и требуемыми физико-химическими свойствами, включая антибактериальную активность.

ЛИТЕРАТУРА

1 Антибактериальная глазурь: пат 108585507A Китай, Xing Shuqin; заявитель: Jieshou City Wei Sheng Kiln Painted Pottery Development Co Ltd; 16.07.2018; опубл. 28.09.2018 // [Электронный ресурс]. — 2018. — Режим доступа: https://patents.google.com/patent/CN108585507A/en?oq=CN+108585507. Дата доступа:16.10.2024.

2 Керамическая глазурь с композиционной антибактериальной функцией: пат 105731801A Китай, Huang Qunhao; заявитель: Huang Qunhao; 30.12.2015; опубл. 06.07.2016 // [Электронный ресурс]. – 2016. — Режим доступа: https://patents.google.com/patent/CN105731801A/en?q=(antibacterial+glaze+La₂O₃)&patents=false&oq=ant ibacterial+glaze+La₂O₃. Дата доступа:16.10.2024.

3 Антибактериальная глазурь, содержащая экстракт традиционной китайской медицины: пат 105503162A Китай, Huang Qunhao; заявитель: Huang Qunhao; 30.12.2015; опубл. 20.04.2016 // [Электронный ресурс]. — 2016. — Режим доступа: https:// patents.google.com/patent/CN105503162A/en?q=false&oq=page=1. Дата доступа:16.10.2024.

УДК: 631.895

О.Б. Дормешкин, проф., д-р техн. наук; А.Н. Гаврилюк, доц., канд. техн. наук; А.А. Бышик, инженер, М.С. Мохорт, асп. (БГТУ, г. Минск)

ФИЗИКО-ХИМИЧЕСКИЕ ОСОБЕННОСТИ ЩЕЛОЧНОЙ ЭКСТРАКЦИИ ГУМИНОВЫХ ВЕЩЕСТВ ИЗ БУРЫХ УГЛЕЙ БРИНЁВСКОГО МЕСТОРОЖДЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Рост численности населения совместно с возрастающими потребностями приводят к сокращению сельскохозяйственных земель. С 1950 по 2024 г. мировое население возросло в более чем в 3 раза, что привело к снижению площади пахотных земель с 0,45 до 0,18 га на душу населения. Глобальной проблемой также является снижение качества сельскохозяйственных угодий, обусловленное интенсивным землепользованием без возможности восстановления земельных ресурсов.

Гуминовые вещества (далее ΓB) — это сложные смеси устойчивых к биодеструкции высокомолекулярных темноокрашенных органических соединений природного происхождения, образующихся при разложении растительных и животных остатков под действием микроорганизмов и абиотических факторов среды.

Многообразная роль ГВ в почвообразовательных процессах в значительной мере определяется содержанием в них большого количества функциональных групп, являющихся диагностическим показателем степени гумификации органических веществ почвы. Велика роль ГВ в улучшении физических свойств почв, создании оптимального водно-воздушного режима. ГВ предотвращают вымывание минеральных удобрений и способствуют охране окружающей среды.

Убыль ГВ обусловливается двумя группами факторов: механическими и биологическими. Значительная часть потерь связана с эрозионными процессами. Биологический фактор оказывает существенное влияние на дегумификацию почв при сочетании с рядом неблагоприятных условий в интенсивном земледелии. При внесении минеральных удобрений микрофлора почвы усиленно их потребляет, разрушая при этом перегнойные вещества почвы. Помимо этого, водорастворимые продукты минерализации органических веществ теряются в результате вымывания, особенно в условиях промывного водного режима почв [1].

Удобрения с высоким содержанием гуминовых и фульвокислот оказывают комплексное воздействие на почву, улучшают её физические, химические и биологические свойства.

