ГИРОСТАБИЛИЗИРОВАННЫЕ ОПТИКО-ЭЛЕКТРОННЫЕ СИСТЕМЫ ДЛЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

А.Н. ХРИБТЕНКО, С.В. ФИЛИПОВИЧ, Д.В. КАЦЕР ОАО «Пеленг», Минск, Беларусь

ОАО «Пеленг» является ведущим проектно-конструкторским предприятием оптико-электронного приборостроения с полувековой историей, огромным интеллектуальным потенциалом, современной производственной базой и уникальными технологиями.

Основными видами деятельности ОАО "Пеленг" являются выполнение НИОКР и изготовление наукоемкой оптико-электронной продукции широкого спектра применения: съемочных систем дистанционного зондирования земли; оптико-электронных систем (ОЭС) для бронетанковой техники и средств ПВО; оборудования для криминалистики и метеорологии, определения утечек природного газа; авиационных ОЭС наблюдения и наведения.

ОЭС легкого класса представлены системой захвата и сопровождения объектов (СЗиСО), приведенной на рис. 1. Изделие позволяет вести наблюдение, поиск, обнаружение, распознавание и автосопровождение объектов интереса в видимом диапазоне длин волн. Изделие выполняет функции телевизионного координатора цели барражирующего боеприпаса. Основные технические характеристики СЗиСО приведены в табл. 1.

Рис. 1. СЗиСО

Табл. 1. Технические характеристики СЗиСО

Характеристика	Значение	
Диапазон углов разворота по:		
азимуту	от -110° до +110°	
углу места	от -90° до +10°	
Разрешение изображения ТВ	1920 × 1080	
Поле зрения (Г)	10°, 20°	
Номинальное напряжение	14 B	
Габаритные размеры (Д×В)	125×195 мм	
Масса, не более	0,8 кг	

В настоящее время ведется разработка гиростабилизированной ОЭС легкого класса ГОЭС-М (рис. 2) с двумя каналами наблюдения (телевизионным (ТВ) и тепловизионным (ТПВ)) и лазерным дальномером. Изделие позволяет получать изображения местности и объектов в видимом, дальнем инфракрасном (ИК) спектральных диапазонах. Функциональные возможности данной целевой нагрузки позволяют автоматически сопровождать объекты интереса, измерять дальность, определять координаты и параметры движения объектов. Основные технические характеристики ГОЭС-М приведены в табл. 2.

Рис. 2. ГОЭС-М

Табл. 2. Технические характеристики ГОЭС-М

Характеристика	Значение	
Диапазон углов разворота по:		
азимуту	от -170° до +170°	
углу места	от -125° до +90°	
Разрешение изображения ТВ	1920×1080	
Поле зрения ТВ (Г)	6,2° - 57°	
Оптическое увеличение ТВ	10 ^x	
Разрешение изображения ТПВ	640 × 512	
Размер пикселя матрицы ТПВ	12 мкм	
Поле зрения (Г) ТПВ	12,5°	
Длина волны ЛД	1,54 мкм	
Диапазон измерения ЛД	0,02 - 5 км	
Номинальное напряжение	14 B	
Габаритные размеры (Д×В)	125×200 мм	
Масса, не более	1,2 кг	

К системам среднего класса относится авиационная система технического зрения (СТЗА) «Сыч» (рис. 3). Основными каналами наблюдения данного изделия являются: обзорная телевизионная камера, детальная телевизионная камера, охлаждаемая тепловизионная камера, лазерный дальномер.

Система прошла успешные испытания, в том числе в составе беспилотного авиационного комплекса, и получила положительные отзывы пользователей. Основные технические характеристики СТЗА приведены в табл. 3.

Рис. 3. СТЗА «Сыч»

Табл. 3. Технические характеристики СТЗА «Сыч»

Характеристики	Значение	
	CT3A-1	CT3A-2
Диапазон углов разворота по ази-	n × 360°	
муту и углу места		
Стабилизация линии визирования	двухстепенная, 50	трехстепенная, 20
	мкрад	мкрад
Разрешение изображения ТВ	1920 × 1080 (RGB)	
Поле зрения (Г) ТВ обзорной	2,3° - 63,7°	
Поле зрения (Г) ТВ детальной	4,0°; 8,0°	2,4°; 4,8°
Разрешение изображения ТПВ	640 × 512	
Поле зрения (Г) ТПВ	2,0° - 27°	
Длина волны ЛД	1,54 мкм	
Диапазон измерения ЛД	0,1 - 10 км	
Номинальное напряжение	27 B	
Габаритные размеры (Д×В)	250×340 мм	
Macca	12,8 кг	16 кг

