ную массу, при этом с целью повышения содержания ГВ возможно проведение процесса окисления.

Выполненный цикл исследований позволил определить оптимальные параметры щелочной экстракции ГВ: температура -70 °C, концентрация КОН -5 %, продолжительность процесса -2 часа, соотношение Ж:Т -8.

Распределение ГВ: гумат калия -85,18 % от исходного количества в БУ; НЭО -14,82 %, из них 11,22 % растворимые ГВ. Суммарный выход свободных ГВ составил 96,4 %.

ЛИТЕРАТУРА

- 1. Ли Синьюй, Банецкая Е. В., Цзян Юй, Ми Ган, Вэй Жань Влияние длительного применения различных удобрений на популяции микроорганизмов и ферментативную активность почвы // Агронаука. -2023. − Т. 1. № 1. С. 134–141.
- 2. Pansu M., Gautheyrou J. Handbook of Sail Analysis Mineralogical, Organic and Inorganic Methods. Berlin, Heidelberg, New York: Springer, 2006, p. 993.

УДК 666.11.01

М.В. Дяденко, вед. науч. сотр., канд. техн. наук, доц.; И.А. Левицкий, д-р техн. наук, проф.; И.И. Курило, зав. каф., канд. хим. наук; В.Г. Лугин, доц., канд. хим. наук; А.С. Глинский, мл. науч. сотр.; А.Д. Подсосонная, мл. науч. сотр.; асп. А.А. Ширвель (БГТУ, г. Минск)

ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА СТЕКОЛ СИСТЕМЫ Na₂O-CaO-ZnO-SiO₂-P₂O₅ НА ИХ БИОАКТИВНОСТЬ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Способность биоактивных стекол растворяться в биологических жидкостях и модельных внеклеточных растворах является одним из определяющих факторов формирования материала, близкого к костной ткани, обусловливая его широкое применение в медицине. Такие материалы обладают остеоиндуктивностью, так как продукты их растворения активируют гены, отвечающие за развитие и повышение уровня организации клетки или ткани.

Образование гидроксиапатита на поверхности биоактивных стекол, погруженных в соответствующие физиологические растворы и жидкости, является индикатором их биологической активности.

В связи с этим целью настоящей работы является изучение влияния соотношения CaO/P_2O_5 , а также суммарного содержания (Na_2O+CaO) на биоактивность стекол системы $Na_2O-CaO-ZnO-SiO_2-P_2O_5$ и устойчивость их стеклообразного состояния.

Массовое содержание основных оксидов и их соотношение представлены в таблице ниже.

Таблица – Массовое содержание основных оксидов опытных стекол системы Na₂O-CaO-ZnO-SiO₂-P₂O₅ и их соотношение

11420-СаО-2110-5102-1 205 и их соотношение						
№ состава	SiO ₂ + ZnO	CaO	P ₂ O ₅	Na ₂ O	Na ₂ O+ CaO	CaO/ P ₂ O ₅
1	58,5	7,0	2,0	32,5	39,5	3,5
2	58,5	8,0	2,0	31,5	39,5	4,0
3	58,5	9,0	2,0	30,5	39,5	4,5
4	58,5	10,0	2,0	29,5	39,5	5,0
5	58,5	8,7	2,5	30,3	39,0	3,5
6	58,5	10,0	2,5	29,0	39,0	4,0
7	58,5	11,2	2,5	27,8	39,0	4,5
8	58,5	12,5	2,5	26,5	39,0	5,0
9	58,5	10,5	3,0	28,0	38,5	3,5
10	58,5	12,0	3,0	26,5	38,5	4,0
11	58,5	13,5	3,0	25,0	38,5	4,5
12	58,5	15,0	3,0	23,5	38,5	5,0
13	58,5	12,2	3,5	25,8	38,0	3,5
14	58,5	14,0	3,5	24,0	38,0	4,0
15	58,5	15,7	3,5	22,3	38,0	4,5
16	58,5	17,5	3,5	20,5	38,0	5,0

Синтез низкокремнеземистых стекол системы $Na_2O-CaO-ZnO-SiO_2-P_2O_5$ осуществляли в корундовых тиглях в газовой пламенной печи периодического действия при максимальной температуре $1450\pm10~^{\circ}C$ с выдержкой при ней $1~^{\circ}$. После этого полученные образцы отжигали в муфельной печи при температуре $540\pm5~^{\circ}C$ для снятия внутренних напряжений.

Изучение устойчивости стеклообразного состояния опытных стекол осуществляли методом дифференциальной сканирующей калориметрии (ДСК) с использованием калориметра DSC 404 F3 Pegasus, Netzsch.