Республика Беларусь обладает значительными ресурсами экологически чистого сырья, способного обеспечивать производство промышленных органических и ОМУ как для внутреннего потребления, так и имеющих значительный экспортный потенциал на глобальных рынках. В качестве сырья для производства ОМУ на основе ГВ могут применяться: углефицированные материалы, торф и донные отложения, органические отходы, а также сланцы и некоторые виды почв. Запасы бурого угля в Республике Беларусь оцениваются в 1,5 млрд т., разведанные — более 160 млн т. Основными месторождениями являются Бриневское, Житковичское, Тонежское, Лельчицкое.

Высокая степень гумификации бурых углей, естественная влажность и зольность делают нецелесообразным применение их для энергетических нужд, однако они могут быть использованы для получения ГВ и продуктов на их основе. В качестве исходного сырья были выбраны бурые угли Бринёвского месторождения. Химический состав бурого угля представлен в таблице 1.

Таблица 1 – Химический состав бурого угля Бринёвского месторождения

Компоненты, %									
1. Органическая масса угля – 72,518, в том числе:									
Гуминовые кислоты			Фульвокислоты			Гумин			
55,543			3,017			13,958			
2. Неорганическая масса угля – 27,482, в том числе:									
SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	K ₂ O	Na ₂ O	SO_4^{2-}	P_2O_5	
16,551	3,268	2,904	2,362	0,952	0,399	0,195	0,097	0,086	

Не один из известных методов получения ОМУ не обходится без применения щелочных реагентов для извлечения ГК из органического сырья и перевода их в растворимую форму. При этом основными факторами, влияющим на процесс экстракции являются природа органического сырья, концентрация щелочных реагентов, температура, продолжительность процесса и гидродинамические параметры.

Сложность и неоднозначность состава и структуры органического вещества углей обуславливают необходимость проведения исследований для конкретного месторождения с установлением оптимальных параметров процесса экстракции.

Первая серия экспериментов направлена на установление влияния концентрации гидроксида калия на скорость процесса и выход ГВ. Концентрация КОН изменялась в диапазоне 0,5–5 %, при продолжительности процесса 1–24 часа и температуре 25 °C.

Исследования показали, что с увеличением концентрации КОН возрастает скорость экстракции, при этом максимальный выход ГВ 99,2–99,6 % наблюдается для 1–2 % КОН при продолжительности процесса более 20 ч, что подтверждает литературные данные о более низком выходе ГК из концентрированных растворов щелочей, в результате протекания процессов гидролиза [2].

Вторая серия экспериментов направлена на установление влияния температуры процесса на скорость экстракции и выход ГВ. Температура процесса изменялась в диапазоне 20-90 °C, при продолжительности экстракции 0.5-5 ч и концентрации КОН -3 %.

Анализ полученных данных показал, что с увеличением температуры процесса экстракции возрастает его скорость и соответственно выход ΓB , однако это также приводит и к увеличению скорости процессов разрушения ΓB . Так при температуре более 70 °C и продолжительности экстракции свыше 3 часов количество разрушаемых ΓK в единицу времени превышает количество экстрагируемых ΓB , что приводит к снижению выхода ΓB .

Третья серия экспериментов направлена на установление влияния соотношения реагентов на скорость экстракции и выход ГВ. Соотношение реагентов измерялось отношением Ж: Т (Ж – количество

раствора КОН заданной концентрации, T — количество БУ, взятого для экстракции), и изменялось в диапазоне 4–12, концентрация растворов КОН изменялась в диапазоне 2–7 %, продолжительность процесса экстракции 1 ч, температура — 70 °C.

Установлено, что при уменьшении соотношения Ж: Т менее 8 происходит резкое снижение скорости экстракции и выхода ГВ, что обусловлено резким возрастанием вязкости смеси и снижением избытка гидроксида калия. Также установлено, что изменение концентрации гидроксида калия оказывает большее влияние на скорость процесса и выход ГВ, чем соотношение Ж: Т, при одинаковом избытке КОН.

