

Рис. 3. Гиростабилизированные оптико-электронные системы для проведения работ, связанных с исследование леса и растительного покрова, разработана и применяется мультиспектральная ОЭС.

Дальнейшие работы по совершенствованию ОЭС направлены на улучшение качества изображения, увеличения дальности обнаружения объектов, внедрение искусственного интеллекта для решения задач наблюдения.

УДК 536.25

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕПЛООТДАЧИ ПРИ СВОБОДНОЙ КОНВЕКЦИИ НА ОРЕБРЕННОЙ ПОВЕРХНОСТИ ДЛЯ ПРИМЕНЕНИЯ В СИСТЕМАХ ОХЛАЖДЕНИЯ БПЛА

Г.С. МАРШАЛОВА, А.Б. СУХОЦКИЙ Белорусский государственный технологический университет Минск, Беларусь

Современное развитие БПЛА характеризуется значительным увеличением времени полета, мощности бортовой вычислительной техники, датчиков и систем связи. Это приводит к резкому росту тепловыделения от ключевых компонентов: силовых установок, электроники, аккумуляторных батарей.

Ключевой задачей является поиск оптимума между растущими тепловыми нагрузками и жесткими ограничениями по габаритам, массе и энергопотреблению.

Серийные малые БПЛА для охлаждения используют элементы самого БПЛА (обшивку, крылья, перегородки). Такие БПЛА чаще всего выполняются из алюминиевых сплавов или композитов. Основными требованиями к материалам являются высокая теплопроводность,

прочность, легкость при низкой стоимости. Тепловая энергия в таких БПЛА может передаваться через тепловые трубы или контактные плиты на обшивку фюзеляжа, которые при набегании воздушного потока будут рассеивать тепло в окружающую среду.

В более мощных коптерах, где электроника может сгенерировать значительное количество теплоты, используют принудительное воздушного охлаждение с помощью вентиляторов.

В БПЛА, где тепловые нагрузки слишком велики для естественного охлаждения с корпуса, активно используются развитые поверхности, в том числе оребренные. При этом оребрение используется для охлаждения как в режимах свободной, так и вынужденной конвекции.

Таким образом, экспериментальные исследования развития поверхности с помощью оребрения являются инструментом качественного проектирования систем охлаждения.

Цель работы — экспериментальное исследование теплоотдачи в режиме свободной конвекции воздуха гладкой и оребренной трубы.

Исследования теплоотдачи проводились для оребренной трубы следующих параметров, мм: диаметр d=56,8; диаметр трубы по основанию $d_0=26,4$; высота, шаг, средняя толщина ребра соответственно h=15,2; s=2,43; $\Delta=0,52$; теплоотдающая длина оребрения трубы l=300; общая длина оребренной трубы l=330. Коэффициент оребрения трубы составил $d_0=26,4$ мм.

Экспериментальные исследования проводились методом полного моделирования. Применялся труб вставными теплоэлектронагревателями. Схема экспериментальной установки, конструкция трубы-калориметра и ее оснащение температурными датчиками, аппаратурное оформление установки измерительными приборами, методика исследования и порядок проведения опытов изложены в [1]. Во время проведения опытов температура поверхности трубы изменялась в интервале $t_{\rm cr} = 26-256$ °C, температура окружающего воздуха в камере $t_0 = 20-27$ °C, подводимая к трубе электрическая мощность W = 5-230 Вт.

Результаты экспериментальных исследований обрабатывались и представлялись в виде зависимости числа Нуссельта от чисел Грасгофа:

$$Nu = \frac{\alpha_{\kappa} \cdot d_0}{\lambda},\tag{1}$$

$$Gr = \frac{g \cdot \beta \cdot d_0^3 \cdot (t_{cr} - t_0)}{v^2},$$
(2)

где α_{κ} — средний приведенный конвективный коэффициент теплоотдачи, отнесенный к полной наружной поверхности, $Bt/(m^2 K)$; λ , ν — коэффициенты теплопроводности, $Bt/(m \cdot K)$, и кинематической вязкости

 ${\rm M}^2/{\rm c}$; g — ускорение свободного падения, ${\rm M}/{\rm c}^2$; ${\rm \beta}$ — коэффициент температурного расширения, ${\rm K}^{-1}$.