Установлено, что с повышением содержания оксида кальция, вводимого взамен Na_2O , и соотношения CaO/P_2O_5 склонность опытных стекол к кристаллизации увеличивается, что сопровождается ростом интенсивности экзотермических пиков.

В исследуемых стеклах, в составе которых содержится повышенное количество CaO, более выраженная склонность к кристаллизации связана с химическим сродством ионов Ca^{2+} к ионам фосфора [1].

Определяющим моментом при выборе биоактивных стекол является достаточно широкий интервал T_x — T_g (где T_g — температура стеклования, °C, T_x — температура начала кристаллизации, °C), что позволяет осуществлять термическую обработку биостекла без проявления признаков кристаллизации.

Следует отметить, что с ростом содержания оксида P_2O_5 от 2,0 до 3,5 мас. % при постоянном соотношении CaO/P_2O_5 наблюдается сужение температурного интервала выделения кристаллических фаз и их количества.

Таким образом, ширина рабочего диапазона T_x — T_g определяется содержанием оксида кальция и массовым соотношением CaO/ P_2O_5 , при этом оптимальные показатели достигаются при содержании CaO не более 10,5 мас. %.

Изучение плотности опытных стекол позволяет оценить степень миграции ионов, входящих в их состав, в биологическую жидкость.

Методом гидростатического взвешивания установлено, что плотность стекол изменяется в пределах 2770–2810 кг/м³.

С повышением содержания СаО, вводимого взамен оксида натрия, в целом плотность опытных стекол возрастает.

Рост плотности исследуемых стекол с ростом соотношения CaO/P_2O_5 от 3,5 до 5,0 вызван увеличением доли ионов кальция при одновременном снижении крупных по размеру ортофосфатных анионов, определяющих рост мольного объема стекол.

Для определения интенсивности биологического разрушения материалов в лабораторных условиях используют модельные среды. В настоящей работе в качестве таковой определен PBS-раствор.

Благодаря стабильности его pH использование такой модельной среды позволяет изучать долговременное поведение и стабильность материала без значительного высвобождения ионов кальция и фосфатов для формирования гидроксиапатита.

По результатам исследований определено, что характер изменения pH PBS-раствора носит параболический характер, при этом максимальная величина наблюдается в случае его взаимодействия с образцами в течение 7–14 сут. При содержании оксида P_2O_5 , составляющем 3,0 мас. %, наблюдается наибольшее изменение pH.

В процессе проведения эксперимента раствор PBS всегда сохранял свою прозрачность.

Для понимания процесса растворения стекла важно также исследовать изменение массы образцов стекла при долговременном погружении в PBS-раствор.

Установлено, что в исследуемом диапазоне соотношений CaO/P_2O_5 и при различном содержании P_2O_5 уменьшение массы образца стекла, погруженного в PBS-раствор, от времени выдержки изменяется в соответствии с линейным законом.

Минимальные потери массы характерны для образцов, содержащих 2,0 мас. % P_2O_5 , независимо от соотношения CaO/P_2O_5 .

Формирование кристаллов кальцийфосфатной фазы на поверхности исследуемого образца, погруженного в соответствующую модельную физиологическую жидкость (SBF-раствор), является признаком его биоактивности.

Изучено влияния продолжительности выдержки монолитных образцов стекол в модельном SBF-растворе на величину его рН.

На рисунке 1 представлена зависимость рН SBF-раствора, замена которого осуществлялась через фиксированные промежутки времени, от продолжительности его взаимодействии с монолитными образцами стекол.

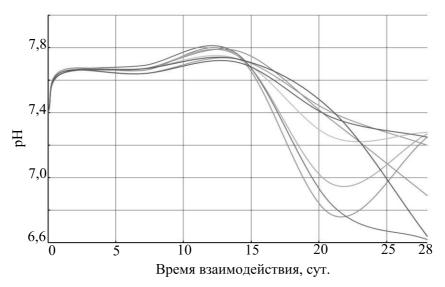
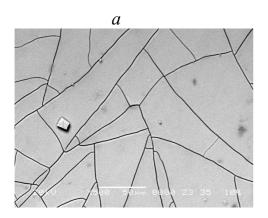


Рисунок 1 — Зависимость pH SBF-раствора от времени его взаимодействия с монолитными образцами стекол


Как следует из рисунка 1, в течение первых суток значения рН SBF-раствора повышались до 7,63–7,69 ввиду протекания процесса выщелачивания ионов из объема стекла.

Значения pH SBF-раствора практически стабилизировались через 24 ч. В течение следующих 6–7 суток pH модельного раствора практически не изменялся.