Характеристики гумата калия и неэкстрагируемого остатка (НЭО), получаемых при оптимальных параметрах представлены в таблице 2. Гумат калия содержит до 5 % свободного КОН, наличие которого обусловлено применением его избыточного количества с целью увеличения скорости экстракции. При получении ОМУ избыточная щелочность нейтрализуется вводимыми минеральными компонентами. В случае же получения в качестве продукта гумата калия, избыточная щелочность может быть нейтрализована гуминовой кислотой, полученной за счёт нейтрализации части гумата калия минеральными кислотами, с последующей отмывкой осадка ГК и растворении их в щелочном экстракте. Образующиеся при этом соли калия и растворённые ФК могут быть использованы в производстве ОМУ.

Таблица 2 – Характеристики гумата калия и неэкстрагируемого остатка

Параметр	Гумат калия	Неэкстрагируемый остаток		
Содержание на сухое вещество, %				
1.Гуминовые вещества, в т.ч.:	94,280	32,527		
Гуминовые кислоты	69,154	23,858		
Фульвокислоты	3,756	1,296		
Калий (гумат и фульват калия)	21,370	7,373		
2. Азот (органический)	2,287	0,737		
3. Гумин	_	40,451		
4. Неорганический остаток	_	20,788		
 Калий в расчёте на K₂O, в т.ч.: 	4,002	3,277		
Водорастворимый	4,002	1,395		
Усвояемый	_	1,883		
Растворимость, %	100	34,01		
pH	10,95	10,24		

На основании анализа состава НЭО видно, что гидроксид калия реагирует не только с гуминовой и фульвокислотой, но и с гумином переводя часть калия из водорастворимой формы в усвояемую. НЭО возможно использовать как компонент ОМУ, содержащих балласт-

ную массу, при этом с целью повышения содержания ГВ возможно проведение процесса окисления.

Выполненный цикл исследований позволил определить оптимальные параметры щелочной экстракции ГВ: температура -70 °C, концентрация КОН -5 %, продолжительность процесса -2 часа, соотношение Ж:Т -8.

Распределение ГВ: гумат калия -85,18 % от исходного количества в БУ; НЭО -14,82 %, из них 11,22 % растворимые ГВ. Суммарный выход свободных ГВ составил 96,4 %.

ЛИТЕРАТУРА

- 1. Ли Синьюй, Банецкая Е. В., Цзян Юй, Ми Ган, Вэй Жань Влияние длительного применения различных удобрений на популяции микроорганизмов и ферментативную активность почвы // Агронаука. -2023. − Т. 1. № 1. С. 134–141.
- 2. Pansu M., Gautheyrou J. Handbook of Sail Analysis Mineralogical, Organic and Inorganic Methods. Berlin, Heidelberg, New York: Springer, 2006, p. 993.

УДК 666.11.01

М.В. Дяденко, вед. науч. сотр., канд. техн. наук, доц.; И.А. Левицкий, д-р техн. наук, проф.; И.И. Курило, зав. каф., канд. хим. наук; В.Г. Лугин, доц., канд. хим. наук; А.С. Глинский, мл. науч. сотр.; А.Д. Подсосонная, мл. науч. сотр.; асп. А.А. Ширвель (БГТУ, г. Минск)

ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА СТЕКОЛ СИСТЕМЫ Na₂O-CaO-ZnO-SiO₂-P₂O₅ НА ИХ БИОАКТИВНОСТЬ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Способность биоактивных стекол растворяться в биологических жидкостях и модельных внеклеточных растворах является одним из определяющих факторов формирования материала, близкого к костной ткани, обусловливая его широкое применение в медицине. Такие материалы обладают остеоиндуктивностью, так как продукты их растворения активируют гены, отвечающие за развитие и повышение уровня организации клетки или ткани.

Образование гидроксиапатита на поверхности биоактивных стекол, погруженных в соответствующие физиологические растворы и жидкости, является индикатором их биологической активности.