (1979) Metallurgical Thermochemistry, 5th Edition, Pergamon, Oxford.
- 5. Hapid, A., Zullaikah, S., Mahfud, Kawigraha, A., Sudiyanto, Y., Benita Nareswari, R., & Quitain, A. T. (2024). Oxidation of sulfide mineral and metal extraction analysis in the microwave-assisted roasting pretreatment of refractory gold ore. *Arabian Journal of Chemistry*, *17*(1), Article 105447. https://doi.org/10.1016/j.arabjc.2023.105447
- 6. https://www.researchgate.net/publication/387558440_Advancements_in_improving_gold_recovery_from_refractory_gold_oresconcentrates_a_review
- 7. Gao L. et al. Separation and recovery of iron and nickel from low-grade laterite nickel ore using reduction roasting at rotary kiln followed by magnetic separation technique //Mining, Metallurgy & Exploration. 2019. T. 36. C. 375-384.

УДК: 547.371:547.372

А.Т. Гаффоров, базовый докторант; С.Ш. Шарипов, PhD, зав. кафедрой; Р.А. Данакулова, студ.; А.Л. Рузибоев, студ. (НГГТУ, г. Навои, Узбекистан)

ОБЗОР СОСТОЯНИЯ ПРОИЗВОДСТВА НИКЕЛЬ-И ХРОМСОДЕРЖАЩИХ ПРОДУКТОВ ИЗ ВТОРИЧНЫХ РЕСУРСОВ

Сегодня во всем мире спрос на соединения никеля и хрома в промышленных масштабах растет день за днем. Соединения никеля и