УДК 678.7 – 036 УДК 678

Маг. Е.А. Чепелевич

Науч. рук. доц. Л.А. Ленартович (кафедра ПКМ, БГТУ)

ИЗУЧЕНИЕ УСТОЙЧИВОСТИ ОКРАСКИ ПЭТ-ВОЛОКОН, СОДЕРЖАЩИХ НАНОЧАСТИЦЫ ОКСИДОВ ТИТАНА И ЦИНКА

Изучение устойчивости окраски полиэфирных волокон имеет большое значение в текстильной промышленности, так как от этого зависят эксплуатационные и эстетические свойства готовых изделий. Важным аспектом является соответствие международным стандартам качества, обеспечивающим необходимость сохранения цвета изделий в течение длительного времени.

При выполнении предыдущего этапа исследований было изучено влияние наночастиц оксидов титана и цинка, добавленных на стадии синтеза, на способность к окрашиванию ПЭТ-волокон фталоцианиновым зеленым. Целью данной работы является изучение устойчивости полученных окрашенных волокон к воздействию водного мыльного раствора, имитирующего стадии стирки, а также к воздействию ультразвука.

Для оценки устойчивости окраски фрагменты ПЭТ волокон длинной $1,0\pm0,2$ см помещали в центрифужные пробирки, добавляли 5%ный раствор мыла нагревали до $40\,^{\circ}\text{C}$ и выдерживали при постоянном перемешивании $1\,^{\circ}$ ч, после чего отбирали пробы раствора для определения оптической плотности. Для моделирования интенсивного воздействия на волокна образцы помещали в ультразвуковую ванну Elma Н и подвергали воздействию ультразвука в течении 1 мин при температуре $40\,^{\circ}\text{C}$. Дополнительно оценивали интенсивность окраски, используя относительные значения в цветности, полученные при анализе фотографий волокон.

Полученные результаты свидетельствуют о том, что воздействие водного мыльного раствора с последующей обработкой ультразвуком приводит к снижению интенсивности окраски для всех исследуемых композиций, что, возможно, связано с разрушением агломератов колоранта, адсорбированных на поверхности волокна, а также связано с интенсификацией протекания процессов его десорбции под действием ультразвука.

Для немодифицированного ПЭТ наблюдается снижение интенсивности окраски от 2 до 28%; для ПЭТ, содержащего ZnO, от 11 до 44%; для ПЭТ, содержащего TiO₂, от 2 до 24%. Наиболее устойчивы к вымыванию колоранта композиции, содержащие наночастицы диоксида титана, окрашенные фталоцианиновым зеленым в течение 4 ч.