В рамках ОКР ведется разработка ГОЭС тяжелого класса (рис. 4). ГОЭС-Т позволяет вести круглосуточный поиск, обнаружение, распознавание и автоматическое сопровождение объектов интереса. Изделие обеспечивает получение изображения местности и объектов в видимом, коротковолновом (SWIR) и средневолновом ИК диапазонах. Функциональные возможности позволяют измерять дальность, определять координаты и параметры движения объектов, выполнять лазерное целеуказание.

Рис. 4. ГОЭС-Т

Возможен выбор систем дальнометрирования с различными рабочими диапазонами длин волн, включая безопасные. Гиростабилизированная платформа имеет четыре степени стабилизации. В табл. 4 приведены основные технические характеристики ГОЭС-Т.

Табл. 4. Технические характеристики ГОЭС-Т

Характеристика	Значение	
Диапазон углов разворота по:		
азимуту	n × 360°	
углу места	от -100° до +90°	
Максимальная скорость наведения	60°/c	
Стабилизация линии визирования	10 мкрад	
Разрешение изображения ТВ	1920 × 1080 (RGB)	
Поля зрения (Г) ТВ	от $1,5^{\circ}$ до $31,5^{\circ}$ - обзорный, $0,76^{\circ}$ -	
	детальный	
Разрешение изображения SWIR	1280 × 1024 или 640 × 512	
Поле зрения (Г) SWIR	1° или 0,5°	
Разрешение изображения ТПВ	1280 × 1024	
Поле зрения (Г) ТПВ	от 3.6° до 25.6° - обзорный,	
	1° - детальный	
Длина волны ЛД / ЛДЦ	1,54 мкм / 1,06 мкм	
Диапазон измерения ЛД	0,15 - 20 км	
Номинальное напряжение	27 B	
Габаритные размеры (Д×Ш×В)	485×525×650 мм	
Macca	72 кг	

В настоящее время ведутся работы по новым направлениям обработки видеоинформации с целью повышения функциональных возможностей оптико-электронных систем:

- обнаружение, распознавание и автосопровождение объектов интереса на основе искусственного интеллекта;
- комплексирование изображений различных спектральных диапазонов.

В линейке всех изделий имеются возможности по внесению конструктивных и функциональных изменений под запросы конкретных

потребителей. При поставке изделий заказчику предлагается комплектация программно-аппаратным комплексом для обучения операторов управления целевой нагрузкой.

Компания предлагает своим заказчикам полный спектр услуг по разработке, производству ОЭС и их интеграции на объектах заказчика, а также гарантийное и послегарантийное обслуживание.

УДК 623.746

ТОПЛИВО ДЛЯ БПЛА

М.О. ШЕВЧУК, С.Г. МИХАЛЁНОК Белорусский государственный технологический университет Минск, Беларусь

С начала XXI века наблюдается стремительное развитие отрасли беспилотных летательных аппаратов (БПЛА). В 2024 году объём их продаж превысил 30 миллиардов долларов США. Согласно прогнозам, к 2030 году этот показатель может достичь от 90 до 260 миллиардов долларов, отражая динамичный рост спроса и масштабов производства.

В малогабаритных беспилотных летательных аппаратах применяются различные источники энергии, включая литий-полимерные аккумуляторы, солнечные панели и водородные топливные элементы. Для увеличения дальности полёта могут использоваться двигатели внутреннего сгорания или воздушно-реактивные установки.

Большинство воздушных судов, особенно в коммерческой авиации, используют авиационное топливо. При этом авиационный бензин применяется исключительно в летательных аппаратах с поршневыми двигателями – таких как сверхлегкие воздушные машины и небольшие коммерческие самолёты. В результате его производство стало узкоспециализированной отраслью с ограниченными объёмами выпуска. В данной работе мы выделим пять ключевых факторов, критически важных для топлива, применяемого в авиации, включая беспилотные летательные аппараты:

- высокая детонационная устойчивость значительно превышает аналогичный показатель у автомобильного топлива, что обеспечивает надёжную работу двигателя при высоких нагрузках;
- оптимальный фракционный состав определяет температуру кипения и испаряемость бензина, влияя на эффективность его сгорания и стабильность работы двигателя;