Определяющей температурой для расчета теплофизических свойств воздуха является температура окружающего воздуха t_0 , °C.

На рисунке изображены результаты исследования в виде зависимости $Nu \cdot \phi = f(Ra)$ для учета вклада развития поверхности.

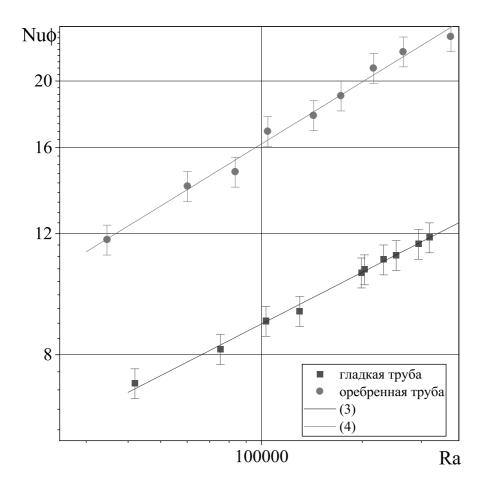


Рис. Теплоотдача гладкой и оребренной трубы в режиме свободной конвекции

Полученные экспериментальные данные, с погрешностью не превышающей 5%, обобщены критериальными уравнениями следующего вида

для гладкой трубы

$$Nu \cdot \varphi = 0.498 \cdot Ra^{0.25},$$
 (3)

для оребренной трубы

$$Nu \cdot \varphi = 0.511 \cdot Ra^{0.3}$$
. (4)

Уравнение (3) соответствует данными Михеева [2] для гладкого одиночного горизонтального цилиндра в условиях свободной конвекции в неограниченном объеме.

Как показано на рис. развитие поверхности с помощью оребрения позволяет увеличить эффективность теплоотвода в 1,5–1,9 раза. Это доказывает высокую эффективность развития поверхности как метода интенсификации теплообмена.

При этом стоит отметить, что с ростом числа Рэлея эффективность в указанных диапазонах повышается, так как наблюдается увеличение темпа роста теплоотдачи. Это означает, что выигрыш в теплоотдаче более значителен в условиях более интенсивного конвективного течения (при больших температурных напорах).

Таким образом, развитие поверхности теплообмена с помощью оребрения является перспективным и эффективным инструментом для отвода больших тепловых потоков в условиях жестких ограничений по массе, габаритам и энергопотреблению.

ЛИТЕРАТУРА

- 1. Разработка стенда и исследование свободной конвекции одиночной трубы при различных углах наклона / А. Б. Сухоцкий, В. Н. Фарафонтов, В. В. Дударев, С. О. Филатов, Г. С. Сидорик // Труды БГТУ. Сер. 1. Лесн. хоз-во, природопольз. и перераб. возоб. рес. − 2017. − № 1. − С. 169–174.
- 2. Михеев, М. А. Краткий курс теплопередачи / М. А. Михеев, И. М. Михеева. М.-Л.: Госэнергоиздат, 1960. 208 с.

УДК 621.313.4

РАЗРАБОТКА, ИЗГОТОВЛЕНИЕ И ИСПЫТАНИЯ ВЕНТИЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ДВИГАТЕЛЕЙ ДЛЯ БПЛА С МОНОЛИТНОЙ НЕОДНОРОДНО НАМАГНИЧЕННОЙ МАГНИТНОЙ СИСТЕМОЙ ИЗ МАГНИТОПЛАСТА НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Nd-Fe-B

Ю.В. МИЛОВ, В.Н. МИЛОВ, Е.В. МИЛОВ ООО «Магнитоэлектромеханика», Москва, Россия

В подавляющем большинстве случаев в БПЛА используются вентильные электрические двигатели (ВЭД), содержащие магнитную систему, составленную из четного количества коллинеарно намагниченных