У Д К

Студ. А.А. Гриневич, А.С. Пикиловский Науч. рук. ст. преп., канд. техн. наук Д.М. Кузьменков (кафедра безопасности жизнедеятельности БГТУ)

ИЗВЛЕЧЕНИЕ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ФОСФОГИПСА

Редкоземельные металлы (РЗМ) представляют собой группу из 17 элементов, включая 15 элементов из ряда лантаноидов, а также скандий и итрий. Они обладают уникальными физическими и химическими свойствами, что делает их ценными для различных высоких технологий, включая электронику, энергетику, магнитные материалы и катализаторы. Технология извлечения РЗМ из фосфогипса представляет собой актуальную научно-исследовательскую область, которая направлена на утилизацию отходов фосфатной промышленности и извлечение ценных ресурсов. Фосфогипс, побочный продукт производства фосфорных удобрений, содержит относительно значительное количество РЗМ (до выгодным, особенно в условиях растущего спроса на эти металлы в различных отраслях, включая производство магнитов, катализаторов, оптики и других высоких технологий.

В процессе извлечения редкоземельных металлов из фосфогипса используются различные химические и физико-химические методы, включая кислотное выщелачивание, флотацию и экстракцию. Наиболее распространенным подходом является применение кислот, таких как серная или соляная, для растворения редкоземельных элементов из матрицы фосфогипса. После извлечения металлов из раствора осуществляется их очистка и осаждение, что позволяет получать высокочистые соединения редкоземельных металлов, пригодные для дальнейшего использования в электронной, энергетической и других отраслях. В дальнейшем, обедненный металлами отход можно использовать в строительной отрасли, в частности для производства гипсовых вяжущих.

Внедрение данной технологии может значительно улучшить экономическую эффективность переработки фосфогипса и снизить зависимость от традиционных источников редкоземельных металлов. Кроме того, успешное извлечение этих элементов способствует развитию устойчивых технологий и уменьшению воздействия на окружающую среду. Исследования в этой области продолжаются, и новые достижения могут привести к созданию более эффективных и экологически безопасных процессов переработки, что в свою очередь откроет новые горизонты для использования редкоземельных металлов.