В последующие 7 суток pH модельного раствора возрастал до значений 7,7–7,8. Взаимодействие с SBF-раствором на протяжении 15–21 суток обусловливала снижение его pH до различных уровней, определяемых химическим составом стекла, в результате образования аморфного слоя, исключающего доступ модельного раствора к внутренним слоям стекла.

На рисунках 2 и 3 представлены электронно-микроскопические снимки поверхности образцов опытных стекол при массовом соотношении CaO/P_2O_5 , составляющем 3,5 и 5,0, и содержании оксида P_2O_5 3,0 и 3,5 мас. %.

Как следует из рисунков 2 и 3, образование предположительно кристаллов кальцийфосфатной фазы зависит от содержания P_2O_5 и соотношения CaO/P_2O_5 . Средний размер кристаллических образований составляет 5-10 мкм.

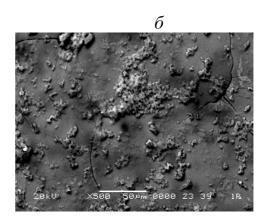
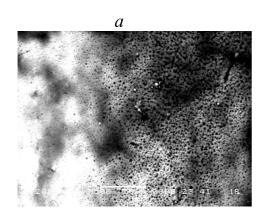



Рисунок 2 — Электронно-микроскопические снимки поверхности опытных образцов стекол, включающих 3,0 мас. % P_2O_5 , при соотношении: $a-CaO/P_2O_5-3,5$; $\delta-CaO/P_2O_5-5,0$

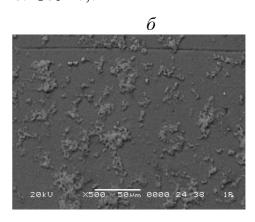


Рисунок 3 — Электронно-микроскопические снимки поверхности опытных образцов стекол, включающих 3,5 мас. % P_2O_5 , при соотношении: $a-CaO/P_2O_5-3,5; \delta-CaO/P_2O_5-5,0$

Таким образом, по результатам проведенных исследований установлено, что наибольшую биоактивность проявляют стекла исследуемой области системы $Na_2O-CaO-ZnO-SiO_2-P_2O_5$ с соотношением CaO/P_2O_5 , составляющим 5,0, включающие 3,0–3,5 мас. % P_2O_5 .

Исследования выполнены при поддержке Министерства образования Республики Беларусь в рамках задания 2.2.10 (НИР 1) ГПНИ «Химические процессы, реагенты и технологии, биорегуляторы и биооргхимия» подпрограммы «Синтез и направленное модифицирование регуляторов биопроцессов».

ЛИТЕРАТУРА

1 Waclawska I., Szumera M. Influence of MgO (CaO) on the structure of silicate-phosphate glasses TA and NMR study // Journal of Thermal Analysis and Calorimetry. – 2006. – Vol. 84. – № 1. – P. 185–190.

УДК 666.1.001.5

М.В. Дяденко, вед. науч. сотр., канд. техн. наук, доц.; И.А. Левицкий, д-р техн. наук, проф.; А.С. Глинский, стажер мл. науч. сотр. (БГТУ, г. Минск)

СРАВНИТЕЛЬНОЕ ВЛИЯНИЕ ОКСИДОВ MgO, ZnO И SrO НА ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СТЕКОЛ СИСТЕМЫ Na₂O-CaO-SiO₂-P₂O₅

Разработка составов биостекол предполагает как изучение особенностей их взаимодействия с биологической жидкостью человека, так и комплекса физико-химических и технологических свойств. Составы биостекол содержат модифицирующие катионы, наличие которых способствует деполимеризации их кремнекислородного каркаса, формированию структурных полостей, обуславливающих снижение локальной симметрии структурной сетки стекла и, как результат, повышение его растворимости в биологической среде [1].

Кроме того, использование оксидов-модификаторов позволяет регулировать химическую и кристаллизационную устойчивость опытных стекол, а также величину их плотности.

В связи с этим целью настоящей работы является изучение влияния содержания оксидов MgO, SrO, ZnO на комплекс физико-химических свойств стекол системы $Na_2O-CaO-SiO_2-P_2O_5$.

В базовый состав стекла системы Na_2O —CaO— SiO_2 — P_2O_5 , включающий, мас.%: 55 SiO_2 и 41,5 (Na_2O +CaO+ P_2O_5), вводились последовательно оксиды MgO, SrO и ZnO взамен SiO_2 в количестве от 3,5 до 11,0 мас. % с шагом 2,5 мас. %.